
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 1 of 12

Using and Securing DCOM

by

Brent Roskos

For

GIAC Security Essentials Certification (GSEC)
Version 1.4b, Option 1

August 17, 2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 2 of 12

Using and Securing DCOM

Abstract/Summary
Distributed computing is a big part of today's computing environment.

DCOM is one method for extending computing resources between computers.
DCOM is built-in to all Microsoft operating systems since Windows 98 and is
available as an add-in for Microsoft Windows 95. The basic idea behind DCOM
is to provide a standard environment with which developers can create
distributed applications.

This paper will take a look at the information surrounding DCOM, and
provide a brief summary of what is, how to use it or, and related security
concerns. There is a great deal of information on the Internet regarding DCOM.
Most of this information seems to be geared toward a software developer. In this
paper, I will try it to put this information in a format where a system administrator
or a security administrator can get the information that they need quickly and
easily and come to a basic understanding of how the technology works and what
can be done to secure it.

What is DCOM?
Microsoft distributed COM (DCOM) is built to extend to the component

object model (COM) computing environment to function between multiple
computers over a network. COM allows components on a single computer to
interact with different components on the same computer. The operating system
handles the communication between these components with IPC or inter-process
communication. DCOM extends this functionality to work between computers; a
component on one computer can take advantage of resources or data available
to another component on a different computer. The communication between
components over the network is handled by the operating system, this time using
Remote Procedure Calls (RPC).

The functionality for providing security to allow or disallow the use of
individual components either on the same computer or components on a different
computer is built into the operating system and a standard for all applications
using DCOM. This tool is launched from the command line by entering
DCOMCNFG. In Windows 2000 and later there is a components control panel
that can be launched with a mouse. These tools allows you to select the
application component to manage, set the location of the component (local or on
a remote host), and choose permissions for launch, access, and configuration.
In addition, you can specify the identity of the user that the component will run
as. This allows the component to impersonate a user with more authority than
the launching user. Security is applied using the local or domain groups and
accounts available to the server.

DCOM Architecture

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 3 of 12

The following illustration from an article titled “DCOM Technical Overview”
(Microsoft Corporation, 1996) gives a graphical view of DCOM architecture:

Several features of the DCOM architecture make it programmer friendly.
The architecture is designed to allow easy reuse of existing components to
provide a measure of location independence and to allow for some degree of
language neutrality. Connection management, network efficiencies, and a built-
in security structure complete the package.

Component reuse is leveraged with a COM/DCOM model; basically a
developer can write a component one time and use it in multiple applications.
This approach has the added benefit of reducing debugging time as existing
components have already been debugged allowing the developer to focus on
debugging the new code.

Location independence allows the developer and system administrator to
more easily specify where components exist, where they run, and helps them
plan their network to allow for the greatest efficiencies.

Language neutrality refers to the fact that DCOM components can be
created from many different languages and tools among them are Java, Visual
C++, Visual Basic, and several others. Programs written in one language can
easily talk to and use the features of components written in another language.
Best of all, this is transparent to the developer and to the system administrator.

DCOM handles all facets of connection management, keeping track of
connections from one client to another and handles multiple connections from
multiple clients to a single component. DCOM also keeps connections alive with
an efficient periodic ping, and notifies applications of connections which
terminate unexpectedly.

DCOM uses a technique called batching (or boxcarring) to reduce the
amount of network round trips needed to compete a given series of application

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 4 of 12

communications. It also allows for several methods to custom tailor these
communications for added efficiency.

Administering DCOM Components
In the DCOM security model offers a great deal of flexibility for configuring

who can launch a component and who the component should run as
(Impersonate).

Examples:

• The component can be launched anonymously but run under the context
of a domain account.

• A component can be configured to require credentials for launch and can
run under the context of those same credentials.

• A component can be launched requiring the credentials of a member of a
specified group, then impersonate an Administrator when running.

