
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec


© 2
012
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Systems Engineering: Required for Cost-
Effective Development of Secure Products 

GIAC GSEC Gold Certification 

Author: Dan Lyon, danlyon@mac.com 
Advisor: Hamed Khiabani 

Accepted: TBD 

Abstract 
This paper shows why and how system engineering should be applied to increase secure 
design of products.  The paper examines research on how system engineering improves 
security and quality while also reducing development cost and schedule.  The 
examination provides manufacturers with the incentive needed to invest in system 
engineering. 



© 2
012
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Systems Engineering: An Essential Role for Cost-Effective Development of 
Secure Products 

	  

2 

	  

Dan	  Lyon,	  danlyon@mac.com	   	   	  

 
 

1. Introduction 
Security of data and systems is critical to consider during development of a 

complex system, and by taking a systems approach, secure design can be achieved in a 

cost effective manner.  This paper overviews a basic understanding of systems 

engineering, then links that understanding to the domain of information security, and 

shows the cost effectiveness of a systems approach.  

Publications that describe information security along with systems engineering 

lack the link to the ability of system engineering to manage complexity.  Some address 

this issue from a software security angle, such as Gary McGraw’s Software Security: 

Building Security In (2006) and Michael Howard and Steve Lipner’s The Security 

Development Lifecycle (2006); however, these publications do not explicitly address 

information security from a systems approach nor do they describe system engineering’s 

ability to manage complexity.  Anderson (2009) states that system engineering is 

insufficient because it overlooks malice.  But malice is simply another perspective the 

system engineer should use to elicit requirements.  This paper fills the gap between 

malice, complexity and system engineering. 

According to Howard and Lipner (2006), security is a subset of quality, but there 

is no examination of what quality means.  Without a true understanding of the definition 

of quality, how to best improve quality is unclear.  This paper defines quality and 

explores research showing how systems engineering can improve quality.  Because 

security is a part of quality, improving quality will also improve security.  

Three studies are presented that showcase the benefit of systems engineering on 

product quality, schedule and cost.  An empirical study by W. Forrest Frantz exhibits 

significant schedule decrease coupled with increased functionality by taking a systems 

approach (1995).  Research by Eric Honour demonstrates a measurable increase in 

product quality by increasing Systems Engineering Effort and correlates this to cost and 

schedule (2004).  The impact of this research is that by spending the appropriate amount 



© 2
012
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Systems Engineering: An Essential Role for Cost-Effective Development of 
Secure Products 

	  

3 

	  

Dan	  Lyon,	  danlyon@mac.com	   	   	  

on systems engineering, quality and therefore security of the product can be improved 

most cost-effectively. Barry Boehm’s research supports the economic benefit of fixing 

problems at the requirements and design stages rather than later in the development cycle 

(McGraw, 2006).   

While security requirements are necessary, they are only one aspect of creating a 

secure system.  Johnson (2006) describes how complexity in systems creates emergent 

behaviors, and McGraw (2006) states that security is an emergent property of a system.  

These relationships imply that because of complexity, emergent security-related 

behaviors will be discovered during system development.  Because complexity drives the 

security behaviors, it needs to be managed – a fact affirmed by the International Council 

on Systems Engineering which found that systems engineering emerged as an effective 

way to manage complexity (INCOSE, 2010).   

Practical application of systems engineering techniques is demonstrated and tied 

to information security.  These techniques provide different views of the system to elicit 

requirements and manage complexity throughout the development process.  Traditional 

methods are: use cases, interface specifications, data flow diagrams, architecture design 

and technical leadership (Honourcode, 2011).  Each idea is applied to the information 

security domain. 

The connection between complexity, security and quality shows the value systems 

engineering brings to development of a complex system. Therefore, systems engineering 

is the most cost effective discipline to ensure security is designed into a system.  

2. Introduction to Systems Engineering 
Systems engineering is defined by the International Council on Systems 

Engineering as “a profession, a perspective, and a process” (INCOSE, 2010, p. 7).  Each 

of these qualities is examined and tied back to information security. 

