
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

© 2016 The SANS Institute Author retains full rights.

Security through Configuration Control at Scale – An
Introduction to Ansible

GIAC (GSEC) Gold Certification

Author: Patrick Neise, patrick.neise@gmail.com
Advisor: Rob Vandenbrink

Accepted: 01 Feb 2016

Abstract

The ability for companies and individuals to deploy infrastructure to cloud service
providers has led to the rapid growth and visibility of numerous new products and
services. While the ease and speed of deployment allows companies to quickly respond to
changes in the marketplace, it also presents challenges to ensure secure deployment,
configuration, and management of the supporting infrastructure. While proper use of any
configuration management tool can improve the reliability and security of a deployment,
the relative steep learning curve, agent based host management, and potentially
vulnerable communication methods of the major offerings present additional challenges
to their secure implementation. The agentless, Secure Shell (SSH) communication,
Python and YAML Ain’t Markup Language (YAML) based product Ansible, a relative
newcomer to the field of configuration management, provides a capability that is easy to
learn while providing secure and scalable implementation at scale. This paper will
identify the major differences between Ansible and other configuration management tools
in order to identify possible implications to information security practitioners.
Additionally, previously unidentified information security specific uses for Ansible will
be identified and discussed as a driver for further research.

© 2016 The SANS Institute Author retains full rights.

Security through Configuration Control at Scale – An Introduction to Ansible

2

Patrick Neise, patrick.neise@gmail.com

1. Introduction

As new technologies and concepts are developed there is usually a noticeable

change in the use and employment of existing technologies. For example, there is a

current growth trend of concepts such as cloud computing, the merging of development

and operations (DevOps), microservice based architectures, agile development, and

continuous integration. These trends have provided the ability to rapidly develop, deploy,

and grow product and service offerings. A byproduct of the market growth is the increase

in scale, scope, and frequency of attacks against the services and their data. Many of

these attacks are portrayed as sophisticated events by well-resourced attackers. The more

likely scenario is that attackers are taking advantage of common misconfiguration in the

deployment and operation of the services.

With spending on cloud services expected to exceed $180 billion this year,

companies cite visibility, collaboration, rapid development, consistency, security, lower

risk, and cost savings as primary drivers. (Hendricks, 2015) With the forecasted growth

of Software as a Service (SaaS) expected to take over the majority of cloud workloads by

2018 (Columbus, 2015), the associated deployment and management of applications to

support those services will also continue to grow year over year.

Although cited by many companies as a reason to shift to SasS providers

(Hendricks, 2015), security in the cloud is still subject to proper configuration

management. With the number of attacks continuing to increase, there has not necessarily

been a similar increase in the required skill level of the attackers. Actually, according the

Verizon Data Breach Investigation Report, attacks are focusing more on configuration

issues and poor coding practices instead of actual software vulnerabilities (Kirk, 2010).

The combination of market growth for SaaS offerings and the continued focus of

attacker on configuration errors highlights the need for secure deployment and

configuration of applications and services at the scale. A simple to use, yet extensible,

automation tool could prove extremely useful in not only speeding up the process of

deployment and configuration, but in ensuring that deployment in done in the most secure

method, every time. In the continuous integration or continuous deployment environment

of DevOps, gone are the days of maintaining static configurations over long periods of

© 2016 The SANS Institute Author retains full rights.

Security through Configuration Control at Scale – An Introduction to Ansible

3

Patrick Neise, patrick.neise@gmail.com

time. New configurations, new services, and even new architectures are being deployed

all of the time in order to meet customer demand and to utilize new products and

services.

A relative newcomer to the field of IT automation, Ansible provides a simple but

powerful solution for deployment, configuration management, and orchestration. Built

from the ground up to support multi-tier architectures, integrations with the major cloud

service provides, and low learning curve place Ansible at the top of the list for securing

deployment and configuration management at scale.

