
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS Security Essentials

GSEC Practical Assignment

Version 1.4b

Option 1

3 September 2003

Examining the RPC DCOM Vulnerability:

Developing a Vulnerability-Exploit Cycle

By

Kevin O’Shea

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Kevin O’Shea September 3, 2003 2 of 21

~ Contents ~

Abstract 1

Introduction 1

The Vulnerability-Exploit Cycle 2

Vulnerability-Exploit Cycle of the RPC DCOM Buffer Overrun Vulnerability 6

About the RPC DCOM Function 6

Vulnerability Birth 7

Vulnerability Discovery and Disclosure 7

Vulnerability Correction / Fix Release 8

Exploit Creation and Publication 10

Manual Exploit Use in the Wild 10

Exploit Scripting and Automation 12

Automated-Propagation Mitigation 14

Exploit Death 15

Conclusion 15

Appendices 16

Appendix A - Research Methodology 16

References 19

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Kevin O’Shea September 3, 2003 3 of 21

Abstract

This paper proposes to build on the vulnerability life-cycle work first proposed by
Arbaugh, Fithen and McHugh1 to establish a detailed framework for vulnerability
analysis. These extensions to the life-cycle, now proposed as the Vulnerability-
exploit cycle, contain additional developmental stages intended to reflect recent
experiences when analyzing critical events. In particular, The Remote
Proceedure Call (RPC) Distributed Distributed Component Object Model
(DCOM) buffer overrun vulnerability found in a multitude of Windows operating
systems and Cisco devices / control programs is then deconstructed and
charted against this revised vulnerability-exploit cycle. Further, the use of human
intelligence, gathered through numerous security, hacker and cracker related
websites, weblogs, user-groups, and discussion boards, will be shown to be a
useful tool in capturing and documenting the evolution of the vulnerability. By
developing a detailed framework in which to analyze events and milestones
within the vulnerability-exploit cycle, critical events and time correlations can be
recognized. This will lead to the ability to predict vulnerability and exploit
behavior more effectively.

Introduction

At the very basic level, computers are simple machines: Digital data is stored
through the manipulation of switches – which are either on or off. Process the
data through an operation and get a result. The fundamental elements of
computing technology have not changed since ENIAC was dedicated at UPENN
in 19462. Managing billions of switches and thousands of operations per second
in a user friendly environment is where things get complicated. Over the past
two decades, advances in user-friendly operating systems have allowed the
power of the computer to be harnessed by untold millions of people. Features
like plug and play, reduction in the need for command line driven functions,
memory management, graphical user interfaces (GUI), etc. have made the
computing experience more accessible to the general population. However,
these same advances in ease of operation came with a cost manifested in the
complexity of the operating system code. It is highly likely that errors will exist
within the millions of lines of code3 that comprise any operating system or
complex program. Whether it be for the advancement of knowledge and
malicious intent, exploiting programming flaws and errors has grown, evolved
and flourished with the increasing complexity of programs and operating
systems. The unprecedented growth of the Internet has seen an ever increasing
number of systems connected to one another and to the world.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Kevin O’Shea September 3, 2003 4 of 21

This increasing connectivity has created a situation where coding flaws in
operating systems and other programs can be now be exploited remotely to
yield elevated privileges to unauthorized users. A vulnerability can be exploited
through direct attack via a scripted exploit or by a specially crafted virus or worm.
It should be noted, however, that not all viruses or worms take advantage of a
flaw in the software code to cause damage or to propagate themselves; rather
some will rely on some assistance from the computer operator in order to be
successful. For the purposes of this paper, viruses and worms will be
discussed in the context of those that rely on flaws in the software code, rather
than those that require operator assistance.

The flaws in software code affect all users; from entire economies of the most
powerful nations in the world to the home user. It is estimated that the Slammer
worm caused approximately $1 Billion in lost productivity worldwide in its first
five days, but it barely broke the top-ten list for most damaging malware.4 It is
crucial that the events leading up to the release of a damaging piece of malware
be critically examined. Determining how the underlying vulnerability gets
discovered, released, patched, exploited, etc., is essential in learning the
timeline of events associated with malware as a whole. Improving the ability to
predict the development and spread of a new virus or worm can potentially save
billions of dollars in lost productivity.

The Vulnerability-Exploit Cycle

The framework of a life-cycle model for vulnerabilities was proposed by
Arbaugh, Fithen, and McHugh in an article titled “Windows of Vulnerability: A
Case Study Analysis” in the December 2000 issue of the IEEE5. This paper
proposed a model where a vulnerability would pass through multiple stages
from Birth to Death. The stages they detailed included the following:

Vulnerability birth1.
Vulnerability discovery 2.
Vulnerability disclosure3.
Correction / Release of a fix4.
Publication / Publicity Regarding Vulnerability5.
Scripting6.
Exploit Death7.

Using their framework, an expanded vulnerability-exploit cycle is proposed
where additional stages have been added to allow for a greater degree of clarity
when analyzing the event-timeline correlation associated critical milestones.
These steps include the change of step five above from “Publicity” regarding the
vulnerability to “Exploit Publication,” and the addition of four new event stages.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Kevin O’Shea September 3, 2003 5 of 21

The new vulnerability-exploit cycle, as proposed, would have the following steps:
Vulnerability Birth1.
Vulnerability Discovery2.
Vulnerability Disclosure3.
Vulnerability Correction / Fix Release4.
Exploit Creation and Publication5.
Manual Exploit Use in the Wild6.
Exploit Scripting and Automation7.
Automated Propagation Mitigation8.
Exploit Death9.

A detailed discussion of the revised vulnerability-exploit cycle follows:

Vulnerability Birth – The time in which the flaw or vulnerability is created 1.
in the software. This may occur at the time of initial coding, or may be the
results of changes made to the software after updates, patches, or other
software programs are added to a system.