According to INCOSE (2010), the systems engineering profession is stated as: 



© 2
012
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Systems Engineering: An Essential Role for Cost-Effective Development of 
Secure Products 

	  

4 

	  

Dan	  Lyon,	  danlyon@mac.com	   	   	  

…an interdisciplinary approach and means to enable the realization of successful 

systems.  It focuses on defining customer needs and required functionality early in 

the development cycle, documenting requirements, and then proceeding with 

design synthesis and system validation while considering the complete problem: 

operations, cost and schedule, performance, training and support, test, 

manufacturing, and disposal.  Systems engineering considers both the business 

and the technical needs of all customers with the goal of providing a quality 

product that meets the user needs. (p. 7) 

The definition above contains several key points that relate to information 

security.  Those points are to discover requirements early, consider the complete 

problem, and provide a quality product that meets user needs.  

According to Gary McGraw, designing security up-front is cheaper than when 

doing it later in the development cycle (2006).  Systems engineering is the beginning of 

the product development process and is responsible for translating user needs into system 

requirements (Blanchard & Fabrycky, 1998).  If systems engineering is the beginning of 

the development cycle, then including information security as a user need drives security 

to the front of the product development process.  

Systems engineering is focused on solving the problem in its entirety by taking a 

systems approach (INCOSE, 2010).  Such an approach is essential for creating a secure 

system and is illustrated by the following example.  Most people are aware of encryption 

as a solution for ensuring confidentiality. However, what good is encryption if the private 

keys are not private?  If the key management process is omitted as part of the system, 

then the entire problem is not being considered.  The complete problem is solved only 

when the technical details of encryption algorithms, key lengths, policies and procedures 

for management of private keys have all been considered.   

Delivering a quality solution that satisfies user needs is the objective of systems 

engineering (INCOSE, 2010).  This point relates because quality is subjective and 

depends upon perspective (McGraw-Hill, 2005).  Quality is more thoroughly elaborated 



© 2
012
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Systems Engineering: An Essential Role for Cost-Effective Development of 
Secure Products 

	  

5 

	  

Dan	  Lyon,	  danlyon@mac.com	   	   	  

below, but the outcome is important: to ensure a quality solution, the solution must be 

considered from the perspective of all stakeholders.  

The importance of stakeholder perspective is shown by the problem of 

authentication in a system where access to a single user system is required at any time by 

a variety of individuals.  Passwords are a common authentication measure in many 

systems, but passwords do not solve this issue effectively.  If a shared password to the 

system were required, users would solve their need by writing the password down and 

taping it to the machine, thus ensuring availability of the system to all who required it.  In 

this scenario, the security of the system is breached because user needs for system 

availability were not balanced with security.  Systems engineering provides the 

framework to balance all stakeholder input to ensure a solution meets the needs of all 

users (INCOSE, 2010). 

Systems engineering processes can be integrated into any development process 

model, including Waterfall, Spiral, and Vee (Blanchard & Fabrycky, 1998).  The Vee 

process model depicts an example in Figure 1, but all models include the same 

fundamental concepts of the development lifecycle. 



© 2
012
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Systems Engineering: An Essential Role for Cost-Effective Development of 
Secure Products 

	  

6 

	  

Dan	  Lyon,	  danlyon@mac.com	   	   	  

 

Figure 1 - Vee Process Model 

Common attributes for development are depicted in the Vee process model.  They 

are: requirements creation, architecture and design, implementation, testing and feedback 

loops (Blanchard & Fabrycky, 1998).  The activities are worked in iterations to 

continuously make forward progress in the development of the system while at the same 

time providing valuable feedback to activities performed earlier (Honourcode, 2011).   

3. System Engineering Increases Quality 
As described in the previous section, the desired outcome of system engineering is to 

produce a quality product (INCOSE, 2010).  Security is often referred to as a subset of 

quality (Howard & LeBlanc, 2003), and therefore improving quality can improve 

security.  The relationship between quality, security, reliability and privacy can be 

viewed in Figure 2 - Quality Attribute Relationship (Howard & Lipner, 2006).   



