
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Complement	a	Vulnerability	Management	Program	with	PowerShell	|	1	

Colm	Kennedy	

Complement	a	Vulnerability	Management	Program	with	
PowerShell

GIAC	(GSEC)	Gold	Certification	

Author:	Colm	Kennedy	
Advisor:	Stephen	Northcutt	

Date	of	Acceptance:		

Abstract

A vulnerability management program is a critical task that all organizations should be

running. Part of this program involves the need to patch systems regularly and to keep installed

software up to date. Once a vulnerability program is in place organizations need to remediate

discovered vulnerabilities quickly. Occasionally some discovered vulnerabilities are false

positives. The problem with false positives is that manually vetting them is time-consuming.

There are tools available, which assist in showing what patches may be missing, like SCCM, but

can be rather costly. For organizations concerned that these types of programs hurt their budgets,

there are free options available. PowerShell is free software that, if utilized, can complement an

organization’s vulnerability management program by assisting in scanning for unpatched

systems. This paper presents a PowerShell script that provides Administrators with further

insight into what systems are unpatched and streamlines investigations of possible false

positives, with no additional cost.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Complement	a	Vulnerability	Management	Program	with	PowerShell	|	2	
	

Colm	Kennedy	
	

1. Introduction
With the increasing likelihood that more dumps of Windows exploits from Shadow

Brokers are on the way, the need for patching and fixing vulnerabilities on systems has become

increasingly important. The WannaCry vulnerability shows the importance of keeping the

software on systems updated and patched. As stated by Microsoft on the release date of

WannaCry, “Most of the exploits that were disclosed fall into vulnerabilities that are already

patched in our supported products” (M. Team, 2017). When the WannaCry announcement came

out, those organizations that regularly patch had little to do because a previous patch resolved the

issue. With over two hundred thousand systems impacted with this ransomware, organizations

that did not keep up with patches had to scramble to get them installed on the impacted systems

(B. Brenner, 2017). The importance of monthly patching of all systems plays a key role in

preventing outbreaks, similar to WannaCry, using future releases of Windows exploits by the

Shadow Brokers.

A commonly accepted concept within vulnerability management is that “Exploits keep

coming, so vigilance and routine patching are vital” (CyberTrend, 2016). A vulnerability

management program can help determine what systems get patched and where vulnerabilities

exist in the environment. Part of every vulnerability program includes scanning and reporting on

vulnerable software on systems. Occasionally some of these scans produce false positives that

require further investigation. The problem with investigating false positives is it typically

requires manual vetting of software versions installed or if the systems are missing Microsoft

patches. A bigger issue arises when multiple systems need further investigation. This process of

vetting can take many hours to accomplish. Tools are available, which can assist in showing

what patches are missing, like SCCM, but some are costly. PowerShell is a free and effective

software when utilized correctly. It gives an administrator another tool to scan for unpatched

systems.

The goal of this paper is to show how a small script in PowerShell can aid in the

investigation of many systems and report information in an organized manner that will help

streamline investigations of possible false positives. The script in this paper will assist in

identifying missing patches or old versions of software installed. The PowerShell script in this

paper sends the results to a CSV file that lists the system name, the operating system installed,

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Complement	a	Vulnerability	Management	Program	with	PowerShell	|	3	
	

Colm	Kennedy	
	

the number of missing critical and important patches, last boot time of the system, Chrome

version, Firefox Version, Java Version, Adobe Flash Version, and Adobe Reader Version. The

format of the CSV file makes it easy to browse over all systems scanned to make a quick

determination if more investigation needs to take place for each system. An important part of this

script is that it needs to be transferrable to any environment with little effort. 	

2. Survey Results
Discovering if there is a need for a PowerShell script that determines if a system is up to date

is an important part of this paper. Gathering this information was accomplished using a Survey

published online with twenty-seven responses recorded. Five questions were asked in this survey

to get a better understanding of how information gathering, similar to the script in this paper,

took place. The list of questions is as follows:

1. What tools do you use to report on installed applications like Chrome, Firefox, Adobe

Reader, Adobe Flash on a system?

2. What tools do you use to report on how many critical patches are available to be

installed on a system?

3. How much money and time do you spend collectively on this type of information

gathering?

