GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

WEB APPLICATION VULNERABILITY
MANAGMENT

GIAC (GSEC) Gold Certification

Author: Jason Pubal, jpubal@mastersprogram.sans.edu
Advisor: Barbara Filkins

Accepted: July 23, 2014

Abstract

For years, attackers have assailed network and system level vulnerabilities, fueling
demand for products like firewalls and network vulnerability scanners. As these
products mature and IT security teams learn to better handle network security, the
industry is seeing a visible increase in attacks moving up the stack to target
application-level vulnerabilities.

Mature application security programs perform security testing against web
applications during development but tend to be reactive to security defects once an
application has been deployed. Web applications that are being used in a production
environment are not typically subject to recurring security tests. There is fear of
causing an impact to functionality and a notion that as long the codebase has not
changed it is impossible to find new security vulnerabilities in an application that
was thoroughly tested prior to being deployed. Any vulnerability not found during
this initial testing is only known about and addressed after an incident has occurred.
Meanwhile, infrastructure vulnerability management performs recurring
vulnerability scanning against production network and servers as the web
applications hosted on them are ignored.

As threats evolve and new attack vectors are discovered, applications need to be
tested to see how they are affected. Application vulnerability management needs the
same rigor infrastructure vulnerability management has; web application
vulnerability assessments need to be continuous. The web application vulnerability
management framework presented in this paper is the next step in application
security. This framework introduces a methodology, processes, and activities to
achieve that goal.

Web Application Vulnerability Management | 2

1. Introduction

For years, attackers have assailed network and system level vulnerabilities,
fueling demand for products like firewalls and network vulnerability scanners. As these
products mature and IT security teams learn to better handle network security, the
industry is seeing a visible increase in attacks moving up the stack to target application-

level vulnerabilities.

Many companies conduct continuous or frequently recurring vulnerability scans
of their infrastructure, but ignore applications once they are deployed to production.
Those applications make up a large part of the attack surface, and are where attackers are
focusing their attention. According to Verizon’s Data Breach Investigations Report
(2014), 35% of breaches were caused by web application attacks, making it the most

prevalent attack pattern.

Figure 1. DBIR Frequency of Incidents. From “2014 Verizon Data Breach Investigations
Report,” 2014.

Our state-of-the-art models for application security fall short when it comes to
vulnerability management; they are reactive and only take action after damage has
already been done. To establish an effective application security program, organizations
need to implement application-level vulnerability management as an ongoing process.
The web application vulnerability management framework detailed in this paper lays out
a methodology that can be followed to help secure web applications. I developed it over

the last couple of years of my career, and have successfully implemented it to conduct

Jason Pubal jpubal@mastersprogram.sans.edu

Web Application Vulnerability Management | 3

vulnerability management against hundreds of web applications at a large financial

services company.

1.1. Risk Management

Vulnerability is a component of risk. Vulnerability management plays a crucial
role in finding a variety of technical vulnerabilities in an environment, prioritizing the
resulting risk, and improving the overall security posture by addressing those likely to
lead to incidents. Harris (2012) defines risk as “the likelihood of a threat agent exploiting
a vulnerability and the corresponding business impact” (p. 57). Expressed as a formula,

that is:

) Threat X Vulnerability
Risk = X Value
Countermeasures

Breaking down the components of risk, threats are someone or something that can
do harm. Vulnerabilities are the weaknesses of an asset that allow the threat to cause
harm. Countermeasures are precautions that have been taken. Value is the monetary

worth of the asset representing the potential loss of an incident.

Information security is about managing risks to sensitive data and critical
resources. There will always be some amount of risk present, the role of information
security is to bring it in-line with organizational policies. The tolerance level for risk will
vary between organizations. Information security professionals have to gauge the
executive team’s risk appetite and help them make well-informed decisions that are in the

best interest of the company.

These decisions can include accepting, transferring, avoiding, or mitigating the
risk (Wheeler, 2011, p. 54). Sometimes it is in a company’s best interest to accept a risk.
If the cost of risk mitigation is more than the value of the asset being protected, then
making a formal decision to accept the risk makes sense. For example, it would be
unwise to spend $5,000 on a fence in your backyard only to protect a $500 grill.
Transferring risk shifts liability for the risk to another party, and is often done through

purchasing insurance. Avoiding risk is done when the risk is so high that the best the best

Jason Pubal jpubal@mastersprogram.sans.edu

Web Application Vulnerability Management | 4

course of action is simply to cease the activity that presented the risk. Risk mitigation is
taking steps to reduce risk exposure. This can be done by changing any of the variables in
the risk formula. However, it is difficult to control threats, and it might not make sense to
reduce the value of assets. Most commonly, applying countermeasures and reducing
vulnerabilities are used to reduce risk. This is where vulnerability management comes

into play.

It is important to put vulnerability management in the larger context of risk
management. The goal is not to eliminate every vulnerability, but finding the right
balance. “The security program should be filling a governance and oversight role to help
identify the risks that have the greatest chance of harming the organization with the most
severe impact. If you have properly educated the organization about the likely risk
exposures, then you have fulfilled your obligations even if the business chooses not to
address the risks” (Wheeler, 2011, p. 24). Security should be a trusted partner that helps

the business make well informed risk decisions.

1.2. Vulnerability Management

Vulnerability management is the “cyclical practice of identifying, classifying,
remediating, and mitigating vulnerabilities” (Foreman, 2010, p. 1). Nicolett (2005)
defines it as an ongoing several step process as shown in figure 2: policy, discovery and

baseline, prioritization, shielding and mitigation, eliminate root cause, and monitoring. (p.

