GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

Stacy Ballou

GSEC Practical
Version 1.4b
September 18, 2003

MALICIOUS CODE - WHAT SHOULD WE DO?

GIAC Security Essentials Certification (GSEC)
Assignment version 1.4b, Option 1

Stacy Ballou

September 18, 2003

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Stacy Ballou
GSEC Practical
Version 1.4b
September 18, 2003
MALICIOUS CODE — WHAT SHOULD WE DO?

Abstract

The information systems today are being inundated with new software
packages that have potential for unexpected behavior via malicious code.
The consumer and user of the products whether it is freeware or purchased
software, Commercial Off the Shelf (COTS), should be provided with some
type of certification that the software products being used does not infect the
computer system or network. This paper will provide information and
avenues for the developer of software products as well as the user of the
software products to gain confidence that a software package is not likely to
contain malicious code and have a minimal risk of potential vulnerabilities in
a software package.

What is Malicious Code?

Malicious code is software that performs unauthorized functions causing the
normal operation of an information system to be abnormal. According to
SPECTRIA InfoSec Services, malicious code is defined as “software which
interferes with the normal operation of a computer system” or “software,
which executes without the express consent of the user.™

There are several types of malicious code such as viruses, worms, Trojan
horses, and programming flaws. The programming flaws can be included
with malicious intent or just be bad programming practices.

It is important to ensure that the software packages are free of malicious
code. The government as well as commercial vendors should extend more
effort in precluding malicious code in their software development practices.
There are several ways that software development practices can
incorporate checks for malicious code thus promoting software that can be
used with an assurance that the product is free of malicious code. The
government and commercial vendors should also ensure that any freeware
or shareware used in the development of a product be certified to be free of
malicious code. There are methods by which the freeware and shareware
can be certified as being reviewed for malicious code. The user of a
software product should be able to expect to trust the software.

! SPECTRIA InfoSec Services, “Malicious Code 101 Definitions and Background”

1
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Stacy Ballou
GSEC Practical
Version 1.4b
September 18, 2003
Types of Malicious Code

There are many types of malicious code of which the most well known types
are viruses, worms, and Trojan Horses. Other types are intentional and
accidental coding flaws, logic bomb, and trapdoor/backdoor.

According to Xtra’s, Active Content and Malicious Code, “A virusis a
computer program that copies itself from file to file and typically performs
malicious or nuisance attacks on the infected computer™. Upon activation
of the virus, it will copy its code into one or more larger host programs.
Upon execution, the virus replicates. The viruses are hard to detect as well
as hard to destroy or deactivate. They spread widely and have the potential
to keep infecting the environment over and over again. Viruses are
relatively easy to create and are machine and/or operating system
independent. The “HI” virus as described by the Network Associates is an
example of “a memory resident, file infecting virus.” * Following is a
synopsis of the information provided by Network Associates at
http://vil.nai.com/vil/content/v_564.htm on the HI virus.

Once the infected file containing the HI virus is executed, the virus is
activated allowing the Hi virus to become a resident of memory on a
machine. As the .EXE files are executed, they become infected. The
virus attaches itself to the end of the infected program adding 460
bytes to the file length. The text string “HI” is near the end of the
infected program. The date and time stamp will also be updated when
this virus attaches itself to the file. This virus has been known to be in
existence since 1992; however, it is still a viable virus, which continues
to be used today. The virus can be spread through floppy diskettes,
downloads, and the network. *

Xtra’'s, Active Content and Malicious Code, also states, “A worm spreads
from computer to computer. It has the ability to replicate itself by sending
out large quantities of unwanted e-mails to contacts listed in a user’s e-mail
address book (or by other methods)™. Worms can cause havoc on
networks to the point of bringing them down due to the overload of e-mails.
A relatively new E-Mail worm is the W32/Colevo@MM and is described by
Network Associates as “a mass-mailing worm, which harvest MSN
Messenger contact addresses.” ® Following is a summary of the information

2 Xtra, “Active Content and Malicious Code”
3 Network Associates, “Hi”

4 Network Associates, “Hi”

® Xtra, “Active Content and Malicious Code”
® Network Associates, W32/Colevo@MM

2
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Stacy Ballou
GSEC Practical
Version 1.4b
September 18, 2003
that Network Associates at http://vil.nai.com/vil/content/v_100450.htm
provide on the W32/Colevo@MM worm.