4. Would you be interested in a script that could report this to you in a CSV file?

5. Are you comfortable using open source? What are your concerns?

Question one showed many organizations using SCCM as their tool to report on installed

applications in their respective environments. Other organizations used a variation of free

software like WMIC and PowerShell to relatively cheap alternatives Lansweeper and PDQ

Inventory (both under $1000). The results of question one are in Chart 1.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Complement	a	Vulnerability	Management	Program	with	PowerShell	|	4	
	

Colm	Kennedy	
	

Chart 1 – Answers to Question One

	

The second question results, as seen in Chart 2, again show a majority of responders

using SCCM for missing patches. Ten of the responders are using other products that cost money

including Qualys, Nessus, Rapid7, and Shavlick. Four of the organizations are using freeware,

and one person is manually checking to see if systems are missing critical patches.	

	

Chart 2 – Answers to Question Two

	

Question three has two parts, with the first part looking at how much time is spent on

information gathering on missing patches on systems and software versions installed. As shown

in Chart 3, organizations spent a lot of time on this type of information gathering. Even those

using SCCM felt they were spending too much time gathering information and confirming that

information with other tools.

2

13

4
3

2 2
1

0

2

4

6

8

10

12

14

None SCCM Powershell WMIC Lansweeper Tanium PDQ	Inventory

1.	What	tools	do	you	use	to	report	on	installed	applications	
like	Chrome,	Firefox,	Adobe	Reader,	Adobe	Flash	on	a	system?	

11

3 4
2 1 1 2 1 2

0

5

10

15

SCCM Qualys Nessus WSUS Manual Rapid7 Shavlick CIS	CAT	Pro Powershell

2.	What	tools	do	you	use	to	report	on	how	many	critical	
patches	are	available	to	be	installed	on	a	system?

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Complement	a	Vulnerability	Management	Program	with	PowerShell	|	5	
	

Colm	Kennedy	
	

	
Chart 3 – Answers to Question Three

The second part of question three looks at how much money organizations are spending

on tools that return missing patches on systems and what versions of applications are on a

system. These results of this question are in Chart 4. Although this varied significantly, it is

worth noting that the general feeling was they were spending too much time and money on

gathering information on missing patches and installed software.

	
Chart 4 – Answers to Question Three

Question four shows the responses from the twenty-seven that responded to the survey on

if there is interest in a script that could report information gathering around patches and installed

applications. The results, in Chart 5, show that 24 of them showed interest in seeing a

PowerShell script that could assist in gathering this information and exporting to a CSV file.

8

5

1

7
6

0

2

4

6

8

10

Too	Much 0-3	hours 3-6	Hours 9+	Hours Unknown

Time	Weekly

6
4 3 3

11

0
2
4
6
8
10
12 Cost	Monthly

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Complement	a	Vulnerability	Management	Program	with	PowerShell	|	6	
	

Colm	Kennedy	
	

	
Chart 5 – Answer to Question Four

The fifth question asked if organizations have a comfort level using Open Source and if

not, what their concerns would be. Only one answered no to this question, but that was due to an

organizational issue that required all products used to have maintenance purchased with it.

	
Chart 6 – Answer to Question Five

	

The overall response to the five questions shows that many organizations are using tools that

cost money to gather missing patches and software versions installed on systems. There was

much interest in additional tools and abilities to spot check results of other tools that can be

easily followed and is transferable to other environments.

	

3

24

4.	Would	you	be	interested	in	a	script	
that	could	report	this	to	you	in	a	csv	

file?

No	 Yes

1

26

5.	Are	you	comfortable	using	open	
source?	What	are	your	concerns?

No Yes

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Complement	a	Vulnerability	Management	Program	with	PowerShell	|	7	
	

Colm	Kennedy	
	

3. PowerShell

The best explanation of what PowerShell is comes from Microsoft’s web page and says,

“PowerShell is an automation platform and scripting language for Windows and Windows server

that allows you to simplify the management for your systems” (What is PowerShell, 2017).