2)

Policy Discover/Baseline

+ Define desired state = Determine policy complianca
» |dentify vulnerabilities

— Prioritize

. + Vulnerability data,
Mﬂnltﬂ_l'_) » Threat n:l:attél"Ir
+ Vulnerabilitias * Assel classification

« Threat environment

\) st

Mitigate
Eliminate Root Cause * High-priority vulnerabilities

Figure 2. Vulnerability Management Process. From “How to develop an effective

vulnerability management process” by Nicolett, M, 2005. Gartner.

Jason Pubal jpubal@mastersprogram.sans.edu

Web Application Vulnerability Management | 5

e Policy: Define the desired state of the network, system, and application
resources in policies and standards. Create policies that define
vulnerability and patch management processes along with asset secure

configuration standards.

e Discovery and Baseline: A prerequisite to vulnerability management is
knowing what assets exist. Discovery is the process of enumerating those
resources. An initial vulnerability assessment provides a security baseline

that contains the list of vulnerabilities present.

e Prioritization: With a vulnerability assessment in hand, use that data as
part of the risk formula to prioritize the findings. Easy to exploit
vulnerabilities on high value assets that are likely to be attacked get a

higher priority.

e Shielding and Mitigation: Mitigation can be the most challenging part of
vulnerability management as it requires changes implemented across the
organization that will affect different IT functional areas. Network
devices, servers, and applications can be managed by different teams, each
of which information security has to work with to fix vulnerabilities. As a
mitigation tactic, shielding can block attacks while a patch is being
developed. For example, an intrusion prevention system or web
application firewall rule might be able to block SQL injection against a

web application until developers fix the code.

¢ FEliminate the Root Cause: Evaluate patterns of vulnerabilities to identify
and eliminate root causes. Improvements in policy and process can
proactively eliminate certain classes of vulnerabilities from systematically

reappearing in the environment.

e Monitoring: Researchers discover new vulnerabilities frequently, attack
vectors evolve over time, and IT environments are always in flux. All of
this has to be monitored and taken into consideration through iterations of

the process.

Jason Pubal jpubal@mastersprogram.sans.edu

Web Application Vulnerability Management | 6

Vulnerability management is not something that is done once and completed.
Having a vulnerability assessment or penetration test done, and then fixing every issue on
the resulting report, is not vulnerability management. “The discovery and baseline steps
need to be continuous, and all subsequent vulnerability management steps should be

repeated as part of an ongoing process” (Nicolett, 2005, p. 5).

1.3. Software Security Maturity Models

A maturity model is a framework that can be used as a benchmark for comparison
when looking at an organization’s processes. It is a set of structured levels that describe
how well the behaviors, practices, and processes of an organization can reliably and
sustainably produce required results. There are two excellent and freely available
software security maturity models: OWASP’s Software Assurance Maturity Model

(OpenSAMM) and the Building Security In Maturity Model (BSIMM).

1.3.1. OpenSAMM

The Software Assurance Maturity Model is an open framework designed to help
organizations formulate and implement a strategy for software security. It walks one
through conducting an assessment to measure an organization against defined security
practices. With the assessment in hand, one then builds a roadmap that outlines an
iterative plan where various practices are improved over several phases based on business

drivers and risk tolerance.

OpenSAMM defines four business functions: governance, construction,
verification, and deployment. Each of these has three associated security practices. For
each security practice, SAMM defines three maturity levels. It provides the following

visualization.

Jason Pubal jpubal@mastersprogram.sans.edu

Web Application Vulnerability Management | 7

SAMM Orerview
-
Development

Buminexs Funciions
(0] Goreroane] ecsion— | Dopiorme
Sequnity Proctices
Strategy & Education & Security Design Security Environmong
Metrics Guidance Requirements Review Testing Huardening
Policy & Threat Secure Code Vulnerakilicy Operational
Compliance Assessment Architecture Review Managmmont Enablement

Figure 3. OpenSAMM Overview. From “Software Assurance Maturity Model” by Pravir
Chandra, 2009, OWASP.

1.3.2. BSIMM

The Building Security In Maturity Model is the result of a study of 67 software
security initiatives. In its fifth version, it describes activities companies are currently
doing around software security so they can be compared with what an organization is
doing. With organizational goals and objectives in mind, the BSIMM can be used to
determine which additional activities might make sense. It gives an overview of how

software security teams tend to be organized, and how large those teams typically are.

The BSIMM is organized similarly to OpenSAMM into what it calls the Software
Security Framework (SSF). It has four domains: governance, intelligence, secure
software development lifecycle (SSDL) touchpoints, and deployment. Each domain has
three associated security practices. Each security practice has a number of activities that
were observed at a company as part of a security initiative for a total of 112 different

activities. BSIMM provides the following visualization of the SSF.

Jason Pubal jpubal@mastersprogram.sans.edu

© 2014 The SANS Institute Author retains full rights.

Web Application Vulnerability Management @ 8

The Software Security Framework (SSF)
Governance Intelligence SSDL Touchpoints | Deployment

?ﬂ-t:Jt-cb;_n.' and Metfics Al:ﬂ h‘bd:h wﬂﬂﬂjﬂ ﬁnj.l?sh i'-\':l:d::ut:u:m h[‘l."l'lh}.:

L 1II1II1|I:J.I:I.LI.' anad |."|.5-||1..1.' .Sel;‘l.l.nl.'r Fearures Code Review Solpware F.l'n'il!];lr'll.t#

Iraining Standards and Security Testing ‘-'.-"nrllgl.l.il.'ﬁ.11!'”ilugﬂl::n[
an*u.i:mmi and _‘y‘u!:;_!.-ubf‘]iu-
MansFcipicns

Figure 4. The Software Security Framework. From “Building Security In Maturity
Model” by McGraw, G., Migues, S., & West, J. 2013.