W32/Colevo@MM was discovered on June 28, 2003. The worm
arrives in an email message and is activated with the execution of the
file. The W32/Colevo@MM launches Internet Explorer and connects to
news websites, displaying the images of the Bolivian Aymara Indian
leader Evo Morales. Some of the websites it connects to are:
http://news.bbc.co.uk, http://membres.lycos.fr, and
http://www.soc.uu.se.

When the worm is run it will copy itself to the %WINDIR%
(C:\WINDOWS\System32 or C:\\WINNT\System32) directory using one
of the following filenames:

a) All Users.exe

b) Command.exe

c) Hot Girl. Scr

d) Hotmailpass.exe
e) Inf.exe

f) Internet Download
g) Internet File.exe
h) Part Hard Disk.exe
i) Shell.exe

]) System.exe

k) System32.exe

[) System64.pif

m) Temp.exe

And, the worm will copy itself to the %SYSDIR%
(C\WINDOWS\SYSTEMS32 or C:\WINNT\SYSTEM32) using the
inf.exe, net.com, and www.microsoft .com filenames.

The W32/Colevo@MM worm leaves several TCP ports (1168, 1169,
1170, 2536) open allowing a hacker to control the machine remotely. It
also creates registry keys and modifies the system.ini file so that it can
be loaded upon Windows start up. W32/Colevo@MM will modify some
of the registry keys to allow the worm to be executed every time an
associated file extension runs.’

As described by Xtra’s, Active Content and Malicious Code, “A Trojan Horse
is any program in which malicious or harmful code is contained inside of

" Network Associates, W32/Colevo@MM

3
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Stacy Ballou
GSEC Practical
Version 1.4b
September 18, 2003
what appears to be a harmless program™. Trojan horse software is used to
edit programs even registry information, delete files, set the computer as an
FTP server, obtain passwords, or spy. These are typically executable files
such as Back Orifice and SubSeven, which gain remote access to a victim’'s
computer. Back Orifice allows system administrator privileges to a remote
user via the Internet without any indication of its presence to the user. Back
Orifice usually is installed via a component of a software installation
package, as an attachment to files or programs, or just run on its own. The
user installing the hidden program believes all is well and is never the wiser
to the installation. As soon as Back Orifice is installed, the computer
becomes easy access anytime it is connected to the Internet. Back Orifice
was publicly released in 1998 and gives the remote user full access to the
infected machine. Subseven is another Trojan Horse that was created to
expand on the Trojan Horse Netbus. Netbus was the first Trojan that made
it easy to abuse infected systems, thus Subseven is able to do all that
Netbus can do and more. Subseven allows the remote user to have file
control, monitoring capabilities, and network control. Subseven was
discovered in May 1999.

Writing code that is insecure is considered a coding flaw. The developers
and/or programmers must be knowledgeable of the security weakness of
the language they are using and of security practices used in developing
secure code. Writing secure code is a difficult task, and fixing bad or
insecure code is not accomplished quickly and equates to an increase in
cost of the product. As Kathryn Barrett describes in her overview of the
book Secure Coding: Principles and Practices, “According to Mark G. Graff,
coauthor of Secure Coding: Principles and Practices, to build code that
repels attack, software developers must understand where vulnerabilities
come from and counteract those tendencies with time-proven practices."®

Software developers need to understand that the introduction of buffer
overflows and race conditions are coding flaws, which have security
implications. Buffer overflows can result from several programming flaws,
which allow the program to store data from an external source in a pre-
allocated memory space that is not large enough to handle the data. Race
conditions are a result of performing two or more operations at the same
time. An example is reading and writing data at the same time allowing the
read data to be overwritten.