© 2
012
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Systems Engineering: An Essential Role for Cost-Effective Development of 
Secure Products 

	  

7 

	  

Dan	  Lyon,	  danlyon@mac.com	   	   	  

	  
Figure 2 - Quality Attribute Relationship 

  

Because security is a subset of quality, determining how system quality can be 

improved provides direction on how to increase security.  While Howard gives effective 

explanations on how security is a subset of quality, his work lacks the definition of 

quality (Howard & LeBlanc, 2003; Howard and Lipner, 2006).  What does it mean to 

have a quality product?  To answer this question, the definition of quality must first be 

understood.  

The ISO 25010 (2011) standard on system and software quality defines quality as 

contextual and subjective based on use of the system.  An alternate definition on quality 

is provided from the domain of economics by E. Scott Maynes as “the subjectively 

weighted average of characteristics giving rise to utility” (as cited in Terleckyj,	  1976,	  p.	  

530-‐531).  Subjectivity and utility are important to defining quality because in Maynes 

research, the consumer decides usefulness of a product.   

Further clarification on product quality is provided by three views in the McGraw-

Hill Concise Encyclopedia of Engineering (2005).  For clarification in this paper, 

definitions will be used to refer to the different views of the manufacturer and the user.  



© 2
012
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Systems Engineering: An Essential Role for Cost-Effective Development of 
Secure Products 

	  

8 

	  

Dan	  Lyon,	  danlyon@mac.com	   	   	  

Manufacturing quality is the view of the manufacturer. This view is focused on the 

“design, engineering and manufacturing processes” used to create the product (McGraw-

Hill, 2005, p. 559).  The manufacturer’s view is measured by adherence to specifications 

and standards, and quality improvement is focused on reducing production costs 

(McGraw-Hill, 2005).  This view does not explicitly include the user perception, which 

leads to the second view of quality.   

Performance quality is the view of the user and refers to the level that a product 

“satisfies their preferences and expectations” (McGraw-Hill, 2005, p. 559).  The user will 

take perceptions into account that may not be related to the functionality of the product 

but are used in their assessment of quality (McGraw-Hill, 2005). 

The view of the product as a system in use is a combination of the manufacturer and 

user’s views (McGraw-Hill, 2005).  This view of the system includes the traits that apply 

and contribute both to the operation and the functionality of the product. 

Given the above definitions on user, performance and manufacturing quality, it is 

possible to have product quality mean different things for the manufacturer and the user.  

Manufacturing quality is focused on specifications, while the focus of user and 

performance quality includes subjective measures.  The resulting contradictions in 

meanings present a problem that can only be solved by incorporating user needs, 

preferences and expectations into the specifications for the product.  

If performance and user quality are included with manufacturer quality, then 

increases in manufacturer quality will benefit both manufacturer and user.  By applying 

this same concept, security of the system in use can also be improved if the system 

engineering includes information security. 

Because manufacturer quality improvement is often focused on reducing costs, it is 

important to address the cost impact of systems engineering on the product development 

process.   



© 2
012
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Systems Engineering: An Essential Role for Cost-Effective Development of 
Secure Products 

	  

9 

	  

Dan	  Lyon,	  danlyon@mac.com	   	   	  

4. System Engineering Decreases Cost 
According to Blanchard and Fabrycky (1998, p. 42-43), experienced engineers 

recognize that systems engineering reduces the cost of system design and development.  

Several examples are provided to illustrate the economic benefit of systems engineering.   

The first example is provided by Barry Boehm’s research on the cost of fixing 

software defects at various points in the development lifecycle starting with requirements. 

While this research was not solely in the systems engineering domain, the research 

directly applies because early generation of requirements is a fundamental activity of 

systems engineering (INCOSE, 2010).  Boehm’s data demonstrates that fixing bugs at the 

requirements and design stages is more efficient by an order of magnitude as opposed to 

fixing them at the testing and maintenance stages (Boehm as cited in McGraw, 2006).  