2. Ansible

At its core Ansible is an IT automation engine that is capable of meeting needs in

several areas of IT management. Provisioning of cloud resources, deploying applications,

configuration management, continuous delivery, security and compliance, and

orchestration are several of the use cases Ansible seeks to satisfy. Agentless design,

Secure Shell (SSH) based communication, and simple language place Ansible in the

position of being able to support many needs of today’s complex and ever changing IT

environment. Additionally, the integration with current cloud providers, virtualization

and containerization technologies, and major operating systems allows users to fit the

capabilities of Ansible into their existing environments or ease the transition into newer

technologies.

2.1. Getting Started

Nearly all major Linux distributions package Ansible in their repositories today,

allowing for installation via yum or apt on your distribution of choice. Alternatively, as a

Python based package, Ansible can be installed from the Python package manager, pip.

Finally, the latest development version of Ansible can be cloned from the development

branch on GitHub. Ansible can be run from nearly any Linux distribution with Python 2.6

or 2.7 installed.

The discussion and examples presented below are centered around the default use

of SSH as the transport mechanism for Ansible. For flexibility and backwards

© 2016 The SANS Institute Author retains full rights.

Security through Configuration Control at Scale – An Introduction to Ansible

4

Patrick Neise, patrick.neise@gmail.com

compatibility, Ansible provides the means to use several other transport mechanisms, as

well as a pull only method that periodically grabs instructions from a git repository.

As there is no client-server model and there are no agents to install on the

managed systems, installing Ansible on the control machine is really the bare minimum

needed to begin employing Ansible in an environment. The only requirement for the

managed node is that it must have Python installed and be accessible via SSH. On the

simplest level, the controlling host makes a SSH connection to the managed node and

Ansible uploads a module of commands to be executed on the managed host via Python.

There is additional support for PowerShell on Microsoft Windows servers that will be

discussed as well.

The fundamental components of an inventory, modules, and playbooks provide

the user with all of the necessary tools to begin utilizing Ansible across various

environments in support of numerous use cases. The built-in modules provide for simple

interaction with various hosts, cloud service providers, software packages, etc.

Additionally, the community features of Ansible provide access to user generated content

that can further simplify the integration of Ansible into a user’s workflow.

2.2. Components

2.2.1. Inventory

The inventory file is a collections of hosts that Ansible is aware of and can

manage. The simplest version of an inventory file is a text file with a hostname per line.

Although this simple text file would be sufficient to manage a large number of hosts, the

ability to group hosts, define variables, and even dynamically generate an inventory

provide an extremely powerful and efficient means to manage large number of diverse

hosts.

The inventory files are formatted in the same manner as INI files with sections

and name, value pairs. In Ansible, the section name signifies a group of hosts, such as

web servers or database servers. The use of grouping allows for the same set of command

to be run against all hosts within that group at the same time. Additionally, a single host

© 2016 The SANS Institute Author retains full rights.

Security through Configuration Control at Scale – An Introduction to Ansible

5

Patrick Neise, patrick.neise@gmail.com

can be assigned to multiple groups at the same time allowing for fine grained control over

the managed hosts.

Overriding of default configuration items, such as the username used by Ansible

to connect to the remote SSH server or the name of the database to connect to on a

MongoDB instance, can be accomplished within the inventory file. This becomes

particularly useful when defining specific ports for services that differ from the default

port setting or when using different usernames to connect to hosts and run modules.

Variables can be used within the inventory file or broken out into a separate file if the

number of hosts and variables makes the management within a single file to complex.

The examples discussed later will maintain the hosts and variables within a single

inventory file. Additionally, within the inventory file variables can be included in line

with the hostname or as another section within the inventory file. The latter is

accomplished by creating a new section and appending ":vars" to the end of the group

name to which the variables apply.

A relatively simple, and contrived for this discussion, example of an inventory file

used to deploy a web application is below. This simple example demonstrates the use of

the INI format, groups, in line and group variables that could appear in an inventory file

used to manage a web application deployment.

[database:vars]

db_name = test

db_user = mongo

[webservers]

webserver1.domain.com

webserver2.domain.com

[proxy]

proxy.domain.com ansible_ssh_port=2222

[database]

mongo.domain.com

Although not covered in detail here, Ansible also supports the dynamic generation

of inventory files. One of the key use cases for Ansible is the management of hosts within

© 2016 The SANS Institute Author retains full rights.