Vulnerability Discovery – Discovery occurs when there is conscious 2.
acknowledgement of the vulnerability and, at least partially, its
implications. It should not be considered discovery when a bug or flaw is
encountered by an unknowing user. There are several individuals,
companies, and research groups which specialize in discovering
vulnerabilities, and have made this effort their primary focus. Often it is
difficult to determine the motive(s) that drives the work to uncover these
flaws.

Vulnerability Disclosure – Disclosure can be described as when the 3.
vulnerability is made public, usually by the person, persons, company, or
research group that made the initial discovery. This can be achieved
through a number of means including through the media, presentation at
a conference, or posting the description of the vulnerability on a personal
or business website. The most commonly encountered means is where
the vulnerability is first posted on the research group’s website and
notices are forwarded to a security-related website for additional publicity.

Vulnerability Correction / Fix Release – Not long after a vulnerability is 4.
made public through disclosure, the manufacturer of the product will
release a patch to fix the flaw in the program that created the vulnerability.
Due to the complexity of current operating systems and other software, it
is quite possible that a patch cannot be created or that the patch will
affect other protocols, programs and interfaces; possibly even create
another vulnerability on the target system. Instability following patching is
a top reason for system administrators to resist applying the
recommended patches and upgrades, and as a result, patches are often

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Kevin O’Shea September 3, 2003 6 of 21

not applied.6

Additional information on how to limit exposure to a vulnerability begins to
enter into the public forum at this time. Often there will be defense
techniques that when applied, either alone or in conjunction with the
manufacturer’s patch, will limit the ability of the vulnerability to affect a
particular system or network. At this point in the vulnerability-exploit cycle,
affected users are taking action to fix the underlying vulnerability, rather
than mitigative actions against a virus or worm.

Exploit Creation and Publication – This stage was originally labeled the 5.
“Publicity” stage by Arbaugh, Fithen and McHugh in their vulnerability life-
cycle. According to Arbaugh, et.al., the Publicity stage is defined as
“…the vulnerability becomes known on a large scale once the disclosure
gets out of control.” This step appears to be redundant with their
Disclosure step which they define as “…when the discoverer reveals
details of the problem to a wider audience.” Therefore, this step has been
changed to “Exploit Publication” to define the event when a proof of
concept code is publicly released.

Depending on the independent disclosure policies of vulnerability
researchers, an exploit against a vulnerability could be created, but never
released. This also means that the creation of an exploit might occur
minutes, days, weeks or months before it is published, and it may not be
published by those that initially find the vulnerability. It is common for the
initial rudimentary proof of concept exploit code to be put forward by
named and attributable sources. Very often the exploit will be published
in its raw code format and will require compilation before being able to be
executed. The publication of exploit code occurs on the same channels
and public forums where vulnerability disclosure takes place, Advancing
the exploit into batch files, scripts, or GUIs is discussed below in Manual
Exploit Use in the Wild and the crafting of a virus or worm based on the
vulnerability is covered below in Exploit Automation / Scripting. A
vulnerability may live out its entire life without an exploit being specifically
crafted for it; many factors will come into play on this matter, but often the
extent of use of the target software or device will drive the exploit creation
and its longevity. Several variants of the original exploit will often be
developed, as will completely new exploits that may use a different
logical structure.

Manual Exploit Use in the Wild – In this stage of the vulnerability-exploit 6.
cycle, each new infection will occur as a direct result of manual human
effort. This stage is first characterized by compiling the proof of concept
exploit, and variants thereof, into an executable script with appropriate
documentation. When an exploit script is written against a critical
vulnerability, its use will often give an intruder elevated privileges and a

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Kevin O’Shea September 3, 2003 7 of 21

direct connection to the victim’s system. The next logical step is for GUIs
to be created for the scripted exploit to further increase its ease of use.
The script/GUI may be partially automated or have automated
components, i.e. a built in IP/port scanner and ftp client, but the process
requires direct human involvement to compromise machines. Although
the threat to the Internet as a whole is far less, the potential impact of
unauthorized remote access to a particular system is far more
dangerous.

Exploit Scripting and Automation – This stage in the vulnerability-exploit 7.
cycle is when an exploit is wrapped into some manner of propagation-
enhancing code to be labeled a virus or worm. Not all vulnerabilities will
lend themselves to conversion into a worm or a virus, and not all viruses
or worms are based on exploiting a software flaw. This particular stage
should be viewed as a potential milestone, rather than a certainty.

Fully automating the exploit into a self-propagating worm involves the
addition of code for scanning for vulnerable systems and a manner of
transport to the infected systems. CERT wrote in their Overview of Attack
Trends7 that attack tools have become increasingly automated,
commonly using advanced victim scanning patterns, scanning-
compromise coupling and the ability to self propagate without human
interaction. The primary “damage” caused by worms in recent history has
been slowed and/or stopped Internet traffic as a result of their scanning
activities. To date, most prolific worms have not carried an overtly
malicious payload; however, the CERT Trends paper would point to the
conclusion that a prolific worm with a malicious payload is a certainty in
the future.

Automated Propagation Mitigation – This stage is characterized by the 8.
realization in the greater computer security community that the exploit
has been automated into a worm or virus. This step is inexorably linked to
the ‘vulnerability fix/patch release’ step, with a greater focus on mitigating
the effects of the worm and a diminished focus on correcting the
underlying vulnerability.

Exploit Death – At some point in time, the program for which the 9.
vulnerability exists will no longer be in use. This is realistically the only
time when the exploit is truly dead. Although the popularity of a particular
exploit may die off over time, and worm propagation may lessen as
people either patch their systems or change their system configurations
to limit the spread of the worm, the exploit will never truly be dead as long
as systems in use remain vulnerable.