The results are summarized in Figure 3 - Cost To Fix Defect in Stage (Boehm as cited in 

McGraw, 2006). 

	  
Figure 3 - Cost To Fix Defect in Stage 

 

The second example is an empirical study by W. Forrest Frantz who shows that 

systems engineering can increase a system’s quality and simultaneously reduce schedule 



© 2
012
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Systems Engineering: An Essential Role for Cost-Effective Development of 
Secure Products 

	  

10 

	  

Dan	  Lyon,	  danlyon@mac.com	   	   	  

(1995).  Frantz’s research compared three similar complex projects where the only 

significant differences in development were the systems management activities (1995).   

Each of the three projects developed Universal Holding Fixtures, referred to as UHF, 

that hold large airplane parts during the airplane manufacturing process.  Frantz (1995) 

described the complexity of the UHF machines as: 

Each UHF can configure to any part shape within its family, float the part on air 

while it is being loaded, locate the part in X and Y via monuments that pin the part 

through tooling holes, locate the part in Z via actuated pogos with vacuum cups on 

end effectors that pull vacuum on the part at heights derived from Engineering CAD 

drawings, hold the part to less than +0.003", change the vacuum level, and respond to 

various process commands. (Background section, para. 2) 

Other characteristics Frantz (1995) mentions are that each fixture weighed over 10 tons, 

had about 100 axis of motion, had interfaces to upstream data, required changes to related 

systems and processes, and cost millions. 

Frantz investigated the systems management differences and compared the 

approaches from all three projects.  Frantz’ results (1995) show that project duration was 

104, 48, and 36 weeks with the systems engineering effort increasing respectively.  Two 

factors that Frantz points out as contributing to the increased success of the projects were 

the use of systems engineering to increase quality and the use of a systems approach to 

viewing and solving problems (1995). 

Frantz measured quality by the “degree to which all customer requirements are met” 

(Frantz, 1995, Factors That Reduce Cycle Time section, para. 1).  All three projects met 

the manufacturing process requirements. However, only the shorter duration projects 

included significant additions in functionality (Frantz, 1995).  The shorter duration 

projects therefore have higher quality by surpassing the minimum set of requirements. 

On the two fastest projects a systems approach coordinated requirements generation 

with all impacted organizations to quickly and more completely define requirements 

(Frantz, 1995).  Frantz’ data (1995) clearly shows that increased system engineering 

effort improved quality and a systems approach reduced schedule duration. 



© 2
012
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Systems Engineering: An Essential Role for Cost-Effective Development of 
Secure Products 

	  

11 

	  

Dan	  Lyon,	  danlyon@mac.com	   	   	  

The third example is Eric Honour’s “Understanding the Value of Systems 

Engineering”.   Honour’s research shows an increase in quality by increasing systems 

engineering (Honour, 2004).  Honour establishes a Development Quality (DQ) index to 

measure project quality: 

 

𝐷𝑄 = 1 / (½ ∗ (𝐴𝑐𝑡𝑢𝑎𝑙 𝐶𝑜𝑠𝑡/𝑃𝑙𝑎𝑛𝑛𝑒𝑑 𝐶𝑜𝑠𝑡 + 𝐴𝑐𝑡𝑢𝑎𝑙 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒/𝑃𝑙𝑎𝑛𝑛𝑒𝑑 

𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒)). 

 

This formula results in a DQ of 1 for a project on-cost and on-schedule.  When the 

data is plotted against the percentage of project total cost spent on systems engineering 

effort, an optimum of about 20% of project cost should be spent on systems engineering 

effort to achieve the best Development Quality (Honour, 2004).  Honour then establishes 

the reported average of 3-8% of project cost spent on systems engineering (2004).  The 

evidence indicates that by raising the amount spent on quality systems engineering effort, 

a higher quality system can be delivered with better cost, schedule, or both. 

