
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
1

Using “Wasted” IP Addresses to Amplify Slow Scans

Abstract

There are many different types of scanning used today to find potential
vulnerabilities on networks. Many of these scans are very fast and efficient. To
slow the fast scan, various methods have been developed1. Other scans attempt
to use various TCP/IP options to be stealthy2. The stealthy scan types are now
fairly routine and can be detected by the IDS3. Another type of scanning is the
“slow scan.” These are connection attempts that occur very slowly, such as once
per hour, over long periods of time – one or more days. This is done purposely
to attempt to avoid detection by the honey pot or IDS. Attempts to detect the
slow, random scan with a honey pot or IDS are; advanced reporting from the IDS
logs (such as ACID4) and that of the Honeypot Farm5. Other techniques are also
available from commercial software such as Silicon Defense’s CounterSleth6.
This paper proposes yet another scan detection technique: The scan
amplification device. The characteristics proposed for this device are:

1. It is lightweight, requiring little hardware and no software purchases.
2. Easily manageable, in that a single machine can amplify whole networks

with little to no administrative effort.
3. Effective detection for a variety of slow scans with a single configuration

while attempting to fill all unused addresses on a subnet.

1 Voemel, Chrisof.
2 Fyodor.
3 URL: http://www.snort.org/cgi-bin/done.cgi
4 Danyliw, Roman.
5 Spitzner, Lance.
6 “Sentarus. CounterSleuth. Military-grade intruder intelligence.”

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
2

Concept

Intrusion Detection Systems have become a large part of a well-rounded firewall
system7. They are useful; not only in indicating attacks, but also in determining
which machines might be compromised on one’s own network. Running an IDS
is a complex, time consuming operation, often with mixed results8. There are
many methods available to the cracker that can impede an IDS and cause to it
miss or even bury the details of an attack or a cracker’s reconnaissance effort.

Some of the more popular attack methods which attempt to evade detection by
an IDS are9:

1. Insertion attacks, where the logs of the IDS are packed with misleading
data.

2. Evasion attacks, where the IDS misses an important bit of data.
3. Denial of Service Attack, where the IDS has one or more of its resources

depleted.

These attacks are successful because the typical IDS is a passive device, simply
watching the network packets go by. It has no concept of the exact disposition of
packets at their intended destination.

The three problems listed above have caused some computer security experts to
declare that IDS is useless10. This has been hotly debated on many Internet
forums11. While the volume of information that can be generated by an IDS is
one issue in and of itself, the more problematic issue is that of the “slow scan.”

A slow scan is characterized as a scan occurring over a period of hours to
months12. It is the slow scan that is often the more dangerous but least
detectable threat13. Very often these low volume incidents get lost in the other
less dangerous but voluminous incidents reported by the IDS14. In this paper, a
method of amplification and detecting the slow scan using “wasted” IP addresses
will be discussed. Examples and tripwires to be used with this method will also
be provided. A statistical analysis of the amplification effect, both theoretical and
experimental will also be discussed.

The concept of IP address amplification is built on the foundation of the ability to
assign multiple “alias” IP addresses to a single physical interface and the fact

7 Bandy, Phil; Money, Michael; and Worstell, Karen.
8 “nidsbench. A network inrusion detection system test suite.”
9 Ptacek, Thomas H.
10 Pescatore, John and Stiennon, Richard.
11 Judge, Peter.
12 Chuvakin, Anton.
13 Ullrich, Johannes.
14 Hoagland, Jim.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
3

that there are usually many “wasted,” unused IP addresses on a network
segment15. This idea of “IP address aliases” was first invented by several of the
Unix vendors in the early 1990’s to solve the problem of running multiple web
servers on a single system. Today, almost all modern computer operating
systems will allow many multiple IP addresses on multiple subnets assigned to a
single physical interface. There are many uses of this concept in the world of
network security. The use of interest in this article is the enhancement of the
detection of slow scans. The many addresses which are unused will be assigned
to the network adaptor of the detector. This provides a large pool of addresses
which will answer when a cracker scans the network.

The idea of using a “honey pot” or “lightening rod” system to capture cracker
activity is well known and documented16. These systems are often complex,
expensive and hard to manage. They provide an environment for the cracker to
attack. The amplification device described in this paper is similar to a honey pot,
but lacks the virtual server environment of the honey pot. Its simple purpose is to
detect a connection attempt and log that event. Some of the features of a honey
pot can be provided by this system, but that is not its primary function. Server
connection information can be provided to the cracker with this system. One
might wish to do this to try and hide the purpose of the system as an IDS. The
goal however, is to provide so many instrumented addresses that by the time the
cracker discovers the purpose of the system being connected to, it is to late:
They will have already been discovered.

There are three implementation cases which follow the network sizes: Class A,
B or C. The size of the network to be instrumented is important and requires
consideration. The reason for this is because of some limits found by
experimentation in the amplification tool. The tool of choice tested for an
amplification device was Red Hat Linux version 9.0. With this version it was
discovered that a full class A of IPv4 addresses could be assigned to an
interface, but doing so caused the system to become very unstable. A PERL
script is provided in the appendix for illustrating the instability for creating aliases
for a whole class A (page 27). Considerable memory was used when this was
done. It was not a significant enough resource utilization to be too expensive to
do. The problem created by assigning the aliases for a whole class A is that the
ifconfig command becomes unresponsive. A system reboot or shutdown will
hang after creating aliases for the whole class A. Experimentation revealed the
upper limit for aliases with this operating system, which can be assigned to a
physical adapter without causing instability, is 7777. This limitation means the
typical internal class A or B networks require some forethought in laying out the
addresses of real devices and amplifiers. For these large networks, more than
one amplification device may be necessary to get the desired coverage for
amplification.

15 URL: http://library.mobrien.com/Manuals/MPRM_Group/tcp-ip.htm
16 Halme, Lawrence R. and Bauer, R. Kenneth

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
4

The simplest implementation cases are those of the smaller networks where
7777 aliases are enough to totally fill the addresses of the network. In these
networks there are one or several class C addresses on the network segment we
wish to instrument with an amplifier. It would be possible to fill ALL unused
addresses in these subnets. The addresses not used by servers and other
network gear would be assigned to the amplifier providing the added ability to
monitor for IP address conflicts. Conflicts found could indicate some unknown,
possibly undesired network activity by a cracker not involving the scanning of the
network or servers.