It is conceivable that the vulnerability may become stalled, perhaps
permanently, at any of the above stages. For example, if a vulnerability in OS/2

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Kevin O’Shea September 3, 2003 8 of 21

was discovered and disclosed today, it is probable that an exploit would not be
crafted for it because the number of affected systems is low and diminishing.
Further, it is possible that several iterations for certain a steps may occur and
multiple branches from the original iteration may develop. This is particularly
true for steps four through eight, as new exploits are created for a particular
vulnerability and scripted or wrapped in scanning and propagation code and
launched into the wild.

The importance of the scripting and GUI program creation for an exploit cannot
be overlooked. Many people rely on anti-virus software to protect them against a
worm; but the worm is simply exploiting a vulnerability. If the underlying
vulnerability is not fixed through a patch, the anti-virus software will have no
effect against a direct attack using the published exploit. The scanning
algorithms, propagation techniques, and payload of a worm can be dissected
and analyzed as it is a static piece of code and will behave predictably. The
damage that can be caused by an unauthorized user with elevated privileges
can be devastating and far beyond the scope of the predictable damage caused
by a worm.

Vulnerability-Exploit Cycle of the RPC DCOM Buffer Overrun
Vulnerability

About the RPC DCOM Function

In order to learn more about the impact of the vulnerability, it is important to
learn more about the protocol(s) in which the vulnerability exists. The Remote
Procedure Call (RPC) is a protocol used by the Windows operating system to
provide seamless inter-process communication between programs running on a
local machine and a remote machine. The Distributed Component Object Model
(DCOM) is a protocol that enables software components to communicate
directly across multiple network transports, including Internet protocols such as
HTTP.8

The RPC and DCOM protocols are linked in that the DCOM protocol listens for
DCOM object activation requests that are sent by client machines on RPC
enabled ports. The flaw exists in the DCOM interface and how malformed
messages are handled and is not a flaw in the RPC process; however, it is
through the RPC local/remote machine relationship that the malformed
message can be passed along to the DCOM interface. This particular
vulnerability, if exploited, would provide the intruder with full Local System
privileges, where they would be allowed to create new accounts with privileges,
install new programs, and view, modify, or delete data. To exploit this
vulnerability, a specially crafted request would need to be sent to port 135, 139,

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Kevin O’Shea September 3, 2003 9 of 21

445, 539, or any other port configured for RPC functionality.9 The malformed
message delivered to the DCOM interface induces a buffer overrun error10 which
causes the machine to fail in such a way that arbitrary code can be executed
remotely.11

Vulnerability Birth

The DCOM functionality began to make its way into the Windows operating
system in the late year releases of Windows 95 in 1996. Macintosh and UNIX
versions of DCOM became available in early 1997.12 The birth of this
vulnerability apparently occurred during the software development of this feature
of the Windows OS, but it is possible that this flaw was part of an upgrade,
patch, or update instituted from 1996 to present.

Vulnerability Discovery and Disclosure

On July 16, 2003, a research group called the “Last Stage of Delirium” updated
a special section of their website to read “LSD Finds a Remote Vulnerability in
Windows NT/2000/XP/2003 server.” Additional details on the vulnerability
included the following description:

This is a stack buffer overflow vulnerability that exists in an integral
component of any modern Windows operating system, an RPC interface
implementing Distributed Component Object Model services (DCOM). In
a result of implementation error in a function responsible for instantiation
of DCOM objects, remote attackers can obtain remote access to
vulnerable systems.
The impact of this vulnerability should be considered as critical.
Throughout its exploitation, any user can gain complete control over a
vulnerable system by the means of a remote attack. By sending specially
crafted message to the TCP port 135 of vulnerable Windows system, an
attacker can exploit the vulnerability and execute any code with SYSTEM
privileges.

The impact of the vulnerability can be hardly overestimated. It affects
every installation of the Windows NT/2000/XP/2003 operating system not
protected by additional security mechanisms for access control, such as
firewall systems. The vulnerability may also cause enormous harm if its
exploitation would be conducted with the usage of even primitive worm
technologies (http://www.lsd-pl.net/special.html).13

It was clear through the mention of “any modern Windows operating system”,
“remote access” and “complete control” that this vulnerability would have global

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Kevin O’Shea September 3, 2003 10 of 21

implications.

The announcement on the lsd-pl.net website made mention of their work in
successfully exploiting the RPC DCOM vulnerability in Windows 2000 (service
packs 1-4), Windows XP (service pack 1) and Windows 2003 Server (regardless
of the service packs installed). What was not clear in their initial disclosure was
exactly how pervasive this vulnerability would be throughout the multitude of
versions and service packs of the Windows operating system, including other
protocols and programs that use the RPC DCOM function in some way.

Following the initial discovery and disclosure statements from LSD, the list of
vulnerable systems and devices would continue to grow over the next few days
and weeks. Bugtraq at www.SecurityFocus.com now lists no less than 109
separate programs (last validated 18 August 2003), devices, or operating
systems which are susceptible to the RPC DCOM buffer overrun vulnerability.
Table 1 shows the full list from Security Focus:

Table 1 – List of Programs/Devices/Operating systems Vulnerable to the RPC
DCOM Buffer Overrun – List as of 18 August 2003 – Source Security Focus.com
<http://www.securityfocus.com/bid/8205>

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Kevin O’Shea September 3, 2003 11 of 21