Systems engineering has been presented as a concept and shown to be a cost 

effective mechanism to increase quality and security of a system.  The discussion now 

turns to show that security is a system property. 

5. Security Is a System Property 
Security as a system property is shown by defense in depth.  The defense in depth 

approach consists of building layer-upon-layer of controls into a system. That way, if one 

control fails, another control is present to provide protection (Howard & LeBlanc, 2003). 

When defining the multiple layers for defense in depth, the layers start small, perhaps 

completely implemented in a given subsystem.  The controls eventually cross subsystem 

boundaries and, by definition, become necessary to consider at the system level. 

According to McGraw, security is an emergent behavior of the system (McGraw, 

2006).  Marsh states that emergent behaviors are produced when elements of a system are 

combined and a property not inherent in either element is created (2009).   These 

emergent behaviors are displayed by complex systems (Marsh, 2009).   



© 2
012
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Systems Engineering: An Essential Role for Cost-Effective Development of 
Secure Products 

	  

12 

	  

Dan	  Lyon,	  danlyon@mac.com	   	   	  

Daniel Geer states that complexity is the enemy of security (2008).  If complexity 

is the enemy, then a higher level of security can be achieved by managing complexity to 

reduce insecure emergent behaviors.  INCOSE says systems engineering “emerged as an 

effective way to manage complexity and change” in project development (INCOSE, 

2010, p. 14).  In the ancient Chinese text on warfare, The Art of War, Sun Tzu states that 

to win battles, one must know the enemy as well as the self (Tzu & Giles, 2005).  To 

extend Tzu’s thought to the current topic, to win the battle of designing a secure system, 

one must know security and complexity.  The systems engineering profession contains 

the necessary perspectives and processes to address the emergent behavior of security 

precisely because the profession already manages complexity and emergent behaviors not 

related to security.   

Combining the systems engineering domain with the information security domain 

allows security to be designed in and emergent behaviors managed.   

6. Impact 
At the SANS Rocky Mountain 2012 Conference 2012, John Strand explained his 

view about how the current state of information security is broken, and new approaches 

are needed for information security.  Many current practices for achieving information 

security are applied after a product has been developed.  Examples such as firewalls, 

intrusion detection, intrusion prevention, and antivirus are all external systems to what 

organizations use to conduct business.  One different approach is to provide 

manufacturers economic incentive to adopt a better development process. 

The data presented shows that systems engineering both improves quality and reduces 

cost and schedule.  McGraw states that security cannot be “bolted on” or “patched in” to 

create a secure system (2006, p. 209).  However, current security practices include tools 

that do exactly that.  Manufacturers and users will benefit from secure system 

engineering on products.  



© 2
012
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Systems Engineering: An Essential Role for Cost-Effective Development of 
Secure Products 

	  

13 

	  

Dan	  Lyon,	  danlyon@mac.com	   	   	  

7. Systems Engineering Techniques 
Concrete examples of applied systems engineering are described to show how 

traditional techniques can be used to increase security of a product throughout the 

development process. 

Discussion of system engineering techniques starts at the earliest point in the 

development lifecycle with requirement generation.  The goal is to generate correct and 

complete requirements.  If the requirements are correct, complete and proven through 

verification or validation, then the system under design is shown to meet stakeholder 

needs.   

In addition to being correct and complete, a requirement must be testable and 

unambiguous (Honourcode, 2011).  This concept is illustrated by the realistic but 

hypothetical requirement “The system shall be secure”.  The requirement as written is not 

testable; even a subject matter expert cannot reliably and repeatedly prove this 

requirement.  This lack of proof becomes even more of an issue as the domain knowledge 

in information security is reduced.  A non-security expert who may be doing the actual 

implementation has a different understanding of what a secure system is than does an 

experienced penetration tester.   

The hypothetical requirement could be rewritten to “The system shall be certified to 

FIPS 140-2”.  This wording change produces a requirement that is then verifiable and 

unambiguous. The test method is clear, and the results are not open to interpretation. 