In many cases, these small networks would be used on the actual Internet
addresses assigned by an ISP. In this setup there is usually significantly less
than a class C of addresses provided with probably fewer than half being actually
used for server or client addresses. In this case there are a small enough
number of addresses to be assigned to the amplifier that a single Linux box could
be assigned every single unused address in the range. Planning is still needed
to determine how the addresses are distributed between servers, network gear
and the amplifier.

For the larger class B network there are possibly many more addresses that
need to be instrumented to fill the address space. Since there would possibly be
a mixture of client machines and servers on this type of network, one possibility
would be to use the client machines as listeners as well as an amplifier for this
network. A distributed amplification for the network could be created in this
manner. These devices could be arranged to report back to the amplification
device. Arrangements such as these are called Meta-Intrusion Detection
Systems17.

In the instance of the large class A network, a single amplifier would be
inadequate to provide useful amplification. A system of amplifiers and distributed
amplifiers will be necessary to provide instrumentation in this case. For the
purpose of this paper to illustrate the concept of filling a network with sensors,
the small class C type networks will be examined in the greatest detail.

17 Ethier, Patrick.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
5

Theoretical Statistical Analysis

The theoretical statistics for using an amplification system are very straight
forward: divide the number of addresses used for detection by the total number
of addresses on the subnet and you will have the probability of a slow scan being
detected for a given connection attempt. This is theoretical because you assume
that the addresses that have been instrumented are equally likely and as
frequently scanned as those you have not instrumented.

Some scanners may actually listen for traffic (for shared or broadcasted traffic)
before deciding what to scan. One type of traffic that a scanner might listen for
and use to create a collection of addresses to scan is ARP (Address Resolution
Protocol) broadcasts. Scans based on this scheme can be made to be equally
likely for any address on the network. Simple pings between machines to
addresses will suffice.

Scans based on random addresses would dictate that the distributions of
addresses follow the random number generator’s distribution for best results.
Should the random number generator employed by the scanner be uniform, the
best distribution of addresses over the address range would be a uniform and
regular mixture of real and instrumented addresses.

Some random scans might be based on either a “regular” normal distribution or
one that is skewed. In this case, it would be best to place the server addresses
on the tails of the distribution. The amplifier addresses would be in the 80-
percentage range under the top of the “bell curve” (if that many instrumented
addresses could be spared).

Should the scans be sequential or algorithmic in nature, the best distribution
would be to place all of the instrumented addresses where they would be found
first. For example, should one observe sequential scans from the bottom of the
range up, the best practice is to place all of the servers at the top end of the
subnet and the scan detectors at the bottom end of the addresses. If one were
to detect scans from the top down, the opposite would be true. If one were to
observe that binary scans of the address space were occurring, the pivotal points
of the scan would be where the instrumented addresses would need to be
placed. The bottom end of the scans would be where the servers would be
placed.

In the ideal situation, one could sample and determine the distribution of the
scans (slow or otherwise) on the network. The distribution of server addresses
verses that of the instrumented addresses would change from time to time to fit
the current scanning trends. The various statistical methods of determining the
type of distributions of the scan could be used to assist in determining the
instrumentation of the network addresses. This could be considered to be an

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
6

“adaptive” address distribution. The effort necessary to make such changes
would be very great. Some of the necessary processes could be automated
making this process at least possible. With the ability to assign IP addresses
based on MAC address from today’s modern DHCP servers18, one could change
the distribution of addresses if the MAC addresses of all the real machines on the
network were known and managed. Additionally, the current version of BIND
could then be auto-updated by the requested DHCP address change to reflect
the changes in the DNS servers19. The only issue remaining would be to
automate the process for changing NAT addresses, default routes and/or filter
rules in the routes and firewalls for internal networks. This could possibly be
automated depending on the integration between the DHCP, BIND, routers and
firewall servers, but this is a complex task. The coordinating of an automated
change in addressing between these servers is very unlikely to be successful.
Even if it were successful, there is still the problem of disciplining the IT staff to
use names and not numbers in their connection strings (hard coded in their
applications). The issue at hand is how to instrument the amplifier on a network
to at least capture the theoretical ratio of real to alias addresses for any of the
random or sequential (algorithmic) scanning techniques, all at the same time.

Since the binary search is so ubiquitous to the computing industry20, it seems
logical that this would be a good beginning place for the distribution of server
addresses and instrumented addresses for any of the random or sequential type
scans. Consider the example of a class C network. A typical cracker using an
algorithmic scanning approach would probably try the boundaries of this network
first. After probing the beginning and ending addresses, the next logical
approach would be to scan the class C network with a binary search. The goal
would be to make sure the cracker gets nothing better than using a uniform
random distribution of probed addresses.

In the following sections, simulations will be made using the various scanning
distributions to experimentally show that a random address instrumentation
applied by a binary search tree is a good general starting point for the address
distribution. All three scanning distributions not based on ARP (uniform random,
normal random, and sequential) will be experimented with. Comparisons of each
to the others will be done.

18 Lemon, Ted.
19 “BIND 9 Administrator Reference Manual.” Internet Software Consortium, 2001. p 23.
20 Sedgewick, Robert. p 178.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
7

Methods and Limitations

Methods

In the most general sense, the idea is to spread in some distribution a set of
aliased, instrumented addresses around in the subnet address space, completely
filling all unused, available addresses if possible. These addresses report back
to a common log that easily condenses scanning activity. For the amplification
platform of choice, one can easily use xinetd to create the logging device for
connection attempts without the need of compromising the amplifier or creating a
complex honey pot (see example configuration in appendix, page 29). Using
xinetd, one can also create an illusion of being many different types of operating
systems at the same time by instrumentation of ports not usually found on Linux,
but rather found on Windows or Macs. This allows the amplification device to
provide the opportunity for a cracker to test any number of OS ports on any of the
instrumented addresses. Care must be taken; however, to limit the ports
instrumented to just a few. If too many ports are available and logged there is a
chance the detector could have a denial of service attack run against it through
resource depletion. Fortunately xinetd can help deal with these issues21.