Cisco Access Control Server
Cisco Broadband Troubleshooter
Cisco CiscoWorks VPN/Security
Management Solution
Cisco Collaboration Server
Cisco DOCSIS CPE Configurator
Cisco Intelligent Contact Management
Cisco Internet Service Node
Cisco IP Telephony Environment Monitor
Cisco Lan Management Solution
Cisco Media Blender
Cisco Networking Services for Active
Directory
Cisco QoS Policy Manager
Cisco Routed Wan Management
Cisco Secure Policy Manager 3.0.1
Cisco Secure Scanner
Cisco Service Management
Cisco Small Network Management Solution
Cisco SN 5420 Storage Router 1.1 (7)
Cisco SN 5420 Storage Router 1.1 (5)
Cisco SN 5420 Storage Router 1.1 (4)
Cisco SN 5420 Storage Router 1.1 (3)
Cisco SN 5420 Storage Router 1.1 (2)

- Microsoft Windows 2000 Workstation
- Microsoft Windows 2000 Workstation

SP1
- Microsoft Windows 2000 Workstation

SP2
- Microsoft Windows 95
- Microsoft Windows 98
- Microsoft Windows ME
- Microsoft Windows NT 4.0
- Microsoft Windows NT 4.0 SP2
- Microsoft Windows NT 4.0 SP3
- Microsoft Windows NT 4.0 SP4
- Microsoft Windows NT 4.0 SP5
- Microsoft Windows NT 4.0 SP6
- Microsoft Windows NT 4.0 SP6a

Cisco SN 5420 Storage Router 1.1.3
Cisco Trailhead
Cisco Transport Manager
Cisco Unity Server
Cisco Unity Server 2.0
Cisco Unity Server 2.1
Cisco Unity Server 2.2
Cisco Unity Server 2.3
Cisco Unity Server 2.4
Cisco Unity Server 2.46
Cisco Unity Server 3.0
Cisco Unity Server 3.1
Cisco Unity Server 3.2
Cisco Unity Server 3.3
Cisco Unity Server 4.0
Cisco uOne 1.0
Cisco uOne 2.0
Cisco uOne 3.0
Cisco uOne 4.0
Cisco User Registration Tool
Cisco Voice Manager

Microsoft Windows 2000 Advanced Server SP2
Microsoft Windows 2000 Advanced Server SP1
Microsoft Windows 2000 Advanced Server
Microsoft Windows 2000 Datacenter Server SP4
Microsoft Windows 2000 Datacenter Server SP3
Microsoft Windows 2000 Datacenter Server SP2
Microsoft Windows 2000 Datacenter Server SP1
Microsoft Windows 2000 Datacenter Server
Microsoft Windows 2000 Professional SP4
Microsoft Windows 2000 Professional SP3
Microsoft Windows 2000 Professional SP2
Microsoft Windows 2000 Professional SP1
Microsoft Windows 2000 Professional
Microsoft Windows 2000 Server SP4
Microsoft Windows 2000 Server SP3
Microsoft Windows 2000 Server SP2
Microsoft Windows 2000 Server SP1
Microsoft Windows 2000 Server
Microsoft Windows NT Enterprise Server 4.0
SP6a
Microsoft Windows NT Enterprise Server 4.0 SP6
Microsoft Windows NT Enterprise Server 4.0 SP5
Microsoft Windows NT Enterprise Server 4.0 SP4
Microsoft Windows NT Enterprise Server 4.0 SP3
Microsoft Windows NT Enterprise Server 4.0 SP2
Microsoft Windows NT Enterprise Server 4.0 SP1
Microsoft Windows NT Enterprise Server 4.0
Microsoft Windows NT Server 4.0 SP6a
Microsoft Windows NT Server 4.0 SP6
Microsoft Windows NT Server 4.0 SP5
Microsoft Windows NT Server 4.0 SP4
Microsoft Windows NT Server 4.0 SP3
Microsoft Windows NT Server 4.0 SP2
Microsoft Windows NT Server 4.0 SP1
Microsoft Windows NT Server 4.0
Microsoft Windows NT Terminal Server 4.0 SP6a
Microsoft Windows NT Terminal Server 4.0 SP6
Microsoft Windows NT Terminal Server 4.0 SP5
Microsoft Windows NT Terminal Server 4.0 SP4
Microsoft Windows NT Terminal Server 4.0 SP3
Microsoft Windows NT Terminal Server 4.0 SP2
Microsoft Windows NT Terminal Server 4.0 SP1
Microsoft Windows NT Terminal Server 4.0
Microsoft Windows NT Workstation 4.0 SP6a
Microsoft Windows NT Workstation 4.0 SP6
Microsoft Windows NT Workstation 4.0 SP5
Microsoft Windows NT Workstation 4.0 SP4
Microsoft Windows NT Workstation 4.0 SP3
Microsoft Windows NT Workstation 4.0 SP2
Microsoft Windows NT Workstation 4.0 SP1
Microsoft Windows NT Workstation 4.0
Microsoft Windows Server 2003 Datacenter
Edition
Microsoft Windows Server 2003 Datacenter
Edition 64-bit
Microsoft Windows Server 2003 Enterprise
Edition
Microsoft Windows Server 2003 Enterprise
Edition 64-bit
Microsoft Windows Server 2003 Standard Edition

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Kevin O’Shea September 3, 2003 12 of 21

The researchers at LSD did not publish their proof of concept exploit code
initially, but chose to work with Microsoft toward the development of a patch for
the newly discovered vulnerability. This may place the true ‘Discovery’ date a
few days prior to the published disclosure date, as their published statement
leads one to believe that contact with Microsoft had occurred prior to their
announcement.

Vulnerability Correction / Fix Release

Microsoft was quick to release a patch for the vulnerable systems as the
Microsoft Security Bulletin MS03-026 was released on July 16, 2003. MS03-026
was titled “Buffer Overrun In RPC Interface Could Allow Code Execution
(823980)” and detailed the vulnerability and affected systems. The Security
Bulletin was continually updated to include new versions of the Mircosoft
Windows operating system, with the last revision dated August 25, 2003.14 It is
apparent from the timeliness of the release of the Security Bulletin and the
completeness of the information contained therein, that Microsoft took this
vulnerability seriously.