Screen shots of the DCOMCNFG tool:

The same tool in Windows 2000 and later uses an MMC snap in:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 5 of 12

Walk Thru:

General
Launch the DCOM admin by going to the command line in and typing

DCOMCNFG. The first Tab across the top is General. From the General tab you
configure the Authentication Level. Authentication level defines the place at
which authentication takes place:

1. Default – Object inherits machine default Authentication level.
2. None – No authentication is required or used.
3. Connect- Authentication is completed once at the start of the first

connection
4. Call – Authentication is completed on every connection from start to finish

of the session.
5. Packet – Authentication is completed for every packet.
6. Packet integrity – Same as packet level, with packet check-sums added
7. Packet privacy – encrypts all data

Select the appropriate level of authentication from the above choices. Items 1-4
are subject to hijack type attacks, item five is susceptible man in the middle type
attacks, level six can still be intercepted and the data read, and level seven may
be susceptible to brute force attacks depending upon the encryption used.

Location
The location tab is just like it sounds; it defines where the DCOM object

actually runs.

• Run application on the computer were data is located
• Run application on this computer

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 6 of 12

• Run application on the following computer

From here, an administrator performing an application installation can define that
a component will actually be executed on another computer.

Security
The security tab defines launch permissions, access permissions, and

configuration permissions for each DCOM component on the system.

The administrator is given a choice to use the default machine settings or
to customize and select Windows users or groups for each of the preceding
settings.

Endpoints
Endpoints are used to configure a COM application to use a specified TCP

port number for DCOM communications. The default is dynamically assigned
ports.

Identity
The Identity tab allows an administrator to define which user context of the

application will run in. Choose from:

• The interactive user – This will have the component run under the context
of who ever happens to be logged into the server at the moment (could be
nobody)

• The launch in user – This tells the component to run as the user who
called the component.

• This user – This choice allows an administrator to select a specific
account that the component will run as.

There is a final choice of the ‘system account’ which applies to services only.

DCOM Security
DCOM allows application developers to leverage Windows NT’s built-in

security framework. A detailed discussion as to the pros and cons of Windows
NT's security are out of the scope of this document. However, I think most would
agree; using a centralized security model is better by far than a requiring each
software developer to devise and implement his own security scheme.

The first method for implementing security is security by configuration.
The tools for managing this were briefly outlined in the previous section
“Administering DCOM Components”. Administrators installing DCOM
applications can configure who has access to the components and who the
components run as (impersonate). The operating system handles the verification
of the user credentials and reports back to the application whether the calling

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 7 of 12

client is authorized or not. Unauthorized clients cannot even instantiate a
component.

DCOM also offers programmatic control over security. Programmers can
implement method by which the calling user’s credentials are passed to the
component doing the work. These credentials can then be used to open a file or
Registry key that has been secured with regular NT permissions. In this manner
a client can have access to a component, may be able to execute some of its
methods, but may be denied access to others.

The NT security framework also offers methods for passing credentials
outside of one's local computer domain. Built-in support for Kerberos
authentication protocol, distributed password authentication, and secured
channel services allow for the possibility of a widely distributed application that
spans companies and NT domains.

Load-balancing
DCOM offers support for both static and dynamic load-balancing. With

static load-balancing, clients can be pre-assigned to use certain servers.
Windows 2000 implements a distributed class store which adds centralized
management to these features.

Another approach to static load-balancing is a dedicated referral
component. All clients looking for a particular resource connect first to the referral
component and are then directed to the server which best suits its needs.

Next, to take load balancing a step further, applications can be designed
to dynamically load balance which allows for scaling and configuration changes
on-the-fly based upon load. With this approach, components are used to
dynamically direct traffic for other components or components use Microsoft
Transaction Server to assist with load balancing.

DCOM in Action
To create a better understanding of what DCOM is and what it can do, I

will describe how I have used DCOM recently to solve two real world problems.

Problem 1: Web Hosting
I have a small Web hosting business. I needed to provide a way that users on
the World Wide Web could sign up, provide contact and payment information,
and have a web site created automatically. The web site at this point would just
be an empty shell but would allow the user to log in using their newly created
credentials, upload their content and display it on the World Wide Web without
any operator or administrator intervention.