Kathryn Barrett provides the following quote from Marcus J. Ranum in her
overview of the book Secure Coding: Principles and Practices by Mark G.
Graff and Kenneth R. van Wyk, "Good programmers write good code, bad
programmers write bad code, but all programmers seem to write insecure

8 Xtra, “Active Content and Malicious Code”
® Barrett, Kathryn, “O’Reilly Releases Secure Coding: Principles and Practices”

4
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Stacy Ballou
GSEC Practical
Version 1.4b
September 18, 2003
code, says Marcus J. Ranum, principal author of the DEC SEAL firewall,
TIS Gauntlet firewall, and Network Flight Recorder Intrusion Detection
System. “!° This is a very true statement due to the fact that most software
developers are not aware of the security risks involved with the coding
languages they are using or the security risks they create because of their
coding practices.

Security flaws can be introduced at any point in the development of a
software product. It is important for the software developer to be aware of
the security requirements in each of the phases of software development.
Kathryn Barrett of O'Reilly states the following about the importance of
software developers being security conscience throughout the development
of a software product in her overview of the book Secure Coding: Principles
and Practices:

Secure Coding: Principles and Practices makes the case that
developers must be vigilant throughout the entire code lifecycle:

-Architecture: during this stage, applying security principles such as
“least privilege” will help limit even the impact of successful attempts to
subvert software.

-Design: during this stage, designers must determine how programs
will behave when confronted with fatally flawed input data. The book
also offers advice about performing security retrofitting when you don’t
have the source code—ways of protecting software from being
exploited even if bugs can’t be fixed.

-Implementation: during this stage, programmers must sanitize all
program input (the character streams representing a programs’ entire
interface with its environment—not just the command lines and
environment variables that are the focus of most security analysis).

-Testing: during this stage, programs must be checked using both
static code checkers and runtime testing methods—for example, the
fault injection systems now available to check for the presence of such
flaws as buffer overflow.

-Operations: during this stage, patch updates must be installed in a
timely fashion. In early 2003, sites that had diligently applied Microsoft
SQL Server updates were spared the impact of the Slammer worm that
did serious damage to thousands of systems.**

19 Barrett, Kathryn, “O’Reilly Releases Secure Coding: Principles and Practices”
1 Barrett, Kathryn, “O’Reilly Releases Secure Coding: Principles and Practices”

5
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Stacy Ballou
GSEC Practical
Version 1.4b
September 18, 2003
If the software developer does not incorporate security in the development
of code, the coding flaws the developer makes during the development
(design, implementation, testing, and operations) of a software package
gives the attacker a way to gain access to the environment the software
package is running in.

The dictionary definition of logic bomb is “Code surreptitiously inserted into
an application or operating system that causes it to perform some
destructive or security-compromising activity whenever specified conditions
are met.”*? The logic bomb is simply a virus or Trojan Horse that has a
timer on it. The logic bomb lays dormant until the action or criteria is met
that activates the logic bomb code.

The Backdoor malicious code is also referred to as a Trapdoor and is
defined as an inconspicuous way to gain access to a program, online
service, or a network. The programmer developing the code for a software
package, maintainers of the code, or a hacker, deliberately installs the
backdoor. There are backdoors that are put in place deliberately by
reputable software developers for administrative purposes; however, these
backdoors can also be used for malicious purposes. Back Orifice Trojan is
an example of a backdoor.

Prevention of Malicious code in shareware and COTS

To prevent malicious code in shareware or COTS software packages used
in the government or commercial environment is a matter of ensuring that
the software packages being used in these critical environments have been
certified.