PowerShell 1.0 was first released in 2006 for Windows XP and Server 2003 but required

installation. Microsoft integrated PowerShell into future Operating system versions with

PowerShell 2.0. The current version of PowerShell is version 5.1. PowerShell now comes built

into all Windows installs. PowerShell scripts can be found online using Google searches and on

many other exchanges like technet.microsoft.com, Stackoverflow.com, and PowerShell.org. All

sites have avenues to get assistance in creating or editing a PowerShell script.

 For this research, PowerShell Integrated Scripting Environment (ISE) simplified the

creation of this script. The PowerShell ISE environment gives the option of a split screen that

allows for editing of the script while running tests in a command line window. Using the ISE

environment made the troubleshooting of the script much easier to work on during the creation

of this PowerShell script.

 The idea was to create a script that was easy to follow for beginners with PowerShell and

to make a script that would help those Administrators with a limited budget for information

gathering of missing Microsoft patches and installed software versions. The script also reports on

the operating system installed and the last boot time of the system. The last boot time of a system

assists in identifying the last time this system received patches successfully. Using last boot time

as an indicator is effective because most critical and important security patches require a reboot

for installation of the patch to be completed. If a system has not rebooted in over six months, it is

likely that this system has not successfully patched in that time. The lack of a recent reboot on

the system would raise suspicion for an administrator to investigate that system further manually.

The five applications that are reported by this script are often seen on systems and not

updated frequently. Chrome and Firefox by default auto-update, but if not used, stay unpatched.

If not used for long enough, some of these programs do not allow for updates and require a

reinstallation of the product. Java, Adobe Flash, and Adobe Reader are notoriously left

unpatched, and vulnerabilities are regularly released.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Complement	a	Vulnerability	Management	Program	with	PowerShell	|	8	
	

Colm	Kennedy	
	

4. The Script

4.1 Pre-Requisites for script

With PowerShell, there are some requirements for scripts to run successfully. For this

script to work properly in an environment, a few services need to be running on the remote

systems. These services are the Windows Remote Management (WinRM service) and the

Remote Registry service. Opening PowerShell on the local system as a user that has

Administrator access on the remote systems allows for the script to function properly. This

particular script has been successfully tested on Windows 7, Windows 10, Windows Server

2003, Windows Server 2008 and Windows Server 2012 with all above requirements set. For

learning purposes and to edit this script, it is best run from an elevated permission with

PowerShell ISE and using the run script button at the top of the program. Two items need to be

adjusted in the script to be able to work, one is the location of the System_List.txt file in the top

line of the script and the second is the location of the export CSV file, GSECGOLDResults.csv,

at the bottom of the script. These two are adjustable to wherever an administrator prefers.

Another option is to leave the script as is. The Administrator then needs to place the

System_List.txt file in the C:\Windows directory and the script creates the output file in the same

directory. Although without local administrator rights, it might not be possible to write to the

Windows folder. If that is an issue, the administrator should change and run the system_list file

and the gsecgoldresults export file, from the desktop location.

4.2 Functions of the Script
The script contains four main parts. The script begins with the importing of the system

list and the array variable is defined for later storage of the results of the scans (Part1). The

second part is the main body of the script with a loop for each system on the imported list. This

loop in the main body is called a ‘foreach’ loop. Within this main body is the third part where the

main script calls for three different functions. One is a WMI call to return the Operating system

and Last Boot Time. The second is a PSSession or remote PowerShell session that allows for the

Windows updates information to be returned. The third part of the main script is a function call

that makes a remote registry connection to return application versions installed. These three

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Complement	a	Vulnerability	Management	Program	with	PowerShell	|	9	
	

Colm	Kennedy	
	

functions make up most of the script and do all of the work to gather the desired results. The

fourth part is the export to CSV command that sends all the results stored in the array to the CSV

file defined on the last line of the script. Figure 1 shows the four parts of the script with the

functions, and the main body minimized. The content of these sections is provided in more detail

in the following sections.		

Figure 1 – Overall view of script

	

4.2.1	The	Script	–	Part	1	

The script starts with the importing of a text file that has the systems listed, one system

per line, which is to be scanned by the script. The import is done using the Get-Content

command that then stores this list of systems in the variable called $SystemList. A requirement

for this script is that the file is named System_List.txt. This file needs to be in the proper

directory before running the script. This file contains the list of systems that are getting scanned.