1.3.3. Inadequate Vulnerability Management in Current Maturity Models
According to McGraw, Migues, & West. (2013), vulnerability management is
“quality control performed during the development cycle” (p. 39). It is a practice that
attempts to find and fix security vulnerabilities while software is being written.
According to Chandra (2009), vulnerability management is focused on handing external
“vulnerability reports and operational incidents” (p. 16). That is, once an application is
live in production, vulnerability management is the practice that addresses a vulnerability

that was either exploited to cause an incident or reported by a third party.

Both of the above software maturity models are reactive to security flaws once an
application is deployed. Neither model covers a “cyclical practice of identifying,
classifying, remediating, and mitigating vulnerabilities (Foreman, 2010, p. 1).” In each
model, security testing stops once an application is finished being developed and moves
to deployment. Vulnerability management as defined in these maturity models only takes

place when triggered by an event out of our control such as a security incident.

As new attack vectors are discovered and current threats evolve there is need to
integrate these techniques into security testing to identify and address potential
vulnerabilities in our existing software. This can only be done with recurring
vulnerability assessments. Application vulnerability management needs to have the same

kind of rigor that infrastructure vulnerability management does. Continuous application

Jason Pubal jpubal@mastersprogram.sans.edu

© 2014 The SANS Institute Author retains full rights.

Web Application Vulnerability Management | 9

security assessments against deployed, production web applications need to be conducted

as part of an overall vulnerability management program.

2. Web Application Vulnerability Management

For a holistic view of a web application vulnerability management program, it
will be covered as a framework. This framework has three domains: governance,
verification, and construction. Each of these has a number of related practices that will be
covered. First, the prerequisites of vulnerability management. Next, enrolling
applications in the program. Then, the remediation process used when a vulnerability is

found. Finally, measuring the program with example metrics.

Ii_

P
Inventory Enrall Assess Adgess Report Remediate
" |
Defect Tracking

m Governance Verification

Construction

Figure 5. Web Application Vulnerability Management Framework.

2.1. Preparation
Before conducting security assessments of applications, there are a few things that
need be in place: a security policy that defines what is assessed against, an inventory of

applications to test, and tools with which to perform the assessments.

2.1.1. Policy
Everything in information security should be rooted in corporate policies and
standards. Policy is agreed upon by executive leadership, and represents the culture that

exists in the organization. “It describes the way in which people behave when doing their

Jason Pubal jpubal@mastersprogram.sans.edu

© 2014 The SANS Institute Author retains full rights.

Web Application Vulnerability Management | 10

work” and “is a message to the workforce from management to tell them what is

expected of them” (Sherwood, Clark, & Lynas, 2005, p. 410).

Policy impacts application security in three crucial ways. First, security policy
communicates the intentions of management for managing risk and enforcing security in
the organization. It is the document that empowers the security team and gives them
responsibility to perform application security assessments in a way that is sanctioned by
management. Second, it outlines secure coding practices developers use to create
software and the security requirements for commercial off the shelf (COTS) applications.
These are the standards to be assessed against. When we find a vulnerability, the
documented secure coding practices are referenced to give guidance to teams that need to
fix the issue. Finally, policy should contain remediation timelines. This tells various

teams how long they have to get security vulnerabilities fixed.

2.1.2. Inventory

Asset management is a prerequisite for vulnerability management. Before one can
secure stuff, one needs to know what stuff one has. It is helpful to know how many
applications there are, where they are located both physically and logically on the
network, who manages them, and what their value is. These attributes should be stored in

an inventory.

It is likely, especially for larger companies, to have applications hosted both
internally and in the cloud. It is also likely that there are rogue applications that have
been acquired outside of official IT processes. Discovery, one of the first steps of
vulnerability management, helps find all of these. Discovery is “done through a
combination of technical and manual processes. Automation helps inventory what is out
there, but asset owners must identify the business function and relative value of each
target” (Foreman, 2010, p. 184). To derive the value, approach it both from a data
sensitivity and business criticality perspective. That is, knowing the data classification or
type of data and number of records can help determine the legal and brand reputation
impact, along with the potential amount of costs associated with losing those records.
Knowing the impact on business operations helps determine what the potential loss of

revenue could be.

Jason Pubal jpubal@mastersprogram.sans.edu

Web Application Vulnerability Management | 11

Another item to consider keeping in the inventory is software components. The
Open Web Application Security Program (OWASP) maintains a list of the top ten
vulnerabilities found in web applications. A new addition in the last iteration of this list is
“Using Components with Known Vulnerabilities.” To prevent this, Williams and Wichers
(2013) recommend you “identify all components and the versions you are using,
including all dependencies” (p. 15). Identifying and tracking the components being used

makes it possible to take action when a security issue is found with one of them.

When building or updating an inventory, using the following reconnaissance tools

and techniques will be useful.

e Google: Using Google for reconnaissance can be as simple as searching
for a company and noting what websites are returned. Google’s PageRank,
the algorithm used by Google Search to rank websites in their search

results, is one way to prioritize what applications to look at first.

e NMAP: Nmap, or Network Mapper, is a security scanning tool used to
discover hosts and services on a network. Given a company’s external IP
address range, it will port scan those IP addresses and enumerate which IP

addresses and ports are running web servers.

e Domain Name Service (DNS): If your company is utilizing its own DNS
services, work with the DNS administrator to run a query to show what

domain names the company has registered and are in use.