Security through Configuration Control at Scale – An Introduction to Ansible

6

Patrick Neise, patrick.neise@gmail.com

hosted environments such as Amazon EC2, Microsoft Azure, etc. Many of those systems

or other host provisioning tools already keep track of which hosts you have deployed to

the environment. By creating a dynamic inventory script Ansible can generate an up to

date and accurate listing of all hosts in the environment and place them into the

appropriate predefined groups as discussed above. The ability to dynamically create an

inventory of hosts combined with other features to be discussed later, allows the user to

specify the overall expected structure of the environment without having to worry about

details such as individual IP address for each host in the system. Detailed example

dynamic inventory scripts can be located in the Ansible github repository

(https://github.com/ansible/ansible) under the contrib/inventory directory.

2.2.2. Playbook

With an inventory file in place Ansible now knows about all of the hosts of

concern, and depending on the level of detail in the inventory file those hosts are also

grouped in a manner that allows finer grain control of what tasks to execute against each

host. The list of tasks to execute against a particular host are contained within what

Ansible refers to as a playbook. A playbook can be simply thought of as a configuration

script that runs a predetermined set of tasks against a set of hosts. The power in

playbooks comes from the simplicity, modularity, and extensibility provided by the

overall Ansible approach to configuration management.

For ease of readability and modularity, playbooks are written in YAML (YAML

Ain’t Markup Language) syntax. While YAML is very similar in structure to Javascript

Object Notation (JSON), the noticeable difference is in the human readability of the

format. At a high level, playbooks are a list of plays, and plays are a list of tasks to run

against specified hosts. The list of lists structure is suited extremely well for description

in a YAML formatted syntax and provides a repeatable structure for building playbooks.

Each play must contain a set of hosts and a list of tasks to execute against those

hosts. While identifying hosts and tasks is the minimum requirement, optional items such

as a name and variables, or vars, provide increased functionality and readability/feedback

for the user.

© 2016 The SANS Institute Author retains full rights.

Security through Configuration Control at Scale – An Introduction to Ansible

7

Patrick Neise, patrick.neise@gmail.com

As discussed in the previous section, the hosts field can reference individual hosts

from the inventory file or more typically the group name of a set of hosts within the

inventory. By specifying a group name in the playbook, Ansible will run the specified

tasks against all of the hosts in the group. Although not required, the name field is

extremely useful in that it contains a description of what the play accomplishes and

Ansible will print out the name field to the console when running the playbook. Another

very useful option is vars, or variables, which is a list of variables and their values.

Variables will be discussed in more detail in the examples later to demonstrate the ability

to pass information to the playbooks for modularity as well as for security reasons.

The major remaining piece of a play is the list of tasks to be executed against the

target hosts. Tasks must consist of a module name, to be discussed in the next section,

and the values of the argument to be passed to the module. Tasks, just like plays, can

have a name field as well. It is also highly recommended to name tasks for readability

and understanding of what the task accomplishes. Additionally, Ansible provides the

ability to start a play at a particular task and skip the preceding tasks. This functionality

requires the task to be named.

A brief playbook is shown below as discussed in the Ansible documentation. This

playbook contains only one play with three tasks related to configuration of a web server.

The modules introduced in the playbook will be discussed in the next section.

© 2016 The SANS Institute Author retains full rights.

Security through Configuration Control at Scale – An Introduction to Ansible

8

Patrick Neise, patrick.neise@gmail.com

- name: Configure apache webserver

 hosts: webservers

 vars:

 http_port: 80

 max_clients: 200

 remote_user: root

 tasks:

 - name: ensure apache is at the latest version

 yum: name=httpd state=latest

 - name: write the apache config file

 template: src=/srv/httpd.j2 dest=/etc/httpd.conf

 notify:

 - restart apache

 - name: ensure apache is running (and enable it at boot)

 service: name=httpd state=started enabled=yes

 handlers:

 - name: restart apache

 service: name=httpd

 state=restarted

The above playbook demonstrates all of the concepts and syntax covered so far

while introducing a couple of new concepts such as modules, templates, and handlers.