Exploit Creation and Publication

It was implied in LSD’s disclosure that they had in fact created proof of concept
exploit code prior to their public disclosure of the exploit, but it was never
released to the public. On July 21, 2003, Benjurry of the X-Focus Research
Team posted a rudimentary proof of concept on the Full Disclosure mailing list
written by his team member, Flashsky.15 This would be refined and officially
posted on the X-Focus Team website on July 25, 2003. The posting stated that
they had in fact developed proof of concept code to exploit the RPC DCOM
buffer overrun vulnerability.16 Interestingly, in light of the extensive list of affected
programs maintained by Bugtraq, the initial proof of concept listed only
Windows 2000 Service Pack 2 and 3 as potentially vulnerable systems. The X-
Focus Team’s proof of concept code was followed closely by the publication of
dcom.c by H.D. Moore (HDM) of The Metasploit Project17. The first notice of
disclosure of the dcom.c exploit on the Security Focus forums occurred on July
26, 2003 at 5:25PM and was posted by a user identifying themselves/their email
as “fulldisclosure catholic org”. Catholic.org is a religious portal with an
anonymous email system. The Metasploit project also hosted the dcom.c
exploit, but a time and date stamp was not provided on the Metasploit page. In
comments regarding the X-Focus exploit code, HDM stated that he had
improved upon Flashsky and Benjurry’s previous exploit because “I don’t like
broken exploits, so I fixed it.” The news of HDM’s improved exploit code spread

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Kevin O’Shea September 3, 2003 13 of 21

quickly through the security, hacker, and cracker communities, generating endless threads
on discussion boards regarding compiling the code, which offsets are required for which
systems, etc. Tracking the dcom.c exploit was made considerably easier by text
that was inserted into the body of the exploit. The words “MARB”, “MEOW”,
“MEOW”, and “MEOW” are easily noticed in an ASCII view of the exploit code
and are present as strings in the executable. I believe it is necessary to include
HDM’s dcom.c in the exploit publication phase, as it appears that many
successive exploits, and the MSBlast worm, all used the dcom.c exploit as their
exploit code foundation. It is unclear how the RPC DCOM vulnerability would
have evolved differently if HDM had not clarified the X-Focus Team’s code.

Manual Exploit Use in the Wild

Following the publication of HDM’s dcom.c, the code was modified and used as
the foundation for other scripted exploits. The changes and additions that were
made to the exploit affected the ease of use of the exploit and increased the
number of systems against which the exploit would be effective. The four
keywords of “MARB” and “MEOW” are present in the raw code in all but one of
the below exploits; the exploit code for KaHT II does not have the telltale
keywords of the initial dcom.c. This is an important to note because this would
mean that there was little, if any, concurrent development of a different exploit or
that concurrent development halts once a working exploit is released.

The table below shows the release date, name of the exploit and the author of
the variants of the HDM exploit as published by Security Focus.18 Obtaining
exact release dates for the new exploits can be problematic, unless a release
date is noted in the code itself and/or is integrated into the filename. Estimated
release dates have been provided for four of the eight variants based on
anecdotal evidence.

Table 2 – Variants of the HDM dcom.c exploit

DATE Exploit Name Author – Website

7-29-2003 07.29.dcom18.c K-Otic; //k-otic.com

7-30-2003 07.30.dcom48.c K-Otic; //k-otic.com

7-30-2003 30.07.03.dcom.c H.D. Moore;
www.metasploit.com

7-30-2003* Dcomrpc.c Not annotated re: author

7-30-2003* Dcom_Expl_UnixWin32 Benjamin Lauzière; altern.org

8-4-2003 0x82-
dcomrpc_usemgret.c

you dong-hun, //x82.i21c.net

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Kevin O’Shea September 3, 2003 14 of 21

8-4-2003* oc192-dcom.c //oc192.us

8-4-2003* KaHT II //3wdesign.es

*Estimated

Soon after the flurry of releases of modified and functionally expanded exploits,
a graphical user interface (GUI) was published to increase the ease of exploiting
computers with the RPC DCOM vulnerability. On August 11, 2003, the
Astalavista Group19 updated the ‘Tools’ section of their homepage to include a
program called RPC GUI created by r3L4x of the DSK Coding Crew20. Although
the release date of August 11th was noted by Astalavista, all the files in the
downloadable zipped archive were dated August 7th. This date distinction
becomes very important when viewed against the release of the MSBlast worm,
detailed below. It is unclear as to which exploit was used as the basis for the
RPC GUI, but it is apparent it was the dcom.c or a direct variant thereof.

Improvements were soon made to the RPC GUI, and RPC GUI v2 was released
to Astalavista on August 13, 2003. As with the initial program, this program was
created by r3L4x of the DSK Coding Crew. On the Astalavista’s description of
the program, it was noted that the GUI was created by r3L4x and the exploit was
created by oc192 Security. The exploit created by oc192 Security, oc192-dcom.c
was much improved on the original dcom.c in that it simplified the process of
guessing the targets specific version of their Windows OS and service pack
down to two universal offsets. Additionally it did not crash the victim’s computer
when the attacker terminated the connection.21

Both of the programs detailed above are very simple and very powerful and
contain both a built in port scanner and an ftp client. These programs combine
all the required tools to target, compromise, and upload content to victims’
systems.

Exploit Scripting and Automation

Since the release of the RPC DCOM vulnerability on July 16th, the Internet
security community waited guardedly for the release of a worm that would take
advantage of this sweeping flaw in the world’s most widely used computer
operating system. Late in the day (EDT) on August 11, 2003, those monitoring
system-wide Internet traffic began to see a marked increase in scanning traffic
to port 135, the main port of entry to exploit the RPC DCOM vulnerability.22 The
graph of scanning activity as recorded by the Internet Storm Center, operated by
SANS, shows this marked increase in the number of scanning sources, targets
and records on August 11, 2003 on port 135 (Chart 1).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Kevin O’Shea September 3, 2003 15 of 21

Chart 1 – Scanning Activity on Port 135. Courtesy of SANS.
Notice marked increase in activity corresponding to the release of the
initial MSBlast worm on August 11, 2003.