The real power of using xinetd is that it will not only allow the logging of the
connection attempts, but it also allows a dummy script to replace the usual
server. These scripts can be as simple as something which just “falls through”
taking no action, or as complex as something which tries to determine user name
and passwords from the connection attempt. Scripts such as these can also
present common headers back to the cracker from a random pool (see examples
from example configuration in appendix, page 30). For example, in one instance
a connection to determine the type of web server running on an address might
provide a certain version of an Apache web server. The next connection attempt
might provide an IIS 4.0 header (although it is not recommended to provide any
sort of web service on the detection device). The same could be done for
sendmail, telnet, ftp and many of the other common services. This is not as
powerful as a typical commercial honey pot22, but can provide some limited bait
and switch (see http://violating.us/projects/baitnswitch/ for an example of a real
bait and switch honey pot) to the scanner to entice more rapid or at least
continued scanning attempts.

While this is a powerful feature for the Linux amplification platform, also very
helpful is the fact that xinetd will also run on the client platform of choice:
Windows23. This allows one to instrument whole ranges of usually unhelpful
client address ranges as distributed sensors. Since scripts can be written in
place of the actual server that xinetd invokes at the time of a connection, central

21 Raynal, Frederic.
22 URL: http://www.keyfocus.net/kfsensor/kfsensoroverview.pdf (30 September 2003).
23 URL: http://cygwin.com/packages/ (30 September 2003).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
8

logging for the purpose of condensing connection attempts can be made from
these otherwise desktop, client machines. Additionally on the large network, the
potential cracker will find many, many servers which must be scanned before
finding the one which is vulnerable. If each of these clients are also answering
with random server headers, a thick cloud of obscurity can be created on the
large network.

Limitations

Many of the new worms coming out seem to have an improved scanning logic24.
Observations have been made that seem to indicate that some of the new worms
actually scan based on ARP broadcasts once an infection is made on a local
subnet. An experiment was made by purposely placing a worm vulnerable
MicroSoft Windows 2000 machine on a shared, super-netted network of two
class C networks sub-netted from a class A which are directly on the Internet.
Snort was used with the appropriate worm rules installed to watch for infection
(see the appendix for the rule listing, page 28).

After about 20 minutes, the target machine became infected. The infection was
known because the machine rebooted itself to finish the infecting process. The
machine was also scanned with a virus scanner to verify the infection25. After the
infection was detected, Ethereal was used to monitor all traffic from the infected
machine. The machine waited about 15 minutes before trying any scanning on
the subnet it was placed on. After that time, it scanned only the existing IP
addresses for which ARP broadcasts were made during the time it “rested” after
its infection (based on analysis of the Ethereal log).

The infected machine seemed to scan both real and alias addresses with no
preference. It even scanned both the real and alias addresses for a single
adapter, but the implication is very clear: If a worm were “smart” enough to listen
and collect addresses to scan before scanning a network, then so would the slow
scanner. The slow scanner, if listening on and scanning from one’s own network
for ARP broadcasts, could wait, collect and analyze addresses for a very long
time. After a suitable collection time, the slow scanner could very efficiently
choose the machines on which to try a single connection.

The slow scanning cracker is in a position to devote a great amount of time to the
collection of machine addresses to analyze and scan. One process of a careful,
detailed analysis might be a simple “Who Has” ARP request on each address
collected. A table could be made of MAC addresses for each IP address (only
necessary if the network is not shared, that to can be surmised with enough
time). For alias IP addresses on the Linux amplification machine, all 7777
addresses would return the same MAC result. An analysis of such a table by the

24 URL: http://xforce.iss.net/xforce/alerts/id/150
25 URL: http://vil.nai.com/vil/stinger

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
9

cracker would reveal a single machine with 7777 addresses and the amplifier
would then be revealed for what it was to the cracker.

It might be argued that the cracker would scan the addresses anyway since it is a
common practice to use IP aliases and assign multiple, differently configured
services to them26. But still, it is unsettling to have such an easy method of
detection available to a cracker. A solution to this must be found! On the
amplifier platform of choice there is none easily found on the Internet. It seems a
really smart cracker will have their way with the amplifier, subverting its
effectiveness by only listening to or making ARP requests to one or more of the
many (possibly 7777) IP addresses assigned to the adapter of the amplifier.

If the actual MAC address could be set for each IP alias, it would be possible to
hide the amplifier addresses with the real ones. There appears to be some
limitation in the kernel of Red Hat 9 that will only allow a single MAC to be
assigned to the adapter, and not one to the IP alias. Investigations into both the
ifconfig and the ip27 command provided the same result: Only a single MAC
address may be assigned to the physical adapter. IP’s that are aliases may not
be assigned their own MAC address different from the adaptor, seemly due to a
limitation in the kernel or design of the kernel.

For the sake of argument, let us suppose one COULD indeed assign a MAC
address to each IP alias. A whole set of possibilities open up. Ideally, one would
register their very own set of Ethernet MAC addresses with the registry. The
registry provides for the registration of “private” addresses, as seen at their web
site28. This would mean that one would not ONLY manage the IP addresses of
their network, but also the MAC addresses of their network. Each device, which
could have its address changed in memory or on device, would be assigned a
unique MAC address belonging to the owner’s MAC address range on the
network. There is also the option of just picking a MAC address range for your
organization and using that. The cost of the registration could be avoided in this
way. Care must be taken to ensure that MAC conflicts will not arise with public
MAC addresses that could be purchased on vendor hardware.

If it were possible for the amplifier, each IP address attached to a single physical
adapter would also be assigned a unique MAC address from a pool of MAC
addresses. The addresses would ideally be assigned in a random fashion from
the owner’s pool or owner-generated pool. Using these MACs would not indicate
the ARP MAC was from an alias IP, or from the same adapter, or from the same
machine. Not only would this enhance the effectiveness of the amplifier, it would
also obscure the adapters’ brand and driver. That can be important since some
network cards and their drivers may have vulnerabilities29. This would not stop

26 URL: http://httpd.apache.org/docs-2.0/vhosts/ip-based.html
27 Kuznetsov, Alexey N.
28 URL: http://standards.ieee.org/faqs/OUI.html#q1 (01 October 2003).
29 URL: http://www.secunia.com/advisories/8987/ (01 October 2003).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
10

the cracker from finding low level hardware or network driver exploits, but it
would slow them down considerably.