¢ Reverse DNS: There are services, like ewhois.com, that collect
identifiable information on websites. Ewhois.com can search for the email
address that was used to register a DNS name, along with other things like
the Google Analytics ID being used. Often, a company will use the same
registration email address or Google Analytics account across all of their

websites.

e Recon-ng: Recon-ng is a modular reconnaissance framework. It is
designed to take advantage of several third party web based resources

from one tool. Through various modules it conducts host discovery, server

Jason Pubal jpubal@mastersprogram.sans.edu

Web Application Vulnerability Management | 12

enumeration, searches through publicly available databases like
PunkSPIDER for known web application vulnerabilities, searches through
social networks like LinkedIn for contacts, and leverages various DNS
registrars to gather information. Due to its modular design, anyone can
write plugins for it allowing its functionality to grow over time and

become more useful as a discovery tool.

2.1.3. Dynamic Application Security Testing Tools

Dynamic application security testing (DAST) technologies are designed to detect
conditions indicative of a security vulnerability in an application in its running state. Web
application vulnerability scanners are tools that scan web applications to look for security
vulnerabilities such as cross-site scripting, SQL injection, command execution, directory
traversal, and insecure server configuration. They communicate with an application
through the web front-end in order to identify potential security vulnerabilities and
architectural weaknesses. First they spider the application, starting at the application’s
front page and recursively following every link to find each page and input. Then they

fuzz those inputs looking for responses that indicate security issues.

Choosing a DAST tool will rely on the environment and vulnerability
management requirements. Gartner has an Application Security Testing Magic Quadrant

that highlights the commercial space.

Jason Pubal jpubal@mastersprogram.sans.edu

Web Application Vulnerability Management

challengers leaders
o IBM
o Veracode ® HF
" WhiteHat Security
n Canzic »
0 NT OBJECTIves _
- Qualys ® g
u I o
8 PortSwigger @ Acunetix p
é" M-Stalker vche::kmarx .)
% Quotium Technologies » ® Ammarize Technologies
T » Aspact Sacurit
¥ Virtual Forge FEFRL N,
® Indusface
niche players visionaries
— 1 completeness of vision F————p

Figure 6. DAST Magic Quadrant. From “Magic Quadrant for Application Security

Testing” by Neil MacDonald & Joseph Feiman, 2013, Gartner.

2.2. Enrolling Applications

The groundwork has been laid, and it is time to start enrolling application into the

13

program. Most often, these applications will come from the inventory created earlier.

That inventory is not static; additional applications could be found during future

iterations through the discovery and reconnaissance process. New applications may be

purchased or developed. Work with the project management and development teams so

these new applications can be enrolled before they are deployed. If there is a security

incident involving an application that is not included in the vulnerability management

program, it may need quickly assessed to figure out what the risk profile of that

application is.

Jason Pubal jpubal@mastersprogram.sans.edu

© 2014 The SANS Institute

Author retains full rights.

/" New Web Application ™

/!

] - Inventory

| - Reconnaissance
- Security Incident

“_ = Project Management

Web Application Vulnerability Management = 14
|
—» Change Management Process Continuous
- Formal Approvals 1 l ‘ Assessment
I
Yes
Gather Infformation 5
-URL Scanner Enroliment 7N
: " " g ,
- Credentials - URL Scamer Configuration | | |, ¢ assessment g
)—b -Schedude = - - Business Legic Success?
e - Credentials - Notify Cremer \
- Application Owner - Form Flow ,
- Schedule ,
- Development Team 3
- Defect Tracking Tool 'y 1

Figure 7. Enrollment Process.

2.2.1. Information Gathering

After identifying an application for enrollment, there might be some basic

information required if it is not already a part of the inventory. This will be used both to

configure our tools, and later when we start fixing vulnerabilities.

URL: This is the single most important piece of required information. The
URL is the front door of a web application, and will be used to configure

the DAST scanner.

Credentials: Most web application will have some kind of access control
and authentication mechanism. Authentication is the process of
verification that an individual or an entity is who it claims to be.
Authentication is commonly performed by submitting a user name or ID
and one or more items of private information that only a given user should
know such as a password. Since a DAST scanner cannot assess what it is
unable to access, a set of credentials may be required if the application

requires authentication.

Schedule: Do everything possible to prevent scanning from interfering
with the business functionality of the application. If peak hours of
operation take the application to maximum capacity, then configure the
scanner to perform assessments during off peak time. Work with the

application’s business owner to define an appropriate scanning schedule.

Application Owner and Development Team: Application vulnerability

management requires constant communication with the people responsible

Jason Pubal jpubal@mastersprogram.sans.edu

Web Application Vulnerability Management | 15

for the application. Reach out to them early in the process, and keep them
informed about progress. Before an assessment it may be helpful to talk to

the development team to get technical details about an application.

e Defect Tracking Tool: If the application was developed internally, the
development team may already have processes and tools for fixing
application bugs. A security vulnerability is essentially a kind of
application defect. Using the tools that are already in place will allow for
the greatest chance of successfully remediating vulnerabilities with the

least disruption to other things the development team is already doing.

2.2.2. DAST Tool Configuration
With all of this information in hand, create an entry for the application in our
scanning tool and configure it appropriately. How this works will be specific to the tool

being used.

To maximize scanner coverage, it is important to take the application’s business
logic into account. There might be parts of the application that are only accessible under
certain circumstances. For example, an ecommerce checkout page might only be
available after adding items to a shopping cart. The scanner has to do things in a
particular order to test the checkout functionality. Be sure to know how the DAST tool

accounts for business logic, and configure it accordingly.