Verification from a number of sources including CERT, Sophos, Symantec,
McAfee and ISS soon followed indicating that in fact the worm based on the
RPC DCOM vulnerability had been released. The binary of the executable was
named MSBlast.exe, leading to its common name, the MSBlast worm. Several
aliases were also noted; MSBlast, Lovsan, W32.Blaster.worm, W32/Lovsan,
and Win32.Posa.Worm.

The worm worked by using the RPC DCOM exploit through port 135 to gain
elevated access where a remote shell on port 4444 would be established back
to the source. The source would then execute a tftp command to pull the binary
to the target.

The worm itself contained a number of interesting strings including:
I just want to say LOVE YOU SAN!!
billy gates why do you make this possible ? Stop making money and fix
your software!!
MARB
MEOW
MEOW

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Kevin O’Shea September 3, 2003 16 of 21

MEOW

The first two strings in the code received the majority of the media coverage for
its disparaging comments toward Microsoft and led to the Lovsan alias for the
worm; however, the presence of the keywords found in the initial dcom.c exploit
was more important in following the evolution of the vulnerability. It was
abundantly clear that the creator of the worm appended scanning and
propagation code to the dcom.c exploit or one of its direct descendants and that
new exploit code was not written specifically for this worm. This was also an
important because the dcom.c exploit had been published weeks earlier and its
methods of operation had been carefully studied and analyzed, and therefore a
large portion of how the worm operated was already well understood.

The MSBlast worm had a relatively temperate scanning algorithm, and therefore
the propagation of this worm was far less rampant than other recent worms
such as SQL Slammer or NIMDA. Although the scanning algorithm was not as
aggressive as other recent worms, there were several accounts of infected
persons not being able to download a patch for a rebuilt system before new
infections established themselves.

The MSBlast worm had no self-contained payload; it relied on causing an
infected machine to establish a tftp connection back to the source to upload the
worm binary. Damage to the victim’s machine is limited to an entry made in the
registry and the usage of bandwidth during its scanning routine(s). The worm did
contain instructions for the infected machine to launch a SYN Flood attack
against the windows update website, www.windowsupdate.com, on every day
from August 16th till the end of December and after the 15th of every successive
month.23 Notwithstanding the predictable behavior of the MSBlast worm, a
remote connection to an unauthorized user is made to upload the binary, which
caused significant concern in the security community.

Several new worms would be released over the following weeks, all of them
functionally the same as the original MSBlast and differentiated only by its
binary name and registry key changes. Below is a table showing the four main
MSBlast worm variants as of August 22, 2003.

Table 3 – Four primary MSBlast worm variants.

Release Date Binary Name Different Registry Key
Entry?

8-6-2003 MSPatch.exe Yes

8-13-2003 teekids.exe Yes

8-13-2003 penis32.exe No

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Kevin O’Shea September 3, 2003 17 of 21

8-18-2003 dllhost.exe and
svchost.exe
(Welchia / Nachi*)

Yes

*Common name of worm variant.

The last worm variant noted above, the Welchia / Nachi worm, is the most
interesting. This worm scans for vulnerable systems and uses exploits against
the RPC DCOM vulnerability and a Web DAV vulnerability to gain remote “Local
System” rights. The worm then deletes the MSBlast process and applies the
Microsoft patch to remedy the RPC DCOM vulnerability. The worm is then
programmed to delete itself when the system clock reaches Jan 1, 2004.24

Although this worm had good intentions, the scanning technique used by the
worm can generate a significant volume of ICMP Host-unreachable messages.25

In some networks where the Welchia / Nachi worm became established,
network traffic was brought to a halt due to the worm’s scanning activities. This
variant of the MSBlast worm was apparently the only one of the primary variants
to cause at least localized network problems due to increased traffic issues.
Affected organizations that admitted their systems were affected by the Welchia
/ Nachi worm included the US Navy26 and Air Canada27, who was forced to delay
and cancel flights due to disruption in their reservation center’s computers.

Automated-Propagation Mitigation

The security community responded by dissecting the operation of the MSBlast
worm and its variants. Recommendations were made by the security community
to block all incoming ports that would commonly carry the inbound worm,
primarily TCP/UDP 135, 137, 139, and 445. Additional recommendations called
for blocking of outbound port TCP/UDP 4444, the port on which a remote shell
would be established.

Exploit Death

Based on the widespread and worldwide use of the Windows operating system,
and the many versions and variants affected by the worm, it is clear that the
underlying vulnerability will exist in the wild, un-patched, for the foreseeable
future. The use of the exploit to gain remote access will fade as new exploits
become available28 and the continued propagation of the existing worm(s) will
level off and decline over time; however, as long as vulnerable systems are
connected to other computers through the Internet or LAN, this exploit will
continue to live on.