Due to the increased use of shareware and COTS with no security
certification being used in the commercial and government environments,
the users of this software have made it easy for malicious code to be
installed in critical environments. All that the terrorist or malicious person
need do is to incorporate his code into a shareware product or a developed
product whether commercial or government that he has access to. If there
are no preventive measures put into place, the malicious person can do just
about whatever he wants to. When the software package is installed, the
malicious code is available to do its job. A terrorist could easily bring down
entire networks across the world. Following is one method that can be used
by the government and commercial vendors in assisting to prevent the
inclusion or installation of malicious code from shareware or COTS.

12 Die.net, “Dictionary Definition: logic bomb”

6
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Stacy Ballou
GSEC Practical
Version 1.4b
September 18, 2003
Malicious Code Reviews should be conducted on all software packages
whether COTS or freeware prior to being used or installed. The user of
COTS or freeware should have the software packages he is considering
using in his network or including in his software package reviewed by an
independent entity for malicious code. A Malicious Code Review is
conducted by a team of software security experts who review every line of
code for possible malicious behavior and reports the possible vulnerabilities.
Currently there is not a single tool that the code can be run through to
magically report all the possible vulnerabilities. Consequently, this process
for large software packages is time consuming and expensive. There are
some available tools, which are language specific that can assist the
software security expert in determining possible vulnerabilities, thus
automating a small portion of the process of doing Malicious Code Reviews.
The software security expert must review the whole package for
vulnerabilities and ensure that all of the source code is made available for
review. The software security expert should be able to build the marketed
executable image with the source code provided. Building the software
package from the source code will ensure that all the pieces parts are
available for the review.

The following eight categories based off of the paper “Trusting Software:
Malicious Code Analyses” which was co-authored by the author of this
paper and found at

http://www.iamsam.com/papers/milcom_malicious code analyses/MCAartl
6.htm are items the software security expert should be reviewing the code
for:

1) Passwords
Passwords properly safeguarded.
Passwords being sent in the clear

2) Networking
Excessive access to files across the network
Ports being opened that do not need to be open
Connection to systems or software subsystems in an unsafe
manner

3) File Permissions
- File permissions being changed via code
Software taking ownership of files that it shouldn’t
Software accessing publicly writeable files/buffer/directories
should be evaluated to determine it's potential for malicious
exploitation.

4) Minimum Privilege

7

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Stacy Ballou
GSEC Practical
Version 1.4b
September 18, 2003
Prevent abuse of required access privileges.
Software shall be granted the minimum privileges available to
perform its function.
Software using excessive privileges, such as Set User Id (suid).
Compromise of suid root software programs may lead to
excessive user privilege.
Software providing shell access; these should be considered
suspect as they may be used to obtain excessive privileges

5) Self Replicating/modifying
Self-replicating code across systems
Self-modifying code

6) Bounds and Buffer Checks
Perform proper bounds and parameter checking on all input data.
Perform checks to determine that all arguments are current and
valid for system calls
Code that uses unbounded string copies / arguments; such code
may be vulnerable to buffer overflows

7) Race Conditions
- Software changing parameters of critical system areas prior to
their execution by a concurrent process.
Software improperly handling user generated asynchronous
interrupts
Software subverted by user/program generated Symbolic links

8) Other
Excessive use of resources
Software that is never executed; such code may execute under
unknown circumstances / conditions, and consumes system
resources
Software that we do not understand; such code may perform
malicious functions
Implicit trust relationships that could induce vulnerabilities
Does the software meet functional security claims (if the system
purports to perform passwords/logs/security, does it actually
perform those functions)
Code that performs a malicious activity

8
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Stacy Ballou
GSEC Practical
Version 1.4b
September 18, 2003
Software using relative pathnames inside the program should be
evaluated to determine it's potential for accessing unintended files
including Dynamically Linked Libraries.*®

Following are tools that can be used by the software security expert to
assist in the malicious code review for the detection and prevention of
malicious code in software products that are already developed and in use.
However, these tools are programming language specific and specific in the
types of vulnerabilities it can detect. With this note, the software security
expert reviewing code for malicious behavior must be able to perform most
of the malicious code review manually using the tools, if applicable to the
software package under review, as an aid.