Should this process become popular and shown effective, modified Linux kernels
might be written to allow this to be done. If so, another cloud of obscurity could
be thrown onto a network to confuse the best of scanners. The only other
necessary ingredient would be to have some ARP traffic generated for ALL of the
alias addresses. A simple CRON job running somewhere that does a ping would
suffice. Should it be impractical or not possible to assign each of the alias IP’s its
own address, another approach would be to periodically change the assigned
MAC address to the lot of the alias IP’s with a randomly generated address. This
would also best be done using one’s own private set of Ethernet MAC addresses.
It is only necessary to change the address on any one of the alias IP’s (or just on
the real adapter) to change them all. A script is provided in the appendix that
illustrates this procedure (page 32). Since our amplifier platform of choice is
inexpensive and runs well on older, inexpensive hardware30, another option
would be to have many amplifiers with many adapters in each amplifier.

30 URL: http://www.redhat.com/docs/manuals/linux/RHL-9-Manual/release-notes/x86/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
11

Experimental results and Conclusions

Statistical Simulation Results

To illustrate and test the effectiveness of some of the amplification concepts
discussed previously in this paper, statistical simulation was done. The exact
parameters for a network will determine how a real instrumentation is
implemented. The real results achieved from a real setup will vary directly to its
difference from this experimental case. For the tests done, the network size is
class C (254 addresses). In this class C, 80% of the addresses are unused and
20% are used for real devices. This means there will be 51 real devices and 203
unused device addresses on the network. The distribution of the real devices will
be made to randomly disperse them on a binary search tree of the class C
addresses. If this is effective in placing instrumentation around the real
addresses, any of the scanner distributions should be no worse than 80%
instrumentation hits and 20% real hits.

A PERL script is provided in the appendix (page 19) that creates the distribution
given an arbitrary number of real devices for a class C network range. For the
purpose of illustrating the results of the script, an encoding is used to show a
layout. In the following example string of letters, an “R” is used to denote a real
device and an “I” is used to denote an alias, instrumented address. The position
in the string indicates the real or instrumented address within the class C,
numbering from 1 to 254. The binary search tree31 is first generated by the script
that describes the search for the range of addresses in the class C network.
Each level of the search tree is assigned a real or instrumented address based
on the probability of an address being real in the class C, for this example 20%.
This probability is used to skew the uniform distribution generated by the PERL
rand function. The skewed random number is then used to make the assignment
randomly based on the order of reading the binary tree from top to bottom and
left to right. One other possibility would be to assign the real or instrumented
addresses from bottom to the top. Another possibility would be to bounce back
and forth between tree limbs on the same level traversing either from top to
bottom or bottom to top. All of these methods have the commonality of using a
deterministic approach to introduce some complexity into the assignment of the
random values of “R” or “I”:

 1 2 3 4 5 6
IRIIIIIII IRIIIIRIII IIIIRIRIII IIIIIIIRRR RIRIRRIIIR IIIRIIIIIR

 7 8 9 10 11 12
IIIRIIIIII IIIIIIIIII IIIIRIIIII RIIRIIIRII IIIIIIIRII RIIRIRIRII

31 Sedgewick, Robert. p 177.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
12

 13 14 15 16 17 18
IIIIIIIIII RIIIIRIIII IIIRIRIIII IIIIIIIRII IIIIIIIIIR IIIRIRIIIR

 19 20 21 22 23 24
RRIIIIIIIR IRIIIRIIII IIIRIIIIRI IIRIIIRIIR IIIRRIIIII RIIIIIIIII

 25 254
IIRIRIRIII IIRI

Even though there is an order in which the assignments are made to the
addresses in this class C network, the assignment is still random. Since the
assignment is random, patterns may appear in the above strings which are just
permutations of other patterns in other strings. In the example above, there is
nothing to stop a string being generated in which the “I” in column 254 is pushed
to the first position and all of the other values moved to the right until the “R” in
column 253 takes the current position of the “I” at 254. Since there is no
distinction made between any “I” or between any “R”, the total number of
possible strings that represent the instrumentation of addresses in the class C is
calculated as a multinomial coefficient32. In this case there are two different
objects, an instrumented address (“I”) and a real address (“R”). This means the
total possible set of address combinations can be calculated as follows:

54103.1
!203!51

!254 x=
•

This is a very large number of possible network configurations! This is important
because it all but eliminates the possibility that any particular network
configuration could be guessed. For all practical purposes, it also eliminates the
possibility that any particular network configuration, created using the
calculations in this paper would be duplicated by a cracker. It is important to
remember that the total number of possible network configurations will vary
depending on the number of real verses instrumented addresses. The more real
addresses there are on the network, the fewer combinations there are and the
more likely a random scan will hit a real device.

Next it must be shown that no one of the discussed attack methods is worse than
that of any other against a network configuration using this method. That is, any
particular instrumentation is statistically no worse than that of any other for any
method of scanning. PERL scripts were written to simulate scans using a
uniform distribution (page 21), a normal distribution (page 23) and a random
sequential run of a fixed size (page 25). The simulated scans were done using
no more than 25 scans per day and no more than 30 days of scanning against
the total of 51 real addresses within the class C.

32 Larson, Harold J. p 45.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
13

The null hypothesis will be: there is no difference between any of the proportions
of hits against real addresses by any of the attack methods. While these tests
cannot be used to indicate the truth of the null hypothesis, they show that there is
currently no compelling statistical indication to believe they are not true. The
following table shows the raw values from the runs:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
14

Statistic Uniform attack Normal attack Sequential
attack

p
estimate

0.1853 0.2187 0.196

q
estimate

0.8147 0.7813 0.804

Total R’s 139 164 147
Trials 750 750 750

The Normal attack seemed to produce the best results. This in spite of the fact,
one would hope that the real hits would never exceed 0.20 – the proportion of
real addresses. The following table shows the calculated “z” values for the test
statistic comparing the ratio of two proportions33:

Statistic U/N U/S N/S
z 1.614 0.000 1.054

Alpha 0.1 0.1 0.1
Reject
value34

1.645 1.645 1.645

Result No reject No reject No reject

The results of the tests indicate there is no apparent reason to believe there is a
difference between the attacks given the described method of laying out an
instrumented network.