The variable $SystemList needs to point to text files location. By default, it is looking for the file

in the C:\Windows directory. Next, in the script is the array variable that stores and then export

the results to a CSV file on the final line of the script. It is called $PrinterResultsToCSV. Figure

1 above shows where Part 1 is noted.

4.2.2 The	Script	–	Part	2	

The script then continues into Part 2, or the main body and starts with the use of the

‘foreach’ loop. This loop takes the systems stored in the $SystemList variable and runs through

the contents of Part 2 of the script for each system on the list. It does this by placing each system

into the variable $SystemName for the script to run against then puts the next system on the list

into that variable name. The loop runs until scanning of all systems on the list is complete.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Complement	a	Vulnerability	Management	Program	with	PowerShell	|	10	
	

Colm	Kennedy	
	

Figure 2 – Foreach Loop and main body of script	

Inside the ‘foreach’ loop, as seen in Figure 2 above, each system name is sent to the

screen as the script scans each system. The system name displays on the screen, so the person

running the script knows which system is currently being scanned. Each system is then sent a

ping echo request one time to see if that system is alive. If it is not, it returns to the screen

“System not Reachable” message and the script stops with no results. That system then requires a

removal from the system list and the script rerun.

The next portion of the main body is to define the value that returns the results from the

function ‘QueryComputer.' Calling this also passes the name of the next system on the list. The

contents of ‘QueryComputer’ are explained later in Part 3 of the script, but this is what returns

the versions of installed applications for each system. The variable $obj is a WMI call to each

remote system and returns the operating system version and the last boot time.

As previously stated, a pre-requisite for this script to function properly is the requirement

for the WinRM service to be running. In this section, a check is made using a WMI call to the

system to check to see if the WinRM service is enabled or stopped. If the service is not running,

this script then enables that service. The variable that requires the WinRM service is

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Complement	a	Vulnerability	Management	Program	with	PowerShell	|	11	
	

Colm	Kennedy	
	

$RemoteSession. This variable creates a remote PowerShell session (or PSSession) on the

remote system. On the following line of the script, the variable $RemoteReturnedResult calls the

PSSession $Windowsupdate. The $Windowsupdate function returns Windows update results to

the $RemoteReturnedResult variable. Within this variable, all results are piped to be stored

temporarily in a format that makes the later CSV export easier to read. The results are piped by

using a Select statement and labeling each column of the CSV file in single quotes and the values

of each column in the ‘expression’ results. With all values for that system stored, the variable

$RemoteReturnedResult adds its results to the array $PrintResultsToCSV to store that system’s

results until scanning finishes for all systems. Before the script moves on to the next system

within the loop, it checks to see if the script started the WinRM service previously and if so, it

stops that service. If the script did not start the service, it leaves it enabled. The point is to return

the status of the WinRM service to its original state.

	

4.2.3 The	Script	–	Part	3	

The third part of this script contains three functions that are each called from within the

main body. The first portion is the PSSession that is called using the variable named

$Windowsupdate. As seen, in Figure 3, it starts by declaring a new object for checking for

windows updates. This object then creates the variable $updatesearcher that calls for the method

‘createupdatesearcher.' This method allows the script to perform operations that involve

Windows updates (IUpdateSession, 2017). Using the $updatesearcher variable the script then

uses the method ‘search’ to run the search for updates on a system (IUpdateSearcher, 2017). This

work then adds up the total number of critical and important updates that are found to be missing

on a system and returns that number to the main script. The value also is printed to the command

screen under the system name. The format of this print to the screen is ‘Total=#,' with the #

representing the total number of critical and important patches missing.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Complement	a	Vulnerability	Management	Program	with	PowerShell	|	12	
	

Colm	Kennedy	
	

Figure 3 – PSSession	

The next function called is the WMIC command that gathers the results that return the

operating system and last boot time of that system, as seen in Figure 4 below.

Figure 4 – WMI call to remote machine	
	 	

The variable in Figure 4, $obj is then called and stored in the main body of the script in

the $RemoteReturnedResult variable using the lines shown in Figure 5.