2.2.3. Approval and Notification

The vulnerability management program will suffer without getting buy off from
application owners, and letting them know when their application is going to be scanned.
Being in the situation of causing an impact to an application that the business owner did
not know was being scanned can cause unneeded political problems. Make absolutely
sure that application stakeholders are aware of the vulnerability management program’s

purpose, their role in it, and are notified when their application is being assessed.

Most mature IT organizations should have some sort of change management
process. If one exists, try to leverage this process to get formal, documented approval for

application assessments.

Jason Pubal jpubal@mastersprogram.sans.edu

Web Application Vulnerability Management | 16

2.2.4. Continuous Assessment

Acquiring approvals and getting the DAST tool configured can be done in parallel.
After those are complete, it is time to start the application assessment. During the first
iteration, monitor the application closely. If there is a negative impact to the operation of
the application, stop the scan. It may be necessary to reconfigure the scanner to ignore
application functionality it does not work well with, or to alter the scanning schedule.
After continuous assessments are under way, they are part of normal, business-as-usual

security operations.

2.3. Reporting and Remediation

Once continuous assessments are running, the DAST scanner will find
vulnerabilities. Depending on the accuracy of tool, there will be some amount of false
positives. That is, the DAST tool will say that a vulnerability exists some place that it
does not. The security team needs to conduct analysis of the findings to ensure they are
not reporting false positives to application teams. This is especially important early in the

program when there is a need to establish credibility.

The biggest difference between infrastructure and application vulnerability
management is the level of effort required for remediation. For a vulnerability on a
Windows server, the fix is usually to apply a patch. However, for a vulnerability in a web
application, the development team has to create a patch. The development team may have
to take time away from building new functionality that customers want. This needs to be
taken into consideration when doing the risk analysis described below. Two developers
spending a week fixing code is likely more expensive than the ten minutes a server
administrator might spend downloading and installing a Windows update. Further, what
if the vulnerability is in a legacy application that is not actively being developed? What if
no one in the company writes code in the language in which the application was written?
There might be need to pull developers off other projects, get outside help, or get creative

with a new countermeasure.

Jason Pubal jpubal@mastersprogram.sans.edu

Web Application Vulnerability Management | 17

f
[

\

Vulnerability Clcsed.ll

x_‘_,/
Yes
A,
/ 7 A
;,"f Jf’ \-.\
Contiruows | |/ Fotendal a e S
Assessment 4 Vulnerability i =y Fheat /
- — " r
,-"/ Emergency Actions S -~
i -Shiekd e
rCritical————— -WAF Rule Crestion
- Dissble Functonality
-Investigate
v v :
N
e M Report Vulnerability / MNoxification
Analysis < Risk Rating >~Normak{ -Steps to Reproduce —» of Dafec " Retast Vulnerability
3 i - Defect Tracking Teel / Ciosure
N /
N L —
\; Thrashold
Low————p LR
w Monitoring Quaue

Figure 8. Remediation Process.

2.3.1. Risk Analysis

Determining the risk resulting from a vulnerability to prioritize and plan a course of
action is one of the most important, but most overlooked, parts of the process. DAST
tools typically provide some kind of criticality score, and most vulnerability management
programs are happy to use it to prioritize remediation. However, the tool by itself cannot
take the value of an asset into account, and will not know what countermeasures are in
place. All of this information is used to determine the risk, and should be weighed against
the level of effort that will be required for remediation. It might not make sense to spend

$5,000 in development effort to protect $500 worth of assets.

] Threat X Vulnerability
Risk = X Value
Countermeasures

There are several mature risk analysis methodologies, and a vulnerability
management program should use whichever one best fits its requirements. To streamline
remediation efforts, map risk ratings to a couple different workflows that fit into your
current security operations and software defect processes. After determining the risk

resulting from a vulnerability, these categories might be useful for planning remediation

Jason Pubal jpubal@mastersprogram.sans.edu

Web Application Vulnerability Management | 18

efforts: normal, critical, and low. A normal risk finding follows a standard remediation
process. For a critical risk, remediation actions are expedited and might require a
temporary countermeasure such as creating a web application firewall rule or disabling
the vulnerable functionality. Low risk findings are deemed not worth remediating at this
time. However, these should be tracked, monitored, and revisited in case the threat vector

evolves changing the level of risk.

2.3.2. Reporting

Developer’s knowledge of security and secure coding practices can vary. Every
vulnerability report is an educational opportunity. Most DAST tools provide decent
verbiage describing the issue and general ways to fix it, but they do not do a very good
job of taking the specific application into account. The vulnerability report should have
general verbiage describing the vulnerability, include steps required to recreate the issue,
screenshots of the affected functionality of the application, HTML or code snippets, and
programming language specific remediation advice. If applicable, the report should link
to applicable corporate secure coding standings and web based training. Providing this
level of detail allows a developer to zero in on the problem, and review the related

material if necessary.

While infrastructure support teams have spent years doing patch management,
developers have spent years fixing application defects. This is where knowing what
defect tracking system an application’s development team uses comes into play. Frame
the vulnerability as a software defect, log it into the application’s defect tracking system,
and assign it to a team or individual developer. This helps eliminate bystander apathy.
Rather than exporting a PDF report from the DAST tool and emailing it to the entire
team, assigning a vulnerability to a specific developer assigns responsibility for
remediation. An email to everyone on the team can be ignored by everyone on the team,
but assigning a specific person holds someone accountable and will have a higher chance

of success.