33 Aczel, Amir. p 320.
34 Aczel, Amir. p 1018.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
15

Conclusions

To summarize, the objective of this paper was to create an instrumentation of a
network to detect slow scans. An amplification device was proposed which is
light weight, easy to manage, and effective for a variety of scans. A methodology
for the deployment of the amplification device was presented. Key concepts of
the methodology were:

1. Assigning an alias address to all or as many as possible of the unused
addresses on a network.

2. Using a binary search tree to assign random address type of real or alias
to provide some deterministic complexity to the network.

3. The possibility of using desktop machines as distributed sensors on
networks larger than 7777 nodes.

The detection software for the amplifier is xinetd. The configuration of xinetd for
use as an IDS relies on its ability to throttle, be selectively configured to listen for
just a few services, and the replacement of the actual services for which it is
listening with simple scripts.

The method described in the paper does not determine if addresses are fake
addresses. It simply records what it sees. Filling the address range provides the
advantage of looking at the end result of a scan, not just guessing at what the
intent of the connection was. It also provides the advantage of alerting on any
activity occurring on IP addresses that were thought to be not in use, which is the
IP address conflict. Having this information helps better manage the network.

Future research to be done is to actually instrument a real network with an
amplifier, an IDS, and a honey pot farm. Controlled scans of this network would
be done. The results of each device’s detection and analysis could then be
compared to indicate the relative success of each against the others. If the
results were favorable for the amplifier, the next experiment would be to allow
real hostile scans against the devices and compare those results

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
16

References

Aczel, Amir. Complete Business Statistics. Richard D. Irwin, Inc., 1989. ISBN
0-256-05716-8.

A.V.E.R.T., Network Associates Technology, Inc. “Stinger.” 19 August 2003.
URL: http://vil.nai.com/vil/stinger (28 August 2003).

Bandy, Phil; Money, Michael; and Worstell, Karen. “Why is intrusion detection
required in today’s computing environment?” URL:
http://www.sans.org/resources/idfaq/id_required.php (29 September 2003).

“Bind 9 Administrator Reference Manual.” Internet Software Consortium BIND
version 9.2, 2001. URL: http://www.isc.org/products/BIND/ (30 September
2003).

Chuvakin, Anton. “IDS: slow scans?” 12 February 2003. URL:
http://lists.insecure.org/lists/focus-ids/2003/Feb/0065.html (29 September
2003).

Danyliw, Roman. "Analysis Console for Intrustion Databases." 8 January 2003.
URL: http://www.andrew.cmu.edu/~rdanyliw/snort/snortacid.html (29
September 2003).

Ethier, Patrick. “What is Meta-Intrusion Detection Systems?” URL:
http://www.sans.org/resources/idfaq/mids.php (29 September 2003).

Frederic, Raynal. “xinetd.” 28 February 2001. URL:
http://www.linuxfocus.org/English/November2000/article175.shtml (30
September 2003).

Fyodor. “The Art of Port Scanning.” 06 September 1997. URL:
http://www.insecure.org/nmap/nmap_doc.html (29 September 2003).

Halme, Lawrence R. and Bauer, R. Kenneth. “AINT Misbehaving: A Taxonomy
of Anti-Intrusion Techniques.” URL:
http://www.sans.org/resources/idfaq/aint.php (29 September 2003).

Hoagland, Jim. “IDS: Re: slow scans?” 12 February 2003. URL:
http://lists.insecure.org/lists/focus-ids/2003/Feb/0074.html (29 September
2003).

Judge, Peter. “Intruders: Is detection or protection the answer?” 15 April 2003.
URL: http://news.zdnet.co.uk/business/0,39020645,2133452,00.htm (29
September 2003).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
17

Kuznetsov, Alexey N. “IP Command Reference.” 24 April 1999.

Larson, Harold J. Introduction to Probability Theory and Statistical Inference.
New York, New York: John Wiley & Sons, 1976. ISBN 0-471-51781-X.

Lemon, Ted. “dhcpd.conf(5).” Internet Software Consortium DHCP version
3.0.1rc9 28 April 2002. URL: http://www.isc.org/products/DHCP/ (30
September 2003).

“nidsbench. A network inrusion detection system test suite.” URL:
http://packetstormsecurity.nl/UNIX/IDS/nidsbench/nidsbench.html (29
September 2003).

Pescatore, John and Stiennon, Richard. “The Death of IDS.” 24 July 2003. URL:
http://www4.gartner.com/teleconferences/attributes/attr_9268_115.ppt (29
September 2003).

Ptacek, Thomas H. “Insertion, Evasion, and Denial of Service: Eluding Network
Intrusion Detection.” 16 October 2002. URL:
http://secinf.net/info/ids/idspaper/idspaper.html (29 September 2003).

Sedgewick, Robert. Algorithms. Reading, Massachusetts: Addison-Wesley
Publishing Company, 1984. ISBN 0-201-06672-6.

“Sentarus. CounterSleuth. Military-grade intruder intelligence.” URL:
http://www.silicondefense.com/products/sentarusfamily/countersleuth/ (29
September 2003).

Spitzner, Lance. “Honeypot Farms.” 13 August 2003. URL:
http://www.securityfocus.com/infocus/1720 (29 September 2003).

Ullrich, Johannes. “IDS: Re: slow scans?” 12 February 2003. URL:
http://lists.insecure.org/lists/focus-ids/2003/Feb/0066.html (29 September
2003).

URL: http://httpd.apache.org/docs-2.0/vhosts/ip-based.html (30 September
2003).

URL: http://cygwin.com/packages/ (30 September 2003).

URL: http://standards.ieee.org/faqs/OUI.html#q1 (01 October 2003).

URL: http://xforce.iss.net/xforce/alerts/id/150 11 August 2003. (1 September
2003).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
18

URL: http://www.keyfocus.net/kfsensor/kfsensoroverview.pdf (30
September 2003).

URL: http://library.mobrien.com/Manuals/MPRM_Group/tcp-ip.htm (29
September 2003).