The only play in the playbook configures apache webservers and targets hosts in the

webservers group. For consistency, this playbook references the previous inventory file

example that also contains a webservers group, meaning that in this example all of the

tasks would be run against webserver1.domain.com and webserver2.domain.com each

time the playbook is run.

Before describing the tasks above, it is important to point out that Ansible tasks

are idempotent. This means that tasks define the desired end state, not how to arrive at

that end state. For example, a task may specify that a particular package must be installed

on the target host. If that package is already installed Ansible takes no action, otherwise

© 2016 The SANS Institute Author retains full rights.

Security through Configuration Control at Scale – An Introduction to Ansible

9

Patrick Neise, patrick.neise@gmail.com

the package is installed to place the host in the desired state. This means that playbooks

can be run multiple times against the host and the only items executed on the host are

those that differ from the desired state specified in the tasks.

The three tasks in the example playbook above demonstrate the relatively simple

process of ensuring that the version of apache installed on the webserver is the latest

version, copying the configuration file from the controlling host to the target, and starting

the httpd service. This simple example is a great representation of idempotency in action.

If the version of apache is up to date, nothing occurs, otherwise the most recent version of

apache is installed via the yum package manager. Next, if the configuration file on the

target host is already the same as that on the controlling server, nothing happens. If the

file does not exist, or is different, the file is copied to the host and new concept of

notifying a handler is introduced.

The combination of notify and handlers allows the user to group particular actions

that need to occur at the end of the playbook, and only if there is a need to perform the

function. In this example, the apache server will be restarted by the handler only if the

configuration file on the host has been updated. With the potential for several files to be

copied or other changes made to the server that would require a service restart, the

concept of handlers allows the playbook to restart the service only once, and only if

required by the actions taken in previous tasks. The final task ensures that the apache

server is running at that the service will be started whenever the host is rebooted.

Error handling within Ansible is designed to fail fast by default. If an error

occurs, it must be dealt with unless decided otherwise within the playbook. However, not

properly dealing with failures for a task that occurs early in a playbook may result in

undesired results. By default, playbook execution will stop for a host that has a failure,

but tasks for other hosts within the playbook will continue. While failing fast will identify

issues early, the host may be left in an unstable state. For example, if a task that installs

several software packages fails, the resulting application or service may not correctly

function. Ansible provides several options and techniques to plan for and deal with

possible errors that may occur during task execution.

© 2016 The SANS Institute Author retains full rights.

Security through Configuration Control at Scale – An Introduction to Ansible

1
0

Patrick Neise, patrick.neise@gmail.com

At this simplest level the tasks can be designed to just ignore any errors by adding

“ignore_errors: yes” to the task. While this solution is not ideal, it will allow the

remainder of the tasks for that host to complete. This can be useful in testing, but in

practice can cause cascading errors, such as not setting a variable that gets used further

into the playbook. Similarly, if there were any notification to handlers during playbook

execution, the handler would not execute by default if any task for the host fails. This

default behavior can be overridden by setting “force_handlers” to “True”. This technique

can be used to restart a service after a configuration change, even if a subsequent task

within the playbook for that host fails. Finally, the playbook can include the “fail”

module in order to generate custom messages when the playbook fails based on certain

conditions being met.

2.2.3. Modules

While playbooks can be thought of as the structure of what tasks to accomplish,

modules are the components that actually do the work on the target host. The module is

what actually gets executed in each task of the playbook. In addition to being executed

from within playbooks, modules can be executed from the command line with the

‘ansible’ command:

ansible webservers -m ping

ansible dbservers -m command -a “/sbin/reboot -t now”

The first command above will execute the ping module against all of the web servers in

the inventory and report the results to the screen while the second command would reboot

all database servers in the inventory.

Ansible ships with a very robust set of core modules covering topics from cloud

services to system level commands. Modules can install a package, restart a service, copy

a configuration file, or create and image in Amazon ec2. In addition to the core modules,

Ansible also currently ships with extra modules that provide additional functionality, the

main difference being that extras are largely maintained by the Ansible community while

the core modules are maintained by the Ansible team itself.

© 2016 The SANS Institute Author retains full rights.