ITS4 was developed by Cigital to automate the security source code review
for software packages written in C and C++. ITS4 is a command line tool
that can be run on a Unix or Windows platform and scans the code for
function calls that are potentially dangerous. The C and C++ languages are
known for being prone to introducing insecure code through their supporting
libraries. Functions such as gets, sprintf, strcpy, and strcat remain in the C
standard library even though these functions have potential for buffer
overflow vulnerabilities. Each of these functions is found by ITS4 with a
suggestion to use the more safe alternatives to these functions. The
function stat is searched for because it is often involved with race condition
problems. The vulnerability database for ITS4 is a text file that can be
modified by the user at any time. So, the user of ITS4 can add, delete, or
change specific items that ITS4 will search for. If the possible vulnerability
is not in the database list, the vulnerability is not searched for. Currently,
ITS4 vulnerability database provides 131 calls accumulated from many
different sources such as the Bugtraq archives.

Secure Software created the Rough Auditing Tool for Security (RATS) and
states that “RATS scanning tool provides a security analyst with a list of
potential trouble spots on which to focus, along with describing the problem,
and potentially suggest remedies. It also provides a relative assessment of
the potential severity of each problem, to better help an auditor prioritize.
This tool also performs some basic analysis to try to rule out conditions that
are obviously not problems.”* RATS scans C, C++, Perl, PHP and Python
source code flagging programming vulnerabilities or errors such as buffer
overflows and race conditions. This tool will not find every error and will
display some code, which are not errors. RATS simply aids in the discovery

13 Kurowsky, Jay, Ballou, Stacy, Nitzberg, Sam and Whitley, Harold, and Wood,
Richard, “Trusting Software: Malicious Code Analyses”
14 Secure Software, “Eliminating Vulnerabilities at the Source”

9
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Stacy Ballou
GSEC Practical
Version 1.4b
September 18, 2003
of possible areas of vulnerabilities. Manual inspection is still the best and
recommended when using this tool.

The security expert should use these tools to assist in locating vulnerable
code, then analyzing the code to determine if the suspected code is truly
vulnerable. Using the tools may reduce the time to perform a manual
analysis by one fourth to one third. Analyzing code for malicious behavior is
a time consuming task. The current estimation of time for a software
security expert to review code for malicious behavior is based off of
reviewing one to two hundred lines of code per eight-hour day. There is
definitely a need for a more comprehensive automated tool to assist the
security expert in reviewing the source code for malicious behavior.
According to the Information Security article, “NSA: Code Scrubbers
Needed”, "Daniel Wolf, NSA’s director of information assurance, told a
House cybersecurity subcommittee that there’s a dire need for tools that can
automatically examine software code for logic bombs, backdoors and
sniffers.”*®

Detection and Prevention of Malicious Code During Development.

Detection and Prevention of Malicious Code during software development
can be done through software code inspection, independent vulnerability
assessments, and by using tools throughout the software development
cycle that identify potential area of malicious behavior.

To ensure malicious code is not inserted during development, the
developing company or developer should have processes in place that
mandate software code inspections with an emphasis on reviewing the code
for malicious behavior. A code compare, using either manual or automated
means, will be performed against all modified modules. Knowledgeable
software security experts who are not the original author of the code will
examine all code for malicious or unintended code. The code being
inspected should be controlled through a formal configuration management
environment.