2.3.3. Validate Remediation
After the vulnerability has been remediated, retest it to make sure it was properly

fixed. Only after the vulnerability remediation is validated by the security team should

Jason Pubal jpubal@mastersprogram.sans.edu

Web Application Vulnerability Management | 19

the issue be considered closed. If it has not been correctly fixed, it may require additional
analysis of the finding and of the attempted remediation. Perhaps it was fixed enough to
reduce the risk to an acceptable level. If it was not fixed, go back to the beginning of the
remediation process and start again. If retesting proves the software no longer vulnerable,

mark it closed in the applicable tools.

2.4. Metrics

To know how effective the vulnerability management program is and determine if it
is having an impact on software security, it needs to be measured. Metrics allow an
organization to understand the performance of their security organization and weigh the

costs of security safeguards against their effectiveness.

According to Jaquith (2007) good metrics have 5 characteristics: they are
consistently measured, cheap to gather, expressed as a number or percentage and using at

least one unit of measure, and are contextually specific.

e Consistently measured. Anyone should be able to look at the data and
come up with the same metric using a specific formula or method. Metrics

that rely on subjective judgment are bad.

e Cheap to Gather. Metrics should to be computed at a frequency
commensurate with the process’s rate of change; it is ideal to analyze
security effectiveness on a day-to-day or week-by-week basis. Automating

metric generation is key.

e Expressed as a cardinal number or percentage, not with qualitative labels

like high, medium, or low.

e Expressed using at least one unit of measure, such as defects, hours, or
dollars. Adding a second dimension such as defects per applications or

defects over time adds value.

e Contextually specific. The metric needs to be relevant enough to decision

makers that they can take action. If no one cares, it is not worth gathering.

Jason Pubal jpubal@mastersprogram.sans.edu

Web Application Vulnerability Management @ 20

I have found these metrics useful, and employ the following examples for

decision making, executive dashboards, and to show the success of my program.

2.4.1. Security Testing Coverage

Security testing coverage tracks the percentage of applications in the organization
that have been subjected to security testing. That is, out of all of the web applications the
organization uses, how many of them are enrolled in the vulnerability management

program? This is expressed as a percentage.

_ count (of enrolled applications)

STC = 100

count (deployed applications)

2.4.2. Mean-Time to Mitigate Vulnerabilities

Mean-time to mitigate vulnerabilities measures the average amount of time
required to remediate an identified vulnerability. This is a measure of the organization’s
or development team’s performance. It also captures how long, on average, the window is

in which a vulnerability can be exploited. This is expressed in a number of days.

Y. (Date of Mitigation — Date of Detection)

MTTMV =
Count (Mitigated Vulnerabilities)

2.4.3. Top 10 Vulnerabilities

OWASP maintains a list of top ten vulnerabilities to raise awareness about
application security. While this could be a starting point for application security training,
it would be more helpful to know what an organization’s specific pain points are. With
this, the security team can create custom training modules based on what the
organization’s development teams are having trouble coding. This can be visually
represented with a pie chart to easily see how much of an issue the vulnerability is

compared to others. Below is a Top 10 Vulnerabilities chart.

Jason Pubal jpubal@mastersprogram.sans.edu

Web Application Vulnerability Management | 21

B information Leakage

B Cross Site Scripting

B Cross Site Request
Forgery

B URAL Redirector Abuse

m Content Spoofing

B Brute Force

Cookie

B insufficient Transport
Layer Protection

(]
®
® Non-HttpOnly Session @
@®
@

m Inzufficie nt Authorization

B Session Fixation

B Other

Figure 9. Top 10 Vulnerabilities.

It is a good idea to keep an eye on changes to the top ten vulnerabilities within
one’s organization. For example, encryption configuration issues appeared on this top ten
list as new. Seeing “Insufficient Transport Layer Protection” on the list for the first time
is an indication that something might be going on that warrants further investigation.
SSL/TLS industry best practices were updated the month prior (Risti¢, 2013). Earlier that
year, weaknesses were discovered in RC4 cipher suites. Because of the Snowden leaks, it
is suspected that the NSA can crack RC4 (Leyden, 2013). When there are major changes
in the top ten list of vulnerabilities, it may be good time to revisit security policies and

see if anything needs to change.

2.4.4. Vulnerabilities per Application

Vulnerabilities per application is a count of the number of vulnerabilities found in
a specific application. This is expressed as a cardinal number. This can be visually
represented with a bar chart to easily see how different applications compare against each

other. Below is a Top 10 Vulnerable Applications chart.

Jason Pubal jpubal@mastersprogram.sans.edu

© 2014 The SANS Institute Author retains full rights.

Web Application Vulnerability Management = 22

o 5 10 15 20 25 30 35 40 45

@ USH BV & SOME COMPANY.COM *

® Practical Skills

® Developer Centerand Sand b:ra....._
ANZ AUS Branch Portal -'_

® Brand Central | EE——

QIB Branch Portal _
Information Manage ment Portal _
Business Portal _
- infimite Lux Hotel in English 4_
@ Information Source Select Portal _

Figure 10. Top 10 Vulnerable Applications.

Having a top ten vulnerable applications list makes it apparent what applications
on which to focus remediation efforts. It points security to the development teams
responsible for these applications targeting them with the training developed from the top

ten vulnerabilities list.

This is another place keeping track of changes is useful. If an application drops in
rank, the application team is likely doing a good job fixing issues. If an application goes
up on the list, reprioritize and act accordingly. If a new application shows up on the list, it
may be an application that is being tested for the first time and presents a high risk to the
organization. Report the vulnerabilities to the appropriate team and start working with

them on remediation.

2.4.5. Risk Ratings — Defect Counts & Trending

Another important metric is a defect count by risk rating. This can be represented
as a point in time with a bar chart, and trended over time with a line graph. Look at the
trending of these defect counts along with the total number of applications being assessed
to see how the trend is related to the amount of applications enrolled in the program.
With this, it is easy to see how much risk exists in the environment, and get a feeling for

how effective the program is.