Security through Configuration Control at Scale – An Introduction to Ansible

1
1

Patrick Neise, patrick.neise@gmail.com

Two important concepts to cover regarding modules are that modules are

declarative and idempotent. Being declarative means that modules are used to describe

the desired end state that the host is required to be in after module execution. In other

words, the module just states what the host should look like in the end, but not how to get

there. For example, in order to ensure that a particular user account is present on the

host, the following task that calls the user module could be added to the playbook:

user: name=apache group=web

The above task would ensure there is a user named ‘apache’ in the group ‘web’ on the

target host, without specifying how to add that user to the host. The second, and very

nice property of Ansible, is that modules are idempotent. In the above example, being

idempotent means that if the ‘apache’ user did not exist then the module would create the

user. However, if the user already exists, then the module will do nothing. The

significance of being idempotent means that playbooks can be run as many times a

desired against a host without undesired consequences due to Ansible only making

changes required to put the host in the desired end state. In other words, even with an

extremely large playbook of multiple tasks, nothing on the host will change if it is in the

correct end state. This is significantly different than running bash scripts on a host

repeatedly, where the starting state of the host can have a direct impact on the successful

execution of the script.

Although not covered in detail here, custom modules can also be developed for

cases where using the ‘command’ module is too complicated or there is not currently a

module that meets the user’s need. Custom modules can be written in any language,

however writing modules in Python is simpler due to the increased functionality provided

by Ansible, which is also written in Python. For example, Ansible makes writing Python

based modules easier by providing a base ‘AnsibleModule’ Python class to begin

building the module.

The basic flow for all modules, specifically Python modules in the case, are listed

below.

1. Create a Python script with the arguments passed to the module.

© 2016 The SANS Institute Author retains full rights.

Security through Configuration Control at Scale – An Introduction to Ansible

1
2

Patrick Neise, patrick.neise@gmail.com

2. Copy the module to the target host

3. Invoke the module (Python script) on the host

4. Parse the standard JSON output

While this basic structure is the same for modules written in other languages, the biggest

difference is that a separate arguments file must be created and passed to the host.

Finally, there are expected parameters that the module should return, and the output must

be in correctly formatted JSON for Ansible to properly parse the results. Further

information on exactly how to create custom modules in available in detail in the Ansible

Docs on the Ansible website as well as other third party resources.

2.2.4. Roles

As playbooks grow in size and complexity due to increased number of tasks,

variables, files, templates, etc. the management of the playbook across numerous hosts

and tasks can become extremely difficult. To simplify writing and managing complex

playbooks Ansible provides the ability to create roles in order to break apart the playbook

into multiple files. Roles can be thought of as a grouping of information needed to

configure a particular service or function. For example, roles can be created for

webserver and database_server in order to carry out all of the steps necessary to properly

configure a web server or database server. The role is a grouping of the tasks, files,

templates, variables, and handlers necessary to properly configure the desired

functionality.

By grouping all of the information necessary into a single location it is

significantly easier to track and ensure that specific dependencies for different

requirements are met. To build on this concept, roles can actually be dependencies for

other roles. For example, an ‘application_server’ role can be created that properly

configures a RedHat Linux host with all of the necessary configuration and dependencies

except for the specific Java Development Kit (JDK) required to run the application. To

complete the configuration for a specific application, additional roles for ‘jdk7’ and

‘jdk8’ can be created that depend on the ‘application_server’ role. This concept allows

© 2016 The SANS Institute Author retains full rights.

Security through Configuration Control at Scale – An Introduction to Ansible

1
3

Patrick Neise, patrick.neise@gmail.com

the user to group common functionality, such as configuring ntp, into a role than can be

called by any other role when configuring a target host.

Management of roles consists of creating a folder for each role that in turn

contains folders for tasks, files, templates, etc. The role can then be added to a playbook

in order to be run against the specified hosts. Additionally, just like modules, arguments

can be passed to the role in the playbook to provide an additional level of granularity and

control. An example snippet of a playbook with a role is shown below.