URL: http://www.redhat.com/docs/manuals/linux/RHL-9-Manual/release-
notes/x86/ (01 October 2003).

URL: 11 June 2003. http://www.secunia.com/advisories/8987/ (01 October
2003).

URL: http://www.snort.org/cgi-bin/done.cgi (29 September 2003). Rule
numbers 621, 623, 624, 625, 629, and 630.

Voemel, Christof. URL:
http://www.giac.org/practical/Christof_Voemel_GCIA.txt (29 September
2003).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
19

Appendix

PERL Script to Generate Network layout

This script takes as input the number of real devices to randomly place on a
class C network. It then places them on a binary search tree from top to bottom,
left to right:

ARGV[0] is the number of real devices
$prob = $ARGV[0] / 254;
create sequence to make binary tree on
for ($i=1,$j=0;$i<512;$i*=2,$j++)
{
 $SEED[$j] = $i;
}
sequence the distribution
$k = $SEED[$#SEED];
for ($j=0;$j<$#SEED;$j++)
{
 $level = $#SEED - $j -1;
 for ($i=$SEED[$j],$l=0;$i<$k;$i+=$SEED[$j+1],$l++)
 {
 $DIST[$level][$l] = $i;
 }
}

make the I or the R in the sequence created
$r_count = 0;
$rep_count = 0;
while ($r_count < $ARGV[0])
{
 for ($j=0;$j<$#SEED;$j++)
 {
 for ($i=0;$i<=($#{$DIST[$j]});$i++)
 {
 if ($r_count < $ARGV[0])
 {
 $TYPE_IP[$DIST[$j][$i]] = &I_or_R();
 if ($TYPE_IP[$DIST[$j][$i]] eq "R") {$r_count++;}
 }
 else
 {
 if ($rep_count > 0) {last;}
 $TYPE_IP[$DIST[$j][$i]] = "I";
 }
 }
 if (($rep_count > 0) && ($r_count >= $ARGV[0])) {last;}
 }
 $rep_count++;
}
output the I or R in groups of 10
for ($i=0;$i<254;$i++)
{
 if ((($i % 10) == 0)&&($i != 0)) {print(" ");}

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
20

 print("$TYPE_IP[$i]");
}
print("\n");
sub to get a uniform random distribution of I or R in the proportion
of real to instrumented addresses

sub I_or_R()
{
 $a_random = rand(1.0);
 if ($a_random < $prob)
 {
 return("R");
 }
 else
 {
 return("I");
 }
}

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
21

PERL script to Scan with a Uniform Random Distribution

number of real nodes $ARGV[0]
number of connection attempts made per scan $ARGV[1]
number of networks to test on

calculate the probablity where there are $ARGV[0] real network nodes
$prob = $ARGV[0] / 254;

$instrument_counter = $real_counter = 0;

Create Binary Search Tree
for ($i=1,$j=0;$i<512;$i*=2,$j++) { $SEED[$j] = $i; }

$k = $SEED[$#SEED];
for ($j=0;$j<$#SEED;$j++)
{
 $level = $#SEED - $j -1;
 for ($i=$SEED[$j],$l=0;$i<$k;$i+=$SEED[$j+1],$l++) { $DIST[$level][$l] = $i; }
}

Generate the instrumented network, run the simulated scan, do it $ARGV[2] times
for ($run_nums=0;$run_nums<$ARGV[2];$run_nums++)
{
######### Generate the next net, make sure it is unique to this run
 $HIST[$run_nums] = "";
 while ($HIST[$run_nums] eq "")
 {
 $matched = 0;
 &Instrument_Class_C;
 for ($im=0;$im<=$#HIST;$im++)
 {
 if ($S eq $HIST[$im])
 {
 $matched = 1;
 break;
 }
 }
 if (!$matched) { $HIST[$run_nums] = $S;}
 }
######### Run the simulated scan against our network, scan $ARGV[1] times against the net
 for ($i=0;$i<$ARGV[1];$i++)
 {
 $j = &Class_C_ran;
 if ($TYPE_IP[$j] eq "R") {$real_counter++;} else {$instrument_counter++;}
 }
}

Calculate the answers
$act_prob = $real_counter / ($real_counter + $instrument_counter);
print("Out of $ARGV[2] runs of $ARGV[1] scan sizes\n");
print(" hit $real_counter real and $instrument_counter instrumented\n");
$q = 1.0 - $act_prob;
print(" p estimated is $act_prob, q estimated is $q\n");

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
22

sub Instrument_Class_C
{
 $r_count = 0;
 $rep_count = 0;
 $S = "";
 while ($r_count < $ARGV[0])
 {
 for ($j=0;$j<$#SEED;$j++)
 {
 for ($i=0;$i<=($#{$DIST[$j]});$i++)
 {
 if ($r_count < $ARGV[0])
 {
 $TYPE_IP[$DIST[$j][$i]] = &I_or_R;
 $S .= $TYPE_IP[$DIST[$j][$i]];
 if ($TYPE_IP[$DIST[$j][$i]] eq "R") {$r_count++;}
 }
 else
 {
 if ($rep_count > 0) {last;}
 $TYPE_IP[$DIST[$j][$i]] = "I";
 $S .= $TYPE_IP[$DIST[$j][$i]];
 }
 }
 if (($rep_count > 0) && ($r_count >= $ARGV[0])) {last;}
 }
 $rep_count++;
 }
}

sub Class_C_ran
{
 return(int(rand(254))+1);
}

sub I_or_R
{
 $a_random = rand(1.0);
 if ($a_random < $prob)
 {
 return("R");
 }
 else
 {
 return("I");
 }
}

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
23

PERL script to Scan with a Normal Random Distribution

use Math::Random;
calculate the probablity where there are $ARGV[0] real network nodes
$prob = $ARGV[0] / 254;$instrument_counter = $real_counter = 0;
Create Binary Search Tree
for ($i=1,$j=0;$i<512;$i*=2,$j++) { $SEED[$j] = $i; }

$k = $SEED[$#SEED];
for ($j=0;$j<$#SEED;$j++)
{
 $level = $#SEED - $j -1;
 for ($i=$SEED[$j],$l=0;$i<$k;$i+=$SEED[$j+1],$l++) { $DIST[$level][$l] = $i; }
}