Jason Pubal jpubal@mastersprogram.sans.edu

© 2014 The SANS Institute Author retains full rights.

Web Application Vulnerability Management | 23

600

— W
400

Medium

300

e — ==High
200 1 | | rgent
—
100 - 1 e

=——=Total Running Tests

T T T T T |
Low Medium High Urgent Dec-13 Jan-14 Feb-14 Mar-14 Apr-14 May-14

Figure 11. Vulnerability Risk Ratings.

3. Conclusion

The web application vulnerability management framework represents the next
logical step in application security. In the era of the Internet, Web applications are critical
to conducting business. Attackers know this, and are focused on exploiting vulnerabilities
for their own gain. Information security professional must apply the rigor of a
vulnerability management process to discovering and remediating those vulnerabilities

before they are taken advantage of and their companies suffer loss.

As threats evolve and new attack vectors are discovered, it is essential to test
applications to see how they are affected. Web application vulnerability assessments need
to be continuous. This framework introduces a methodology, processes, and activities to

achieve that goal.

The framework provides a holistic view of a web application vulnerability
management program. Along three domains; governance, verification, and construction;
it covers the prerequisites of web application vulnerability management, enrolling
applications in the program, the remediation process used when a vulnerability is found,
and how to measure the program using data visualization and metrics to determine

whether or not it is successful.

Jason Pubal jpubal@mastersprogram.sans.edu

Web Application Vulnerability Management = 24

4. References
Chandra, P. (2009). Software assurance maturity model. Retrieved April 29, 2014,
http://www.opensamm.org/downloads/SAMM-1.0-en_US.pdf

Foreman, P. (2010). Vulnerability management. Boca Raton: CRC Press.

Harris, S. (2012). CISSP all-in-one exam guide. Berkeley, Calif: Osborne

Jaquith, A. (2007). Security metrics: Replacing fear, uncertainty, and doubt. Upper
Saddle River, NJ: Addison-Wesley.

Leyden, J. (2013, September). That earth-shattering NSA crypto-cracking: Have spooks
smashed RC4? Retrieved November 2, 2013 from
http://www.theregister.co.uk/2013/09/06/nsa_cryptobreaking bullrun_analysis/

MacDonald, N., & Feiman J. (2013, July). Magic quadrant for application security
testing. Retrieved March 25, 2014, from
http://www.veracode.com/sites/default/files/Resources/AnalystReports/gartner-
ast-magic-quadrant-report-2013.pdf

McGraw, G., Migues, S., & West, J. (2013). Building security in maturity model.
Retrieved April 29, 2014, from http://bsimm.com/download/dl.php

Nicolett, M. (2005, March). How to develop an effective vulnerability management
process. Retrieved March 23, 2014, from
http://www85.homepage.villanova.edu/timothy.ay/DIT2160/IdMgt/how to devel
op_.pdf

Ristic, 1. (2013, September) SSL/TLS deployment best practices. Retrieved November 2,
2013, from

Jason Pubal jpubal@mastersprogram.sans.edu

Web Application Vulnerability Management | 25

https://www.ssllabs.com/downloads/SSL. TLS Deployment Best Practices 1.3.
pdf

Sherwood, J., Clark, A., & Lynas, D. (2005). Enterprise security architecture: A

business-driven approach. San Francisco: CMP Books.

Wheeler, E. (2011). Security risk management: Building an information security risk

management program from the ground up. Waltham, MA: Syngress.

Williams, J., & Wichers, D. (2013). OWASP Top 10. Retrieved March 21, 2014, from
http://owasptop10.googlecode.com/files’fOWASP%20Top%2010%20-
%202013.pdf

Verizon. (2014) 2014 Data breach investigations report. Retrieved May 20, 2104, from

http://www.verizonenterprise.com/DBIR/2014/reports/rp _Verizon-DBIR-
2014 en_xg.pdf

Jason Pubal jpubal@mastersprogram.sans.edu

Web Application Vulnerability Management | 26

5. Appendix I: The Web Application Vulnerability
Management Framework

The web application vulnerability management framework represents the next
logical step in application security. Mature application security programs perform
security testing against web application as they are being developed, but tend to be
more reactive to security defects once an application has been deployed.
Infrastructure vulnerability management performs recurring vulnerability scanning
against production network and servers, but the web applications hosted on them
are ignored.

As threats evolve and new attack vectors are discovered, applications need to be
tested to see how they are affected. Application vulnerability management needs the
same rigor infrastructure vulnerability management has; web application
vulnerability assessments need to be continuous. This framework introduces a
methodology, processes, and activities to achieve that goal.

The web application vulnerability management framework has three domains:

governance, verification, and construction. Each of these has a number of related
practices, defined below.

I‘_

-
Inventory Enrall Assess Assess Report Remediate
" |
Defect Tracking

1] Governaace V] Veriscnin

5.1. Governance

Governance focuses on the processes and activities related to how an organization
manages software development and application security.

Jason Pubal jpubal@mastersprogram.sans.edu

Web Application Vulnerability Management @ 27

5.1.1. Policy

Security policy communicates the intentions of management for managing risk and
enforcing security in the organization. It is the document that empowers the
security team and gives them responsibility to perform application security.

It outlines secure coding practices developers use to create software and the
security requirements for commercial off the shelf (COTS) applications. These are
the standards to be assessed against. When we find a vulnerability, the documented
secure coding practices are referenced to give guidance to teams that need to fix the
issue.