- name: deploy db server

hosts: db

roles:

- role: database

database_name: “{{db_name}}”

database_user: “{{db_user}}”

The above playbook simply calls the ‘database’ role against the db inventory

while passing the database name and user as variables to the role. The ‘database’ role

would now execute with all of the associated tasks, variables, files, etc. as previously

discussed. Roles could be created for the application server, web server, and proxy

server in a similar manner, resulting in a much simpler high level playbook for deploying

the entire infrastructure.

2.3. Example Use Case – Securing SSH

With the base functionality of Ansible as described above, a simple example can

now be discussed from start to finish. As it will be relevant for discussion in the

following section, this example will walk through securely configuring SSH servers in

the environment. While this is not a particularly difficult task in the sense of the

complexity required from Ansible, it will demonstrate the power and ability of Ansible to

simplify a rather complex and tedious process at scale in order to secure SSH servers

across an environment. Additionally, while this example walks through securing SSH

servers, it is not intended to be a defining standard for secure SSH configuration. There

are numerous resources available that focus solely on securing SSH servers.

© 2016 The SANS Institute Author retains full rights.

Security through Configuration Control at Scale – An Introduction to Ansible

1
4

Patrick Neise, patrick.neise@gmail.com

2.3.1. Inventory

An inventory file for the example.com domain is included below. Although

contrived for demonstration purposes, this inventory file demonstrates several of the

concepts discussed in the previous section. As there are multiple web servers and

database servers, they have been grouped according to their function. The grouping

allows all web servers to be simply identified by the ‘webserver’ group.

mail.example.com

[webservers]

web1.example.com

web2.example.com

[database]

db1.example.com

db2.example.com

[ssh_servers:children]

webservers

database

The additional concept of groups referencing other groups is demonstrated in this

example to group all of the servers with SSH access enabled into a single ‘ssh’ group.

The ‘children’ qualifier at the end of the ‘ssh’ group name tells Ansible that the names

refer to other groups within the inventory file vice individual hosts. Referencing groups

within groups provides yet another level of granularity to the control of numerous hosts

across an enterprise level deployment.

2.3.2. Playbook

The following playbook will ensure that the target hosts have the desired secure

configuration for the running SSH server. At a high level, the playbook will:

1. Disable password based SSH authentication

2. Disable root account remote login

© 2016 The SANS Institute Author retains full rights.

Security through Configuration Control at Scale – An Introduction to Ansible

1
5

Patrick Neise, patrick.neise@gmail.com

3. Explicitly allow SSH access for ansible user

4. Add the ansible user identity key to ~/.ssh/authorized_keys

Additionally, the playbook will introduce a few advanced features within playbooks

including looping over similar tasks with different values and file lookups.

© 2016 The SANS Institute Author retains full rights.

Security through Configuration Control at Scale – An Introduction to Ansible

1
6

Patrick Neise, patrick.neise@gmail.com

- hosts: ssh_servers

vars:

- ssh_user: “ansible”

- ssh_identity_key: “/home/ansible/.ssh/id_rsa.pub”

tasks:

- name: Secure remote SSH login.

lineinfile:

 dest: /etc/ssh/sshd_config

 regexp: “{{ item.regexp }}

line: “{{ item.line }}”

state: present

with_items:

- regexp: “^PasswordAuthentication”

line: “PasswordAuthentication no”

- regexp: “^PermitRootLogin”

line: “PermitRootLogin no”

notify: restart ssh

- name: Allow specific users to SSH.

lineinfile:

 dest: /etc/ssh/sshd_config

 regexp: “^AllowUsers”

 line: “AllowUsers ansible”

notify: restart ssh

- name: Copy user identity to host.

authorized_key: user={{ ssh_user }}

 key=”{{ lookup(‘file’, ssh_identity_key) }}”

notify: restart ssh

 handlers:

- name: restart ssh

service: name=ssh state=restarted

© 2016 The SANS Institute Author retains full rights.