This problem presented several challenges:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 8 of 12

1. Many of the functions described needed to be performed under the
context of an administrator or privileged account.

2. The web site where users could sign up for hosting services was not
necessarily on the same server as where to hosting service was to be
provided.

3. The creation of the site for the end-user needed to be performed in the
background transparently.

4. These actions needed to be completed in an environment where security
must be managed tightly as the servers involved were accessible on the
World Wide Web.

The answer to these with challenges was DCOM. Using DCOM I could
accomplish all of the goals while maintaining the site’s security.

The solution has several different parts. For the first part, I needed a way
to create an NT account for the user to use to log in with, I needed to create end-
user directories for the end-user's Web code with permissions appropriate for the
end-user’s account to be able to read and write to them, and I needed to create
the actual web site inside of IIS which would host the web code.

I was able to write a small component which used Microsoft's Active
Directory Services Interface (ADSI) to do most of this work. This component did
everything that I needed for it to do, but, it needed to run under the context of an
administrator.

I then created two accounts, one an unprivileged account, and one that
was a member of the administrator's group. At the web site where users would
come to signup I changed the configuration so that it ran under the context of the
newly created unprivileged account. Then, using DCOMCNFG, I modified the
launch and impersonation properties of my new component. I allowed only the
new unprivileged account permissions to launch the component and, once
launched, I configured the component to run under the context of the newly
created privileged account.

I used DCOMCNFG on each computer involved to allow the web site to be
created on a different server that was used to manage the sign up process.

This layered approach allowed me to accomplish my goals. My signup
web site was the only website to use the newly created unprivileged account, and
that account was the only account that had permissions to launch my component
that did the actual work.

 Even though my component runs under the context of an Administrator, it
can only perform those functions that are built into it. It can’t do anything but
what it was designed to do. Even if someone, somehow, were able to hijack this

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 9 of 12

component, all it can do is create websites – and it notifies me each time it does
so.

Problem 2: Credit Card Processing
Problem number 2 was a bit different. I was working for a company with a

small local area network in their office. The “Processing Station” was a
workstation on the Local Area Network (LAN) with a proprietary credit card
processing software package. This workstation had an interface where a user
could enter credit card and billing information for a transaction. The software
would then take this information create a file and transmit it via a modem to a
credit card processor which would approve or deny the transaction. The result
would return a file which the user interface would read and provide the Approval
or Denial to the operator.

This scenario worked perfectly until it became necessary to perform this
credit card processing function on multiple computers on the LAN. Once this
requirement was introduced we had to take action to provide this functionality.
We needed a way to maintain the central processing station, but add the user
interface to multiple, local computers.

DCOM provided a solution. Using DCOM we were able to create a
component that would accept input from a user interface. Based on the input
received the component would create the file needed by the processing station to
transmit to the credit card processor and get an approval. The response would
be processed and the result sent back to the originating station.

Each remote station had a user interface that was connected to a DCOM
component that would do the work. The DCOM component connected to the
processing station and did the work that was needed and returned the result to
the remote station.

In this example, I created the DCOM component and built in only the
functionality that I wanted the remote users to be able to use. Then we allowed
each workstation to launch the component with the credentials of the logged in
user. This allowed us to keep track of which users were performing which
functions. This approach allows us to track suspect transactions back to the user
that performed them. The processing station is protected as it does not require
remote users to have direct access to the files created or processed on it.

DCOM and the Firewall
Most Internet applications have a fixed TCP and/or UDP port. A firewall

administrator identifies the application that supposed to run on a particular
machine, opens up a port to all users or to specific hosts then monitors for
suspicious activity.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 10 of 12

DCOM works a little differently. DCOM dynamically assigned ports at run
time - one TCP port and one UDP port for each process, for each component,
running on a server. Clients connect to the server first on port 135 and are
directed to the proper port for the component that they are seeking.

Opening up port 135 on a server to the Internet is a scary thought. I think
most firewall administrators would agree that opening ports 135-139 in anything
but a very limited fashion should be avoided whenever possible. There are just
too many things going on in any Microsoft based server on any of these ports to
allow for proper security. Further, with this dynamic port assignment, a firewall
administrator would have to open up all sorts of ports in both inbound and
outbound directions. Negotiating on port 135 would only be the beginning. Next,
of course, both host and client would need to be allowed to communicate on
whatever port was dynamically assigned.