Figure 5 – WMI Call to remote system for Operating system and Last boot time	

The third function in this script is named querycomputer, shown in Figure 6. It starts with

setting the variable $ReturnfromFunction as an array. This variable is used at the end of this

function to pass the installed applications values to the central part of the script. Next, the two

directories in the registry that the function looks at to gather information are defined. The

$Branch variable specifies to look in the Local Machine branch of the system. The $SubBranch

variable defines the registry key path to use for the script. By default, it is looking in the

directory where 32-bit programs reside. It can be easily adjusted to scan the 64-bit directory by

removing the comment symbol (#) in front of the greened out $SubBranch variable and placing it

in front of the non-greened out $SubBranch variable.

To test to make sure that the remote registry is running a WMIC command is run to

check the status of the service. The command turns the Remote Registry service on so a query

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Complement	a	Vulnerability	Management	Program	with	PowerShell	|	13	
	

Colm	Kennedy	
	

can run against the remote systems registry. Once enabled, the script attempts a connection to the

remote registry in line thirty-nine. If that is successful, the function continues to tunnel down into

the registry retrieving all the ‘Display name’ values in the ‘uninstall’ folder and stores them in

the variable $subkeys.

	

Figure 6 –QueryComputer function that returns installed application versions

A loop is then run for all values within $subkeys variable one at a time to find the desired

applications. It does this by placing each value of $subkeys into the variable $Key and then

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Complement	a	Vulnerability	Management	Program	with	PowerShell	|	14	
	

Colm	Kennedy	
	

running through the rest of the function. In lines fifty-six through sixty-one the five applications

are defined and given corresponding variable names. An ‘if statement’ is then set to continue

with the function only if the $Key value starts with one of the five applications specified above.

Then for each application an if statement is declared to return either the installed version of that

software or if not found the value “Not Installed” is returned. At the bottom of the function, in

lines ninety through ninety-four, the results are sent back to the main script using reference

variables to pass values out of a function. Also, at the end of this function is a follow-up to stop

the remote registry service if previously started, returning the service of the remote system to its

original state.

4.2.4 The	Script	–	Part	4	

The fourth part of the script is the export to a CSV file of all the data collected. The

export of the results takes the array that was defined at the beginning of the script and pipes it to

a file named GSECGOLDResults.csv. The export runs by using the export-CSV command with

the $PrintResultsCSV array, shown in Figure 7. This command contains all the results stored in

it during the main scripts loop through each system.

Figure 7 – Export to CSV file all results	

4.2.5 The	Script	–	Results	

After the script has completed scanning all systems in the system_list.txt and the results get

exported to a CSV file named GSECGOLDResults.CSV the file can be opened to reveal the

returned data. The results, shown in Figure 8, are easy to browse across to see what systems need

further investigation. Also, it gives a quick way to see if any software is outdated and should be

uninstalled or updated to the latest version.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Complement	a	Vulnerability	Management	Program	with	PowerShell	|	15	
	

Colm	Kennedy	
	

Figure 8 – CSV Results

This format saves much time looking through these results instead of having to manually

check each system for missing patches or old software versions. In this example, the two systems

that would need some additional searches would be System 8 and System 7. With both missing

more Microsoft patches than expected, further investigation would occur. However, because of

this script, the administrator only needs to check these two systems and not all ten for missing

Microsoft patches. Thus, saving time and money avoiding the need to check each of the other

eight systems manually.

5. Life after Administrator Leaves
An important part of any script that gets created or used by an administrator in an

organization is what happens when that person leaves. It is always important to create scripts that

are transferable and easy to follow for those that do not know the scripting language. In this case

within the PowerShell script, there are many notes to detail what is happening as it proceeds.

This paper also stands as a guide to follow what is going on in the script and how it can be

adjusted to fit the organization's needs at any given time. A new PowerShell user should make

notes in all scripts so that others can reference what the thought process is or was when writing a

script. It is important to point out that the creation of this script started with no experience in

PowerShell. The script was pieced together using knowledge gained from walking through other

scripts, understanding the logic using these scripts accompanying notes, Google searches and lots

of trial and error.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Complement	a	Vulnerability	Management	Program	with	PowerShell	|	16	
	

Colm	Kennedy	
	

6. Conclusion

PowerShell is a powerful tool that all administrators should learn. It allows administrators

the ability to quickly scan systems to gather pertinent information that helps in day-to-day

activities. Using the script provided as an example, it saves a lot of manual effort and time and

gives a quick overview of system status without the need for additional agents installed like

SCCM. Using this script, an administrator can also change what software you are searching for

on remote systems. All that is required is a quick switch to the application variable values from

line 61-66 on the script.