Security through Configuration Control at Scale – An Introduction to Ansible

1
7

Patrick Neise, patrick.neise@gmail.com

Working through each of the sections of the playbook:

hosts – Specifies the ssh_servers from the inventory file.

vars – The variables define the SSH username and identity file to use within the tasks

tasks – Defines each of the tasks to be accomplished on the hosts. In this section the

looping and lookup concepts are introduced. In the first task, the lineinfile

module is used to update particular lines within the SSH config file. By defining

the ‘regexp’ and ‘line’ as templated variables, the section that begins ‘with_items’

will run the lineinfile module with the values of the variables specified. The

following task also uses the lineinfile, but with predefined variables.

In copying the identity file to the target hosts, the lookup plugin is used to find the

identity file in order to upload the file to the host using the authorized_key

module.

Finally, each of the tasks notifies the ‘restart ssh’ handler in order to restart the

SSH service after any configuration changes have been made. Of note, the SSH

service will only be restarted if any of the tasks make changes on the target host.

handlers – Defines the handlers, in this case a handler to restart the SSH service.

Although the tasks in the playbook are not every step necessary to ensure a secure an

SSH server, they demonstrate the simplicity and power that Ansible can provide when

securing hosts and services at scale.

2.4. Security Concerns

While Ansible can be employed effectively to secure hosts, just like many other

tools there are security concerns with the proper and secure use of Ansible. Although

Ansible uses SSH for secure communication between the controller and the target hosts,

improper configuration of the SSH server on the hosts can lead to security vulnerabilities

with the hosts. As shown in the previous example, Ansible can be used to secure the SSH

server on the target hosts. In fact, this should be one of the first tasks accomplished on

any host that will be managed with Ansible to ensure all future connections will be

© 2016 The SANS Institute Author retains full rights.

Security through Configuration Control at Scale – An Introduction to Ansible

1
8

Patrick Neise, patrick.neise@gmail.com

conducted via secure means, and the SSH server can be configured to only allow

connections from the Ansible controller.

Additionally, when using Ansible to configure servers and deploy applications the

user may be required to store sensitive information such as passwords for accounts or

SSH deploy keys. Placing sensitive information into variables files would preclude

placing Ansible files into a version control system due to the risk of unintentional

disclosure of the information. The Ansible vault uses shared secret AES encryption to

store sensitive files along-side the unencrypted remaining files. At runtime, the ‘--ask-

vault-pass’ command line option passed when running the playbook will prompt the use

for the vault password, at which time the files will be decrypted and used in execution of

the playbook.

2.5. Security Application

With an understanding of the components and workflows involved in using

Ansible for deployment, configuration management, and orchestrations, many potential

uses for Ansible within the security community begin to become apparent.

2.5.1. Enforcement of Fundamentals

Simply employing the core functions of Ansible in an environment is a significant

step towards controlled, repeatable, and scalable configuration management. Spending

the time to develop playbooks that add the required secure configuration to the

deployment plans of operations personnel will ensure that every time a new asset is

deployed into the environment, it will be configured in a manner consistent with security

best practices. The SSH configuration example above represents just a small portion of

the amount of configuration that can be accomplished on each host or application in

ordered to ensure security from the beginning. The security team can work hand in hand

with the operations team in development of playbooks, or even create security specific

roles to be included into operations deployment playbooks.

2.5.2. Training Environment

As a variation on using Ansible for orchestration and deployment of a production

environment for applications and services, one very interesting use of Ansible is in the

© 2016 The SANS Institute Author retains full rights.

Security through Configuration Control at Scale – An Introduction to Ansible

1
9

Patrick Neise, patrick.neise@gmail.com

creation of training environments for security personnel. Virtualization is already being

heavily leveraged in training environments, but the configuration and management of

those environment is tedious and error prone. Additionally, entering changes into the

environment can introduce errors and other complications. Using Ansible in combination

with virtualization or containerization technology, playbooks and roles can be created to

rapidly and reliably create environments for all aspects of security training.

A full capture the flag environment could be created with production quality

examples of enterprise services, complete with typical misconfiguration and simulated

sensitive data. Additionally, the ability to change flag values and immediately re-deploy

the environment allows the creators of the environment to change the goals every time

the environment is used.

Another possibility could be the creation of a production like environment that

simulates a post breach scenario for incident responders to evaluate. And similar to the

construct for capture the flag, the playbooks could be configured to deploy the exact

same environment with different indicators of compromise in order to gain full training

value out of the environment.