A technique for discovering and specifying requirements is use cases, and Alistair 

Cockburn describes a use case as something that describes a system’s behavior under 

various conditions as the system responds to a stakeholder request (2000).  The same 

technique is easily used to represent a malicious goal by changing perception and is 

termed an abuse case by McGraw (2006).  By incorporating the attacker as an additional 

actor in the use case requirements elicitation process, more complete requirements can be 

generated as use and abuse cases often interact (Alexandar, 2003).  

To model abuse cases successfully, McGraw states that a security subject matter 

expert should be included up-front in the requirements process (2006).  This method 



© 2
012
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Systems Engineering: An Essential Role for Cost-Effective Development of 
Secure Products 

	  

14 

	  

Dan	  Lyon,	  danlyon@mac.com	   	   	  

brings the discovery into the most cost-effective time of the development cycle 

(McGraw, 2006). 

The following example depicts a few abuse cases for an online banking system where 

a customer desires to manage their money.  Normal use cases are represented by white 

ovals and abuse cases are represented by black ovals.  Derived system requirements 

included are in blue, and represent additional requirements on the system.  The goal of 

the user is to “Manage Money” and this goal includes both “Log In To Website” and 

“Keep Money”.  The goal of the attacker is to “Get Money”, which can be done in a 

variety of ways such as “Steal UID/Password”, “Steal Identity” or “Sell Cracked 

Passwords”.  

 

Figure 4 - Use Cases, Abuse Cases and Derived System Requirements 

 

This example is used to illustrate the application of four system’s engineering 

concepts.   



© 2
012
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Systems Engineering: An Essential Role for Cost-Effective Development of 
Secure Products 

	  

15 

	  

Dan	  Lyon,	  danlyon@mac.com	   	   	  

First, the example highlights the notion of changing perception.  Systems engineers 

are required to routinely change perception of the system as they perform requirements 

analysis (Honourcode, 2011).  System engineers need only change perception of the 

system from normal to malicious to account for abuse cases. 

Second, the example shows how a system is viewed in relation to a user function.  

System engineers view the system in terms of meeting a user need (INCOSE, 2010).  The 

users of this system expect to keep their money.  If the users do not keep their money, 

they will not use the system.  

The third aspect the example reveals is that user needs must be balanced across the 

system.  System engineers strive to balance requirements (INCOSE, 2010).  One sure 

way the bank could satisfy the user need to keep money would be to not allow online 

account management, but this restriction conflicts with the primary user need. 

The fourth illustration the bank example provides is that as Cockburn (2001) notes, 

use cases are some but not all of the requirements.  Additional requirements exist outside 

of what the user can do with the system as shown with the example of “Require Complex 

Password”.  Most bank users are not security experts and cannot express the desire for 

complex passwords or authentication protocols.  The function of the systems engineer 

must address the user desire to keep money, and create additional requirements that 

satisfy that user need.   

Use cases can be as formal or as informal as needed (Cockburn, 2001).  Abuse cases 

can be represented in the same manner as use cases, although some additional 

information may be desirable as described by Sindre and Opdahl.  The main benefit for 

abuse cases is the brainstorming with stakeholders and subject matter experts (McGraw, 

2006).  This brainstorming allows the security considerations to be accounted for and 

balanced like any other system need. 

Another tool frequently used in systems engineering is a data flow diagram 

(Honourcode Inc., 2011).  The data flow diagram can show how data flows through a 

system.  Figure 5 - Simple Data Sharing Across Internet illustrates a simple data sharing 

service across the Internet.  In this example data flows from the user’s computer on the 

left to the user’s computer on the right using a server in the middle.  This view highlights 



© 2
012
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Systems Engineering: An Essential Role for Cost-Effective Development of 
Secure Products 

	  

16 

	  

Dan	  Lyon,	  danlyon@mac.com	   	   	  

where the data exists, therefore, allowing questions about it to help elicit requirements.  Is 

the data encrypted across the Internet? Is the data encrypted on disk and in memory?  