Using this script and other PowerShell scripts allows an administrator time to work on other

tasks while eliminating the need for manual checks of individual systems for information

gathered in these scripts. If results are in a readable format, as is the case with the results of the

script in this paper, it allows for quick review and serves its purpose of saving time parsing

through possible false positives.

This script is intended for administrators with budget constraints or those looking for

additional, no cost alternatives to gathering information. As proven in the survey, there is a need

for a script like this to assist Administrators in collecting information without the need to spend

money on tools or time installing agents across an environment. PowerShell comes built in on

supported Microsoft Windows operating systems. With the right scripts, PowerShell can give

administrators enough insight into their systems to get the job completed promptly.

	

	

	

 	

	

	

	 	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Complement	a	Vulnerability	Management	Program	with	PowerShell	|	17	
	

Colm	Kennedy	
	

References
COM Objects and Interfaces. (n.d.). Retrieved May 22, 2017, from

https://msdn.microsoft.com/en-us/library/windows/desktop/ms690343(v=vs.85).aspx

Creating an Array of Custom Objects in Powershell. (n.d.). Retrieved May 22, 2017, from
http://www.get-blog.com/?p=82

Guys, T. S. (2011, November 13). Use PowerShell to Quickly Find Installed Software. Retrieved
May 22, 2017, from https://blogs.technet.microsoft.com/heyscriptingguy/2011/11/13/use-

powershell-to-quickly-find-installed-software/

Guys, T. S. (2013, December 11). Use PowerShell to Create Remote Session. Retrieved May 22,
2017, from https://blogs.technet.microsoft.com/heyscriptingguy/2013/12/11/use-powershell-to-

create-remote-session/

IUpdateSearcher interface. (n.d.). Retrieved May 22, 2017, from https://msdn.microsoft.com/en-
us/library/windows/desktop/aa386515(v=vs.85).aspx

IUpdateSession interface. (n.d.). Retrieved May 22, 2017, from https://msdn.microsoft.com/en-
us/library/windows/desktop/aa386854(v=vs.85).aspx

Oliness. (2012, June 22). List Remote Applications and exclude common applications. Retrieved
May 22, 2017, from https://gallery.technet.microsoft.com/scriptcenter/List-Remote-

Applications-4c2720d4/view/Discussions#content

Parankewich, S. (2016, January 07). Get Last Computer Boot Time or Up Time With
PowerShell. Retrieved May 22, 2017, from http://powershellblogger.com/2016/01/get-last-

computer-boot-time-or-up-time-with-powershell/

Prox, B. (2016, June 23). Finding Pending Updates Using PowerShell. Retrieved May 22, 2017,
from https://mcpmag.com/articles/2016/06/23/finding-pending-updates.aspx

Team, M. (2017, April 14). Protecting customers and evaluating risk. Retrieved May 22, 2017,
from https://blogs.technet.microsoft.com/msrc/2017/04/14/protecting-customers-and-evaluating-

risk/

Team, M. (2017, May 12). Customer Guidance for WannaCrypt attacks. Retrieved May 22,
2017, from https://blogs.technet.microsoft.com/msrc/2017/05/12/customer-guidance-for-

wannacrypt-attacks/

What is PowerShell? (n.d.). Retrieved May 22, 2017, from https://msdn.microsoft.com/en-
us/powershell/mt173057.aspx

Cybertrend. (2016, January 21). Why Vulnerability Management Matters. Retrieved May 22,
2017, from https://www.secureworldexpo.com/industry-news/why-vulnerability-management-

matters-0

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Complement	a	Vulnerability	Management	Program	with	PowerShell	|	18	
	

Colm	Kennedy	
	

Brenner, Bill. WannaCry: the ransomware worm that didn’t arrive on a phishing hook. Naked
Security. Sophos. Retrieved 18 May 2017, from

https://nakedsecurity.sophos.com/2017/05/17/wannacry-the-ransomware-worm-that-didnt-arrive-
on-a-phishing-hook/