There are many other possible training environment applications that could

benefit from the use of Ansible for configuration management, deployment, and

orchestration. Additionally, the training team could leverage playbooks and roles created

and used by the operations team in order to create near identical environments to those

currently being used in production.

Of note, the Software Engineering Institute at Carnegie Mellon University is

using Ansible and other DevOps tools in order to generate very large training

environments for security personnel (AnsibleFest San Francisco, 2015).

3. Conclusion

With the continuous growth of concepts and technologies including

microservices, containerization, continuous integration, etc., the need for and importance

© 2016 The SANS Institute Author retains full rights.

Security through Configuration Control at Scale – An Introduction to Ansible

2
0

Patrick Neise, patrick.neise@gmail.com

of configuration management and orchestration at scale directly impacts the level of

security in production environments.

Ansible, although a relative newcomer to the field, provides a simple to learn,

scalable, and secure solution to management environments at the scale and speed

necessary for today’s demand signal. From the lockdown of deployed services and

applications to the creation of training environments for security personnel, and nearly

everything in between, Ansible is one of the tools to for security, operations, and

development teams to add to their existing tool chains.

Finally, with the support and innovation of the Ansible community new modules,

roles, and even completely new use cases are being implemented to configuration

management, deployment, and integration at scale.

© 2016 The SANS Institute Author retains full rights.

Security through Configuration Control at Scale – An Introduction to Ansible

2
1

Patrick Neise, patrick.neise@gmail.com

References

AnsibleFest San Francisco. (2015, 12 24). Retrieved from Ansible:

http://www.ansible.com/ansiblefest-videos-sei-sf15

Columbus, L. (2015, 1 24). Roundup of Cloud Computing Forecasts and Market

Estimates. Retrieved from Forbes / Tech:

http://www.forbes.com/sites/louiscolumbus/2015/01/24/roundup-of-cloud-

computing-forecasts-and-market-estimates-2015/

Fidao, C. (2015). Servers for Hackers. N/A: Leanpub.

Fowler, M. (2014, 3 25). Microservices. Retrieved from martinfowler:

http://martinfowler.com/articles/microservices.html

Geerling, J. (2015). Ansible for DevOps. N/A: Leanpub.

Hall, D. (2015). Ansible Configuration Management - Second Edition. Packt.

Hendricks, D. (2015, 5 27). Spending Growth in Cloud Computing is Astounding: Here's

7 Reasons Why. Retrieved from Inc.: http://www.inc.com/drew-

hendricks/spending-growth-in-cloud-computing-is-astounding-here-s-7-reasons-

why.html

Hochstein, L. (2015). Ansible Up & Running. Sebastopol: O'Reilly.

Jackson, B. (2015, 8 31). Why Security Configuration Management Matters. Retrieved

from tripwire: http://www.tripwire.com/state-of-security/security-data-

protection/security-configuration-management/why-security-configuration-

management-matters/

Kirk, J. (2010, 7 29). Data breaches exploit configuration erros, not software

vulnerabilities. Retrieved from InfoWorld:

http://www.infoworld.com/article/2625548/intrusion-detection/data-breaches-

exploit-configuration-errors--not-software-vulnerabilities.html

Prince, B. (2012, 05 21). Massive Data Breach in Utah State Servers Caused by

Configuration Errors. Retrieved from eWeek:

http://www.eweek.com/c/a/Security/Massive-Data-Breach-in-Utah-State-Servers-

Caused-by-Configuration-Errors-851037

© 2016 The SANS Institute Author retains full rights.

Security through Configuration Control at Scale – An Introduction to Ansible

2
2

Patrick Neise, patrick.neise@gmail.com

Various. (2010). 2010 Data Breach Investigations Report. Retrieved from Verizon

Enterprise: http://www.verizonenterprise.com/resources/reports/rp_2010-DBIR-

combined-reports_en_xg.pdf

Ylonen, T., Turner, P., Scarfone, K., & Souppaya, M. (2015). NISTIR 7966: Security of

Interactive and Automated Access Management Using Secure Shell (SSH).

Gaithersburg: NIST.