Exploring the data flow also reveals the interfaces between subsystems. 

	  
Figure 5 - Simple Data Sharing Across Internet 

	  
Interface specifications are commonly used in complex systems where components or 

subsystems interact (Honourcode, 2011).  Interface specifications provide the opportunity 

for requirements on how subsystems react to external events and can be combined with 

the idea of chokepoints. 

Chokepoints are defined as those points in the system where data has crossed a trust 

boundary and must be validated (Howard & LeBlanc, 2003).  Chokepoints can be 

combined into the interface specification, thus creating security requirements for data 

input validation as well as the responses to improper data.  These chokepoints provide not 



© 2
012
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Systems Engineering: An Essential Role for Cost-Effective Development of 
Secure Products 

	  

17 

	  

Dan	  Lyon,	  danlyon@mac.com	   	   	  

only protection from bad data, but also the opportunity to specify proactive controls for a 

subsystem by using higher system level knowledge of behavior and interactions.   

The following example illustrates how chokepoints improve security systems.  A web 

service accepts user input.  The interface specification could be written with requirements 

that define only the characters allowable.  The interface requirements could also specify 

that if disallowed characters enter the system from the same IP address more than 3 

times, then accept no further connections from that IP address.  This provides an 

opportunity for products to define normal behavior and subsequently react to abnormal 

behavior, rather than relying on an external system like a firewall. 

System architecture definition is another activity of systems engineering 

(Honourcode, 2011) driven by customer needs (Blanchard and Fabrycky, 1998).  This 

can be illustrated in the common functionality of sharing a computer screen across the 

Internet. The following example from Figure 5 - Simple Data Sharing Across Internet 

illustrates two potential solutions that address the user need to share data across the 

internet. 

 

Potential 

Solution 

User Need Potential Architecture 

Solution A User wants to show screen to 

remote party. 

Users run software to connect 

through server to share data. 

 

Users share a generated token 

via external mechanism (e.g. – 

phone or chat) 



© 2
012
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Systems Engineering: An Essential Role for Cost-Effective Development of 
Secure Products 

	  

18 

	  

Dan	  Lyon,	  danlyon@mac.com	   	   	  

Solution B User wants to show screen to 

remote party. 

Server owner wants to restrict 

access. 

Users are required to login.  

 

Users run software to connect 

through server to share data. 

 

Users share a generated token 

via external mechanism. 

Table 1 - Description of Potential Solutions to Simple Data Sharing Across the 
Internet 

 

Solution A and B both allow the user to accomplish their goal of sharing data. 

However, Solution B identified an additional user need of restricting access.  Identifying 

this user need allows that conceptual design to evaluate various options. 

Honourcode (2011) describes technical leadership as a process used to plan and guide 

a product’s development as well as to manage relationships.  The process of technical 

leadership spans the entire development process, as shown in Figure 6 with the “Vee” 

process model. 



© 2
012
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Systems Engineering: An Essential Role for Cost-Effective Development of 
Secure Products 

	  

19 

	  

Dan	  Lyon,	  danlyon@mac.com	   	   	  

 
Figure 6 - Technical Leadership Spanning the "Vee" Process Model 

 

Motivating the development team is essential to correct implementation of 

requirements, and this is part of technical leadership (Honourcode, 2011).  Anderson also 

notes that it is essential to get the team caring about security (2009).  This is fertile 

ground for security considerations where engineers have varying degrees of familiarity 

and concern with information security.  The job of the systems engineer is to be a 

technical leader in order to communicate the importance of information security controls 

and motivate the team to implement the controls correctly. 

Further technical leadership activities are the skills of conflict resolution and 

developing relationships (Honourcode, 2011).  These soft skills are important to ensuring 

the overall security of the system because security is an attribute that can be viewed as 

unnecessary.  If that is the view of a manager responsible for cost and schedule, then to 

that manager, the impact of security is to increase cost and schedule without providing 



© 2
012
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Systems Engineering: An Essential Role for Cost-Effective Development of 
Secure Products 

	  

20 

	  

Dan	  Lyon,	  danlyon@mac.com	   	   	  

value.  The systems engineer must be able to effectively educate and work with those 

unaware of the benefits of including security into product design. 