Conclusion

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Kevin O’Shea September 3, 2003 18 of 21

The vulnerability-exploit cycle presents a comprehensive birth to death sequence
as a framework to analyze critical vulnerabilities. By looking more in depth at
these quasi-predictable stages, one can begin to uncover relationships between
events and time sequences. By examining the “human element” found in
discussion boards, groups, weblogs, and chat channels, additional details about
the evolution of an exploit can be learned beyond the reactive and mitigative
information often associated with patching vulnerabilities and repairing the
damage caused by the scripted or automated exploits. It is the author’s goal to
raise the awareness of the importance of gathering and analyzing human
intelligence as part of predicting vulnerability exploitation.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Kevin O’Shea September 3, 2003 19 of 21

Appendices

Appendix A - Research Methodology

This research project began days before the release of the LSD notification of
the RPC DCOM exploit. It was the author’s intent to analyze a historic
vulnerability and document, where possible, the dates associated with
milestones within the vulnerability-exploit cycle and the potential human
intelligence related to these events. It was noted, however, that analysis of
Internet published data would be difficult based on the sheer volume of
information that any particular vulnerability/exploit/worm generates throughout its
entire existence. The publishing of the LSD notice on the RPC DCOM exploit
therefore came at an opportune time to provide a proof of concept regarding
documenting the sources of information related to milestones in the vulnerability-
exploit cycle.

The first step was to generate a map of those sites that had a published
affiliation with the LSD research group. This was done through the use of
Google’s link analysis function29 to learn of the pages that Google had indexed
that linked back to www.lsd-pl.net. This was then repeated for all of the sites
that linked to the LSD research group site. Even after only two iterations deep,
patterns and circular references became apparent, which allowed conclusions
to be made on which sites were highly regarded by the overall community.
Usenet archives, available through Google Groups, were also searched using
the LSD website name and other related search terms including “RPC”,
“DCOM”, and website names discovered through the link analysis. It was
through this methodology that the circle of active and relevant websites to
monitor over the next few weeks was developed.

The table below shows an example of a link analysis result and how the links
will change over time as significant events occur that involve the link target. The
result of the link analysis for www.lsd-pl.net conducted July 22, 2003 and the
additions as of August 26, 2003 is presented in the table. Inferences can be
made as to the notoriety gained through the publication of a major vulnerability
discovery thought the additional links from new sources.

Additional research is needed to further validate, expand, and automate the link
analysis process for determining the sources of actionable human intelligence;
but the author believes that the use of this methodology provided valuable
insight into the interconnectivity of the security, hacker, and cracker
communities.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Kevin O’Shea September 3, 2003 20 of 21

Table 4: Example of the Link Analysis Methodology, used on the LSD research
group website. Table also shows changes to “link from” over time.

 “ * “ denotes sites that exist on both the July 22 and August 26 analysis.

Link Target: www.lsd-pl.net
July 22, 2003 August 26, 2003

www.secmod.com/news/2003-03-10/ packetstorm.icx.fr/whatsnew20.html
www.staropenoffice.com* www.staropenoffice.com/*
www.blackhat.com/html/bh-usa-01/ bh-usa-
01- schedule.html *

www.securityfocus.com/news/6519

active-security.org/arc8-2000.html* www.blackhat.com/html/bh-usa-01/ bh-usa-01-
schedule.html *

www.tietokone.fi/pda/uutinen.asp?news_i
d=19107

planeta.terra.com.br/informatica/gleicon/links.html

sigurnost.linux.org.ba/* www.microsoft.com/korea/technet/security/
bulletin/MS03-026.asp?bPrint=True

raptor.antifork.org/ komputery.wp.pl/
www.techiwarehouse.com/Security bama.ua.edu/~crock/ua_unix/0083.html
www.linux-sec.net/Exploits/* www.ciwunion.com/
z0mbie.host.sk* www.metasploit.com/shellcode.html
www.void.ru/content/1056 * webnews.html.it/news/sendnews.php?idnews=10

77
pages.cpsc.ucalgary.ca/~arlt/security/hac
kers.html *

active-security.org/arc8-2000.html*

dcortesi.com/2003-01-02/492.html www.0xdeadbeef.info/
farking.spunge.org/links.html www.security.org.sg/webdocs/news/event13.html
www.bosen.blogspot.com/ 212.100.234.54/content/55/31797.html
www.efn.org/~gchu/ www.cs.rochester.edu/~bukys/weblog/archives/s

ecurity/
packetstormsecurity.org/0108-exploits/ sigurnost.linux.org.ba/*
www.safemode.org/links.html security.opennet.ru/base/hp/1055263092_2258.t

xt.
html

www.sgi.ethz.ch/secadv/msg00086.html * www.underground.org.pl/gminick/
www.rstream.net www.linux-sec.net/Exploits/ *

z0mbie.host.sk/*
news.com.com/2100-1002-991041.html
archives.neohapsis.com/archives/hp/2003-
q1/0028.html
www.csm.ornl.gov/~dunigan/security.html
www.blackhat.com/html/bh-asia-02/ bh-asia-02-
speakers.html
msgs.securepoint.com/cgi-
bin/get/bugtraq0008/152.html
pages.cpsc.ucalgary.ca/~arlt/security/hackers.ht
ml *
www.thinkingit.net/

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Kevin O’Shea September 3, 2003 21 of 21

ciac.llnl.gov/ciac/bulletins/k-066.shtml
securecomputing.stanford.edu/alerts/sendmail-
vuln.html
www.hacking.pl/
www.spirit.com/Network/net0800.html
www.tno.nl/instit/fel/intern/wkisec15.html
www.theregister.co.uk/content/55/31797.html
www.hivercon.com/hc02/speaker-lsd.htm
www.sgi.ethz.ch/secadv/msg00086.html *
idea.sec.dico.unimi.it/~andrew/
www.ccc.de/congress/2001/fahrplan/event/260.e
n.
html
zdnet.com.com/2100-1105-991041.html
www.sign.net.pl/article.php?sid=1363
xforce.iss.net/xforce/alerts/id/147
www.ptnix.com/
cgi4.zdnet.co.jp/g/01_0a03032270_/
news/0303/06/ne00_sendmail.html
it.monitor.hr/index.php
dmoz.org/Computers/Security/Hackers/
void.ru/ *
www.internet-
magazine.com/news/view.asp?id=3557
www.scribbler.ca/

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Kevin O’Shea September 3, 2003 22 of 21

References
1 Arbaugh, William, A; Fithen, William, L; McHugh, John. “Windows of
Vulnerability: A Case Study Analysis”. IEEE. 2000. URL:
http://www.cs.umd.edu/~waa/pubs/Windows_of_Vulnerability.pdf (12 July
2003).