Independent vulnerability assessments are used to certify that a developing
company has processes in place throughout the development life cycle to
protect against malicious code insertion. The developing company or
agency hires an independent agency that has security experts able to
perform vulnerability assessments. The security experts review the
developing company’s process; conduct an on-site inspection, and report
possible vulnerable areas with possible solutions. The vulnerability

15 Author Unknown, "NSA: Code Scrubbers Needed”

10
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Stacy Ballou

GSEC Practical

Version 1.4b

September 18, 2003

assessments can also include a scan of the developers network to find open
ports or other possible avenues of vulnerabilities in the developers network.
There are several tools the security expert can use to conduct the scan; one
is Nessus, which is a freeware remote security scanner tool and is known to

be quite reliable.

There are also tools, which can assist the developer in detecting coding
errors during the development of the software package that can be potential
avenues for malicious behavior. Parasoft has two tools: Code Wizard and
Insure ++ and Rational has a tool called Purify. Again these tools are
language specific, which limits their usability.

Parasoft states “CodeWizard, an advanced C/C++ source code analysis
tool, uses over 300 industry-respected coding guidelines to automatically
identify dangerous coding constructs that compilers do not detect.
CodeWizard makes it easy to create new, customized rules through the
RuleWizard feature, or to suppress rules for customized analysis. When
used on a daily basis, CodeWizard simplifies code reviews and make code
more readable and maintainable.”®

CodeWizard runs in Microsoft Visual C++ 6.0 or Microsoft Visual Studio.net
and can be run on UNIX platforms by replacing CC with codewizard in the
makefile. CodeWizard parses C and C++ code for coding patterns that
match the CodeWizard ruleset and compilers do not detect. The user will
get notification of any violation to the ruleset.

Parasoft’s Insure ++ is an “automatic run-time application testing tool that
detects elusive errors such as memory corruption, memory leaks, memory
allocation errors, variable initialization errors, variable definition conflicts,
pointer errors, library errors, logic errors, and algorithmic errors.”’

Insure ++ tells the user the location of the code where the leaks occur and is
also capable of checking third-party libraries and functions, which do not
have to be written in C or C++. Insure ++ runs in Microsoft Visual C++ 6.0
or Microsoft Visual Studio.net on a Windows 2000 or XP platform.

Insure ++ can also be run on a variety of UNIX platforms. Insure ++ creates
an equivalent code by inserting test and analysis functions around every
line, and runs the equivalent code to determine possible problems.

Rational Purify is an automated debugging tool for Visual C++ and Java
developers. Rational states that “Purify detects, locates, and diagnoses

18 parasoft, “Code Wizard”
17 parasoft, “Insure ++”

11
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Stacy Ballou
GSEC Practical
Version 1.4b
September 18, 2003
runtime and memory-related bugs™ (in C/C++ code) and garbage
collection-related memory management issues (in Java code) “that can
cause application instability and can often trigger unpredictable failures”.*?
Rational Purify detects memory-related coding errors, which may or may not
exhibit any symptoms in the development environment and reports the
location of the problem code. Many of the problems found by Rational
Purify are a result of using uninitialized memory or failing to free memory
after use. Rational Purify can be used independently or as a part of the
existing process. Rational Purify not only detects memory errors in source
code but also can find memory errors in software libraries and components
that do not have the source code available.

»18

Automation of detecting and preventing malicious code during development
is very limited at this time. The tools are language and environment
dependent. Thus, there is a need for the development of malicious code
analysis tools that can detect most types of malicious code during
development.

Conclusion

It is possible to ensure that malicious code is kept to a minimum in our
computer networked environments. There is no quick and inexpensive
method to ensure that malicious code is prevented. However, the more
reliable and cost effective method would be to ensure malicious code
prevention during the development of the software product. This is not
always feasible due to the fact that a lot of the software products being
used today are freeware or shareware products, which is developed
without much control. These products can be updated at will and posted
for download leaving the user open to malicious behavior. In this case,
the only prevention is to have security experts conduct malicious code
reviews on a version of the software package to certify the product for a
specific version. For a large freeware package, this can be a relatively
costly endeavor. But, if a critical environment sees a need for the product,
the cost of a malicious code review, may be insignificant.