8. Conclusion 
This paper describes the connection between complexity, security and quality and 

the benefits that system engineering provides.  It also shows the value systems 

engineering provides.  By investing in system engineering, manufacturers can create 

higher quality products for less time and money. Manufacturers must adopt system 

engineering that includes information security to create secure systems.   

 



© 2
012
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Systems Engineering: An Essential Role for Cost-Effective Development of 
Secure Products 

	  

21 

	  

Dan	  Lyon,	  danlyon@mac.com	   	   	  

9. References 
Alexandar, I. (2003). Misuse cases use cases with hostile intent. Retrieved from 

http://easyweb.easynet.co.uk/iany/consultancy/misuse_cases_hostile_intent/misus

e_cases_hostile_intent.htm 

Anderson, R. (2009). Security engineering, a guide to building dependable distributed 

systems. (2nd ed.). Indianapolis: Wiley. 

Blanchard, B. and Fabrycky, W. (1998) Systems Engineering and Analysis, 3rd Ed. 

Prentice Hall International Series in Industrial and Systems Engineering, USA. 

Cockburn, A. (2000). Writing effective use cases. (1 ed.). New York, NY: Addison 

Wesley. 

Frantz, W. Forrest (1995) “The Impact of Systems Engineering On Quality and Schedule 

*Empirical Evidence* Retrieved May 2, 2012, from 

http://libsys.uah.edu/library/incose/Contents/Papers/95/9513.pdf 

Geer, D.J. (2008). Complexity is the enemy. Retrieved June 24, 2012 from 

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04753682 

Honour, E.C. (2004) Understanding the value of systems engineering. Retrieved May 2, 

2012 from http://www.incose.org/secoe/0103/ValueSE-INCOSE04.pdf 

Honourcode, Inc. (2011) Applied systems engineering, a practical course in the discipline 

of defining and building complex systems 

Howard, M., & LeBlanc, D. (2003). Writing secure code. Microsoft Pr. 

Howard, M., & Lipner, S. (2006). The security development lifecycle. Redmond, WA: 

Microsoft Press. 

INCOSE. (2010). Systems engineering handbook v3.2 

ISO/IEC 25010. (2011). Systems and software engineering -- Systems and software 

Quality Requirements and Evaluation (SQuaRE) -- System and software quality 

models. 

Johnson, C. W. (2006). What are emergent properties and how do they affect the 

engineering of complex systems? Informally published manuscript, Department of 

Computer Science , University of Glasgow, Glasgow, Scotland. Retrieved from 



© 2
012
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Systems Engineering: An Essential Role for Cost-Effective Development of 
Secure Products 

	  

22 

	  

Dan	  Lyon,	  danlyon@mac.com	   	   	  

http://www.dcs.gla.ac.uk/~johnson/papers/RESS/Complexity_Emergence_Editori

al.pdf 

Marsh, G. E. (2009). The demystification of emergent behavior. Retrieved from 

http://arxiv.org/abs/0907.1117 

McGraw, G. (2006). Software security, building security in. Addison-Wesley 

Professional. 

McGraw-Hill (2005).  McGraw-hill concise encyclopedia of engineering, McGraw-Hill. 

Sindre, G., Opdahl, A. L. (n.d.). Templates for misuse case description. Retrieved May 

25, 2012 from website http://swt.cs.tu-

berlin.de/lehre/saswt/ws0506/unterlagen/TemplatesforMisuseCaseDescription.pdf 

Maynes, E.S. (1976). The concept and measurement of product quality. In Terleckyj, N 

(Ed.), Household production and consumption (pp. 529-584). Retrieved from  

http://www.nber.org/books/terl76-1 

Tzu, S., & Giles, L. (2005). The art of war. El Paso Norte Pr. 

 