Dynamic port assignment might be an acceptable solution for local-area
network but for Internet applications fixed port assignments are necessary.
Fortunately DCOM has a method to allow for fixed port assignments. First, it is
possible to configure the Registry of the server to allow TCP only connections.
Next it's possible to configure the RPC service to use a pre specified port range.
This is a one-sided fix performed only on the server clients would still connect up
135 and the server and direct them to its fixed port for the requested
transactions. It improves security as it allows the firewall administrator to limit
access to port 135 and the predefined range of ports. If server call backs are
implemented, the server must be permitted to connect outbound on any port.

The fixed port assignment method CAN be used to provide for a secure
computing environment. However, system administrators must be very careful to
configure each and every DCOM component on the Internet accessible server,
removing those which are not absolutely necessary, and securing those that
remain. Keep in mind that the gateway to DCOM is port 135. Since port 135
must remain open to allow any DCOM functionality, and if ANY DCOM
functionality is required then all DCOM components on a public server must be
carefully scrutinized.

DCOM Concerns
I have a few concerns with the current implementation of DCOM. One

concern is in the way the DCOM handles call-backs. A call-back occurs when a
program tells a component to go and perform a task and report back if there is
any trouble or when the task has been completed. This call-back method is
called an event. A component is configured to “raise events”. These events can
be received by the calling client. I have had much difficulty and have read
through many reports regarding the use of events in an environment where the
DCOM components have been secured. In reviewing the DCOM security
architecture, it seems the functionality to support call-backs is present, but in

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 11 of 12

practice many developers and administrators have had a great deal of trouble in
this area.

In the scenario presented, where an event notification back to the calling
host is required it is very difficult to implement security on the DCOM
components. To work around this apparent limitation, many resort to a much
lower level of security or no security at all on their DCOM components.

Another concern is the apparent lack of knowledge and understanding by
many system administrators as to what DCOM is and how to secure it. Even on a
local area network there can be dozens of DCOM components on any given
system and it is difficult to understand what each of them does and what risks
that they pose. Many times a system administrator receives a set of instructions
from a software company telling them how to configure the DCOM security for
their component; usually a couple of screen shots and general recommendation
for access permissions. In some cases the instructions tell you how to remove
just about all access restrictions from a company’s component to allow it to
function properly.

DCOM comes enabled by default on all Microsoft Server and Desktop
operating systems since Windows 98. I have not found many tools for auditing
DCOM components and their associated security. In this paper I have gone over
some of the methods that are available for making DCOM based applications
secure, but it is up to system and security administrators to do these tasks and to
understand their implications. It is easy to lose sight of DCOM components and
can be very difficult to audit and maintain them.

References

Microsoft Corporation. “DCOM Technical Overview”. November 1996
URL: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dndcom/html/msdn_dcomtec.asp (8/1/2003)

Michael Nelson. “Using Distributed COM with Firewalls”. 3/19/1999
URL: http://www.microsoft.com/com/wpaper/dcomfw.asp (8/3/2003)

Markus Horst and Mary Kirtland. “DCOM Architecture”. 7/23/1997
URL: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dndcom/html/msdn_dcomarch.asp (8/10/2003)

Mary Kirtland. “Object-Oriented Software Development Made Simple with COM+
Runtime Services” November, 1997
URL: http://www.microsoft.com/msj/1197/complus.aspx (6/5/2003)

Mary Kirtland. “The COM+ Programming Model Makes it Easy to Write
Components in Any Language” December, 1997
http://www.microsoft.com/msj/1297/complus2/complus2.aspx (6/5/2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 12 of 12

Peter Wright. Visual Basic 6 OBJECTS. Birmingham. Wrox Pres, Ltd, 1998.
131 - 155.

Christopher Blexrud. Professional Windows DNA. Wrox Pres, Ltd, 2001. 85-100

Simon Robinson. Professional ADSI Programming. Wrox Pres, Ltd, 1999.