Generate the instrumented network, run the simulated scan, do it $ARGV[2] times
for ($run_nums=0;$run_nums<$ARGV[2];$run_nums++)
{
######### Generate the next net, make sure it is unique to this run
 $HIST[$run_nums] = "";
 while ($HIST[$run_nums] eq "")
 {
 $matched = 0;
 &Instrument_Class_C;
 for ($im=0;$im<=$#HIST;$im++)
 {
 if ($S eq $HIST[$im])
 {
 $matched = 1;
 break;
 }
 }
 if (!$matched) { $HIST[$run_nums] = $S;}
 }
######### Run the simulated scan against our network, scan $ARGV[1] times against the net
 @R = random_normal($ARGV[1],127,50);
 for ($i=0;$i<$ARGV[1];$i++)
 {
 $R[$i] = int($R[$i]);
 if ($R[$i] < 1) {$R[$i] = 1;}
 else
 {
 if ($R[$i] > 254) {$R[$i] = 254;}
 }
 }
 for ($i=0;$i<$ARGV[1];$i++)
 {
 $j = $R[$i];
 if ($TYPE_IP[$j] eq "R") {$real_counter++;} else {$instrument_counter++;}
 }
}
Calculate the answers
$act_prob = $real_counter / ($real_counter + $instrument_counter);
print("Out of $ARGV[2] runs of $ARGV[1] scan sizes\n");
print(" hit $real_counter real and $instrument_counter instrumented\n");

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
24

$q = 1.0 - $act_prob;
print(" p estimated is $act_prob, q estimated is $q\n");

sub Instrument_Class_C
{
 $r_count = 0;
 $rep_count = 0;
 $S = "";
 while ($r_count < $ARGV[0])
 {
 for ($j=0;$j<$#SEED;$j++)
 {
 for ($i=0;$i<=($#{$DIST[$j]});$i++)
 {
 if ($r_count < $ARGV[0])
 {
 $TYPE_IP[$DIST[$j][$i]] = &I_or_R;
 $S .= $TYPE_IP[$DIST[$j][$i]];
 if ($TYPE_IP[$DIST[$j][$i]] eq "R") {$r_count++;}
 }
 else
 {
 if ($rep_count > 0) {last;}
 $TYPE_IP[$DIST[$j][$i]] = "I";
 $S .= $TYPE_IP[$DIST[$j][$i]];
 }
 }
 if (($rep_count > 0) && ($r_count >= $ARGV[0])) {last;}
 }
 $rep_count++;
 }
}
sub Class_C_ran
{
 return(int(rand(254))+1);
}
sub I_or_R

{
 $a_random = rand(1.0);
 if ($a_random < $prob)
 {
 return("R");
 }
 else
 {
 return("I");
 }
}

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
25

PERL script to Scan with a Sequential Run

calculate the probablity where there are $ARGV[0] real network nodes
$prob = $ARGV[0] / 254;

$instrument_counter = $real_counter = 0;

Create Binary Search Tree
for ($i=1,$j=0;$i<512;$i*=2,$j++) { $SEED[$j] = $i; }

$k = $SEED[$#SEED];
for ($j=0;$j<$#SEED;$j++)
{
 $level = $#SEED - $j -1;
 for ($i=$SEED[$j],$l=0;$i<$k;$i+=$SEED[$j+1],$l++) { $DIST[$level][$l] = $i; }
}

Generate the instrumented network, run the simulated scan, do it $ARGV[2] times
for ($run_nums=0;$run_nums<$ARGV[2];$run_nums++)
{
######### Generate the next net, make sure it is unique to this run
 $HIST[$run_nums] = "";
 while ($HIST[$run_nums] eq "")
 {
 $matched = 0;
 &Instrument_Class_C;
 for ($im=0;$im<=$#HIST;$im++)
 {
 if ($S eq $HIST[$im])
 {
 $matched = 1;
 break;
 }
 }
 if (!$matched) { $HIST[$run_nums] = $S;}
 }
######### Run the simulated scan against our network, scan $ARGV[1] times against the net
 $r = &Class_C_seq_scan_ran;
 for ($i=0;$i<$ARGV[1];$i++)
 {
 $j = $r + $i;
 if ($TYPE_IP[$j] eq "R") {$real_counter++;} else {$instrument_counter++;}
 }
}

Calculate the answers
$act_prob = $real_counter / ($real_counter + $instrument_counter);
print("Out of $ARGV[2] runs of $ARGV[1] scan sizes\n");
print(" hit $real_counter real and $instrument_counter instrumented\n");
$q = 1.0 - $act_prob;
print(" p estimated is $act_prob, q estimated is $q\n");

sub Instrument_Class_C
{
 $r_count = 0;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
26

 $rep_count = 0;
 $S = "";
 while ($r_count < $ARGV[0])
 {
 for ($j=0;$j<$#SEED;$j++)
 {
 for ($i=0;$i<=($#{$DIST[$j]});$i++)
 {
 if ($r_count < $ARGV[0])
 {
 $TYPE_IP[$DIST[$j][$i]] = &I_or_R;
 $S .= $TYPE_IP[$DIST[$j][$i]];
 if ($TYPE_IP[$DIST[$j][$i]] eq "R") {$r_count++;}
 }
 else
 {
 if ($rep_count > 0) {last;}
 $TYPE_IP[$DIST[$j][$i]] = "I";
 $S .= $TYPE_IP[$DIST[$j][$i]];
 }
 }
 if (($rep_count > 0) && ($r_count >= $ARGV[0])) {last;}
 }
 $rep_count++;
 }

}

sub Class_C_seq_scan_ran
{
 return(int(rand(254-$ARGV[1]))+1);
}

sub Class_C_ran
{
 return(int(rand(254))+1);
}

sub I_or_R
{
 $a_random = rand(1.0);
 if ($a_random < $prob)
 {
 return("R");
 }
 else
 {
 return("I");
 }
}

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
27

Script to assign an alias of a class A to an adapter

#!/usr/bin/perl
$l = 0;
for ($i=0;$i<256;$i++)
{
 for ($j=0;$j<256;$j++)
 {
 for ($k=1;$k<256;$k++)
 {
 $l++;
 system("ifconfig eth0:$l 10.$i.$j.$k up");
 }
 }
}

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
28

Snort Rule for Detection of Worm Infection

alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"ICMP PING CyberKit 2.2
Windows"; content:"|aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
aaaa aaaa|"; itype: 8; dsize:64;)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
29

xinetd setup

The amplification device uses the TCP Wrapper functions available to xinetd.
The following example of a hosts.allow file shows how the TCP Wrapper is used
to log connection attempts and break them out into separate logs. The
hosts.deny file shows how all remaining, instrumented services are blocked and
their logging combined into a single file.