Policy should contain remediation timelines. This tells various teams how long they
have to get security vulnerabilities fixed.

5.1.2. Inventory

Asset management is a prerequisite for vulnerability management. Before you can
secure stuff, you need to know what stuff you have. It is helpful to know how many
applications there are, where they are located both physically and logically on the
network, who manages them, and what their value is.

Discovery is one of the first steps of the vulnerability management process, and is
done through a combination of automated and manual processes. Discovery needs
be recurring, so an updated inventory is maintained.

5.1.3. Metrics

To know how effective the vulnerability management program is and determine if it
is having an impact on software security, it needs to be measured. Metrics allow an
organization to understand the performance of their security organization and
weigh the costs of security safeguards against their effectiveness.

Metrics can inform policy. Data visualization, trending, and the high level view
achieved through metrics allows management to make better decisions and shows
us where our application security policy can be improved.

5.2. Verification

Verification is focused on the processes and activities related to how an
organization checks and tests software. This is where our security assessments take
place.

5.2.1. Enroliment

Enrollment has two activities. This is where we configure our dynamic application
security testing (DAST) tool to assess an application. If the required information is
not in our inventory, we may need to work with application owners to get it.

Jason Pubal jpubal@mastersprogram.sans.edu

Web Application Vulnerability Management | 28

Enrollment also includes notification and approval for security testing from
stakeholders. Leverage your companies change management process if there is one
already established.

5.2.2. Assessment

Continuous assessment is the core of the web application vulnerability management
framework. This is where our DAST tool tests each web application on a continuous
or frequently recurring basis as part of normal, business-as-usual operations.

5.2.3. Reporting

Reporting consists of two parts: a report detailing the vulnerability, and leveraging
the development teams defect tracking system for assignment of responsibility and
tracking.

The vulnerability report should have general verbiage describing the vulnerability,
include steps required to recreate the issue, screenshots of the affected functionality
of the application, HTML or code snippets, and programming language specific
remediation advice. If applicable, the report should link to applicable corporate
secure coding standings and web based training. Providing this level of detail allows
a developer to zero in on the problem, and review the related material if necessary.

Frame the vulnerability as a software defect, log it into the application’s defect
tracking system, and assign it to a team or developer.

5.3. Construction

Remediation of an application vulnerability requires software development. While
this is mostly done outside of the security organization, it is important to realize that
each remediation effort can be seen as its own software development project.
Construction concerns the processes and activities related to how an organization
creates software.

5.3.1. Defect Tracking

Once reporting logs the vulnerability in the application team'’s defect tracking
system, both the application team and security team can use it for updates, tracking,
and reporting on progress. Depending how many application teams the security
organization has to interface with, it is possible to need to keep track of several
disparate defect tracking system. The security team may need to maintain its own
vulnerability tracking database that links to each teams defect tracking system.

5.3.2. Remediation

The hands on coding portion is done by the application team. Depending on that
team’s level of security knowledge, they need advice or training. After the security
fix has been completed, the security team verifies that it properly addresses the
vulnerability finding. This step often requires retesting with the DAST tool, along
with additional manual testing. In the event that it is not completely fixed, go back to

Jason Pubal jpubal@mastersprogram.sans.edu

Web Application Vulnerability Management @ 29

the analysis step of the remediation process to assess the best way to go forward.
Only after this verification should the vulnerability be considered remediated and
closed out in the appropriate defect tracking tools.

Jason Pubal jpubal@mastersprogram.sans.edu

Web Application Vulnerability Management @ 30

6. Appendix ll: Responsibility Assignment Matrix (RACI)

This RACI breaks down the roles and responsibilities involved in the web
application vulnerability management framework. A description of the roles can be
found below. Multiples roles may be filled by a single team or individual.

E 2E 3 [®
5 5. |88 |s28 | 2 |§ B
%8 £8g | 58 _ |%85 Y §, 8
S25 [SER | €282 |€5 9 e £33
285 | 85: | 252 |2555| 35 |SE%55
o]
<@ o <E O <86 |<5=8 a e OEGE
Gather Required Application Information C C R A C
Configure DAST Tool R, A
Approval R, A
Start Testing R A
Vulnerability Scanning R, A
Analyze Findings R, A
Apply Risk Rating A R
R, A |

Report / Notify

Prioritize

Develop Fix

Apply Fix

Gl

Retest

Close Finding

6.1.

Applications serve some business function, and have a business owner who is

Application Business Owner

primary accountable for the application. Information about the application, and
formal approval for testing comes from its business owner. When a vulnerability is

found, the business owner is accountable for remediation.

Jason Pubal jpubal@mastersprogram.sans.edu

© 2014 The SANS Institute

Author retains full rights.

Web Application Vulnerability Management | 31

6.2. Application Technical Contact

Another person may be more technically knowledgeable about the application. This
person is informed and consulted during much of the process, and is responsible for
deploying the application’s fix after it is developed.

6.3. Application Development Team

If the application was developed in-house, its development team can be consulted
for information along the way. When a vulnerability is found, they are responsible
for creating the fix.

6.4. Web Application Vulnerability Management Team

This is the core security team involved in the framework. They are responsible and
accountable for a large portion of the effort.

6.5. Secure SDLC Team

Security during the software development lifecycle (SDLC) is outside the scope of
the vulnerability management framework. In the event that a different security team
is responsible for security in the SDLC, this is that team.

6.6. Governance, Risk, & Compliance

The Governance, Risk, and Compliance (GRC) team is focused on the company’s
overall IT risk strategy, and responsible for performing risk assessments.

Jason Pubal jpubal@mastersprogram.sans.edu