Today, we are at the mercy of manual code reviews with little assistance
from automated tools causing the review for malicious code to be
inconsistent, time consuming, and costly. The development of automated

18 Rational, “Manage the Complexity of Software Development Rational Suite
Development Studio for Windows” and Rational, “Manage the Complexity of
Software Development Rational Suite Development Studio for Unix”

19 Rational, “Manage the Complexity of Software Development Rational Suite
Development Studio for Windows” and Rational, “Manage the Complexity of
Software Development Rational Suite Development Studio for Unix”

12
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Stacy Ballou
GSEC Practical
Version 1.4b

September 18, 2003
tools to assist in the discovery of malicious code is highly needed in our
quick paced environment we live in today. Automation of malicious code
discovery would allow software packages to be reviewed for malicious
behavior in a timelier and more cost effective manner.

13
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Stacy Ballou
GSEC Practical
Version 1.4b
September 18, 2003
References

1. SPECTRIA InfoSec Services, “Malicious Code 101 Definitions and
Background”, 2000,
URL:
http://www.securitywebsites.com/SpectriaMalaciousCodel101.htm, 30
July 2003

2. Xtra, “Active Content and Malicious Code”, 3 March 2003, URL.:
http://www.xtra.co.nz/help/0,,4155-649452,00.html, 13 June 2003

3. Xtra, “Active Content and Malicious Code”, 3 March 2003, URL.:
http://www.xtra.co.nz/help/0,,5739-649452,00.html,
15 September 2003

4. Network Associates, “Hi”, 15 August 1992,
URL:http://vil.nai.com/vil/content/v_564.htm, 30 June 2003

5. Network Associates, “W32/Colevo@MM”, 08 July 2003,
URL:http://vil.nai.com/vil/content/v_100450.htm, 15 July 2003

6. Barrett, Kathryn, “O’Reilly Releases Secure Coding: Principles and
Practices”, 30 June 2003, URL.:
http://www.linuxsecurity.com/articles/documentation_article7562.html
, 22 July 2003

7. Die.net, “Dictionary Definition: logic bomb”, 9 February 2002, URL:
http://dict.die.net/logic%20bomb/, 16 September 2003

8. Kurowsky, Jay, Ballou, Stacy, Nitzberg, Sam and Whitley, Harold,
and Wood, Richard, “Trusting Software: Malicious Code Analyses”,
1999, URL.:
http://www.iamsam.com/papers/milcom _malicious code analyses/M
CAartl16.htm, 12 September 2003

9. Cigital, “ITS4: Software Security Tool”, 1995-2003, URL.:
http://www.cigital.com/its4/, 22 July 2003

10. Secure Software, “Eliminating Vulnerabilities at the Source”, 2002,
URL:http://www.securesoftware.com/download form_rats.htm,
22 July 2003

11.Nessus, “Nessus”, 02 July 2003, URL:http://www.nessus.orqg, 30 July
2003

12. Author Unknown, "NSA: Code Scrubbers Needed”, Information
Security, September 2003: 18

13.Parasoft, “Code Wizard”, 1996-2003,
URL:http://www.parasoft.com/jsp/products/home.jsp?product=Wizard
&itemld=54, 25 July 2003

14.Parasoft, “Insure ++”, 1996-2003, URL.:
http://www.parasoft.com/jsp/products.jsp?itemid=10, 25 July 2003

15.Rational, “Manage the Complexity of Software Development Rational
Suite Development Studio for Windows”, 2000, URL.:
http://www.unicorn.cz/distribution/ _downloads/ds-
developmentstudio.pdf , 25 July 2003

14
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Stacy Ballou

GSEC Practical
Version 1.4b
September 18, 2003

16.Rational, “Manage the Complexity of Software Development Rational
Suite Development Studio for Unix”, 2000, URL.:
http://www.rational.com/media/products/dstudio/D805 _DevStudioUni
x.pdf, 25 July 2003

15
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