There are two sample server replacement scripts provided. There is one for
telnet that shows how the returns from telnet connection attempts can be
randomized. Another script for ftp shows how a simple empty script can be used
to log connection attempts and do nothing else.

hosts.allow

#
hosts.allow This file describes the names of the hosts which are
allowed to use the local INET services, as decided
by the '/usr/sbin/tcpd' server.
#
ALL: ALL
 in.telnetd : ALL: SPAWN (echo "`/bin/date` Break in attempt from %u %d-%c" | /bin/cat >>
/var/log/telnet.log)
 in.ftpd : ALL: SPAWN (echo "`/bin/date` Break in attempt from %u %d-%c" | /bin/cat >>
/var/log/ftp.log)

hosts.deny

#
hosts.deny This file describes the names of the hosts which are
not allowed to use the local INET services, as decided
by the '/usr/sbin/tcpd' server.
#

 ALL: ALL: SPAWN (echo "`/bin/date` Break in attempt from %u %d-%h" | /bin/cat >>
/var/log/break.ins)

/dummys/in.ftpd

just an empty file

/dummys/in.telnetd

#!/usr/bin/perl
@CNTS = (
"This is a SUN box\nCome on in: ",
"This is a AIX box\nCome on in: ",

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
30

"This is a MAC box\nCome on in: ",
"This is a LINUX box\nCome on in: ",
"This is a Microsoft box\nCome on in: ");
$i = int (rand($#CNTS+1.0));
print ("$i\n");
syswrite STDOUT,$CNTS[$i],length($CNTS[$i]);
$l = <>;
open(FO,">> /var/log/telnet.log");
print(FO "index $i, Telnet tried with $l\n");
close(FO);

Example Random Headers

Connected to localhost.localdomain (127.0.0.1).
Escape character is '^]'.
This is a AIX box
Come on in: asdf
Connection closed by foreign host.
[root@localhost log]# telnet 127.0.0.1
Trying 127.0.0.1...
Connected to localhost.localdomain (127.0.0.1).
Escape character is '^]'.
This is a Microsoft box
Come on in: asdf
Connection closed by foreign host.
[root@localhost log]# telnet 127.0.0.1
Trying 127.0.0.1...
Connected to localhost.localdomain (127.0.0.1).
Escape character is '^]'.
This is a LINUX box
Come on in: asdf
Connection closed by foreign host.
[root@localhost log]# telnet 127.0.0.1
Trying 127.0.0.1...
Connected to localhost.localdomain (127.0.0.1).
Escape character is '^]'.
This is a LINUX box
Come on in: asdf
Connection closed by foreign host.
[root@localhost log]# telnet 127.0.0.1
Trying 127.0.0.1...
Connected to localhost.localdomain (127.0.0.1).
Escape character is '^]'.
This is a MAC box
Come on in: asdf
Connection closed by foreign host.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
31

Sample log for telnet connections

Sat Oct 4 16:49:33 CDT 2003 Break in attempt from unknown in.telnetd-127.0.0.1
index 2, Telnet tried with & & ! " ' #asf

Sat Oct 4 16:55:28 CDT 2003 Break in attempt from unknown in.telnetd-127.0.0.1
index 2, Telnet tried with & & ! " ' #asdf

Sat Oct 4 16:58:56 CDT 2003 Break in attempt from unknown in.telnetd-127.0.0.1
index 0, Telnet tried with & & ! " ' #Trying 127.0.0.1...
 Connected to localhost.localdomain (127.0.0.1).
 Escape character is '^]'.
 Connection closed by foreign host.
 [root@localhost etc]#

 asdf

Sample log for ftp connections

Sat Oct 4 16:59:06 CDT 2003 Break in attempt from unknown in.ftpd-127.0.0.1
Sat Oct 4 16:59:42 CDT 2003 Break in attempt from unknown in.ftpd-127.0.0.1

Sample log for other connection attempts

Sat Oct 4 17:09:50 CDT 2003 Break in attempt from unknown in.rlogind-127.0.0.1
Mon Oct 6 08:52:30 CDT 2003 Break in attempt from unknown in.tftpd-127.0.0.1
Mon Oct 6 08:52:33 CDT 2003 Break in attempt from unknown in.tftpd-127.0.0.1
Mon Oct 6 08:52:34 CDT 2003 Break in attempt from unknown in.tftpd-127.0.0.1
Mon Oct 6 08:52:37 CDT 2003 Break in attempt from unknown in.tftpd-127.0.0.1
Mon Oct 6 08:52:39 CDT 2003 Break in attempt from unknown in.tftpd-127.0.0.1
Mon Oct 6 08:52:42 CDT 2003 Break in attempt from unknown in.tftpd-127.0.0.1
Mon Oct 6 08:52:45 CDT 2003 Break in attempt from unknown in.tftpd-127.0.0.1
Mon Oct 6 08:52:48 CDT 2003 Break in attempt from unknown in.tftpd-127.0.0.1
Mon Oct 6 08:52:49 CDT 2003 Break in attempt from unknown in.tftpd-127.0.0.1
Mon Oct 6 08:52:52 CDT 2003 Break in attempt from unknown in.tftpd-127.0.0.1

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
32

Example Script to randomly assign a MAC address

#!/usr/bin/perl
$macbeg = "66:66:00:";
$macend1 = int(rand(100.0));
$macend2 = int(rand(100.0));
$macend3 = int(rand(100.0));
$newmac = "$macbeg$macend1:$macend2:$macend3";
system("ifconfig eth0 down");
system("ifconfig eth0 hw ether $newmac");
system("ifconfig eth0 up");