2 Weik, Martin H. “The ENIAC Story.” 1961. Ordnance Ballistic Research
Laboratories, Aberdeen Proving Ground, MD.
URL:http://ftp.arl.mil/~mike/comphist/eniac-story.html (10 August 2003).

3 Shankland, Stephen. “Governments to see Windows code.” CNET News. 14
January 2003. URL:http://news.com.com/2100-1001_3-980666.html (10 August
2003).

4 Lemos, Robert. “Calculating the cost of Slammer.” 3 February 2003.
URL:http://zdnet.com.com/2100-1104-982955.html (25 August 2003).

5 Arbaugh, William, A; Fithen, William, L; McHugh, John. “Windows of
Vulnerability: A Case Study Analysis”. IEEE. 2000.
URL:http://www.cs.umd.edu/~waa/pubs/Windows_of_Vulnerability.pdf (12 July
2003).

6 Naraine, Ryan. “When Patches Aren’t Applied.” Internetnews.com. March 28,
2003. URL:http://www.internetnews.com/dev-news/article.php/2171781 (25 July
2003).

7 CERT Coordination Center. “Overview of Attack Trends.” 2002.
URL:http://www.cert.org/archive/pdf/attack_trends.pdf (5 August 2003).

8 Microsoft Security Bulletin MS03-026. 16 July 2003. Last updated 25 August
2003. URL:http://www.microsoft.com/technet/treeview/default.asp?url=/technet/
security/bulletin/MS03-026.asp (Technical Information). (July and August 2003).

9 Ibid.

10 Donaldson, Mark. “Inside the Buffer Overflow Attack: Mechanism, Method and
Prevention.” SANS Institute. 3 April 2003.
URL:http://www.sans.org/rr/paper.php?id=386 (6 August 2003).

11 Microsoft Security Bulletin MS03-026. 16 July 2003. Last updated 25 August
2003. URL:http://www.microsoft.com/technet/treeview/default.asp?url=
/technet/security/bulletin/MS03-026.asp (Frequently Asked Questions). (July and
August 2003).

12 Microsoft Corporation. “DCOM Technical Overview.” November 1996.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Kevin O’Shea September 3, 2003 23 of 21

URL:http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dndcom/html/msdn_dcomtec.asp (July 16, 2003).

13 LSD Research Group. “Buffer Overrun in Windows RPC Interface.” 16 July
2003. URL:http://www.lsd-pl.net/special.html (16 July 2003).

Microsoft Security Bulletin MS03-026. 16 July 2003. Last updated 25 August
2003. URL:http://www.microsoft.com/technet/treeview/default.asp?url=/technet/

security/bulletin/MS03-026.asp (Technical Information). (July and August 2003).

Benjurry, “Microsoft Windows 2000 RPC DCOM Interface DOS AND Privilege
Escalation Vulnerability.” Full Disclosure Mailing List. Mon, 21 Jul 2003
23:53:03. http://lists.netsys.com/pipermail/full-disclosure/2003-July/006851.html
(25 August 2003)

Flashsky, “Microsoft Windows 2000 RPC DCOM Interface DOS AND Privilege
Escalation Vulnerability.” X-Focus. 25 July 2003.
URL:http://www.xfocus.org/advisories/200307/4.html (26 July 2003).

Metasploit project homepage: URL:http://www.metasploit.com/index.html

18 Security Focus. “Microsoft Windows DCOM RPC Interface Buffer Overrun
Vulnerability (Exploit).” 2 and 11 August 2003.
URL:http://www.securityfocus.com/bid/8205/exploit/ (12 August 2003).

19 Astalavista Group homepage: URL:http://www.astalavista.com (25 August
2003)

20 Dark Side of Kalez homepage:
URL:http://dcc.darksideofkalez.com/index1.htm

21 RPC Exploit GUI v2. Astalavista.com. 13 August 2003.
URL:http://www.astalavista.com/tools/auditing/network/multiscanner/ (15 August
2003)

22 SANS. Port 135 scanning graph.
URL:http://isc.incidents.org/port_details.html?port=135 (25 August 2003).

23 eEye Digital Security. “Blaster Worm Analysis.” 11 August 2003.
URL:http://www.eeye.com/html/Research/Advisories/AL20030811.html (12
August 2003).

24 Network Associates. “W32/Nachi.worm.” 18 August 2003.
URL:http://vil.nai.com/vil/content/v_100559.htm (25 August 2003).

25 True Secure. “TruSecure Alert - Welchia worm.” 21 August 2003.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Kevin O’Shea September 3, 2003 24 of 21

URL:http://www.trusecure.com/knowledge/hypeorhot/2003/welchia.shtml (25
August 2003).

26 Verton, Dan. “Update: Navy says intranet hit by worm but still functioning.”
Computer World. 19 August 2003.
URL:http://www.computerworld.com/securitytopics/security/
story/0,10801,84158,00.html (27 August 2003).

27 Lemos, Robert. “Good worm, new bug mean double trouble.” ZD Net
Austrailia. 20 August 2003. URL:http://www.zdnet.com.au/newstech/security/
story/0,2000048600,20277472,00.htm (27 August 2003).

28 Eschelbeck, Gerhard. “Laws of Vulnerabilities.” Qualys. July 30, 2003.
URL:http//www.qualys.com/news/pr/index.php?page=pr_07_30_03c&lk=hm_pg
(6 August 2003).

29 Google Help. URL:http://www.google.com/help/features.html#link (22 August
2003).

