
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

 ! ! !
! !

Application White-listing with Bit9 Parity

GIAC (GSEC) Gold Certification

Author: Michael Weeks, mweeks9989@gmail.com
Advisor: Dominicus Adriyanto

Accepted: October 5, 2014

Abstract

Endpoint protection based solely on Anti-Virus (AV) signature-based technology is fundamentally flawed.

AV technology will only protect against known malware the AV provider has identified and written

signatures for. The problem with classic AV protection is it does not detect unknown or unseen malware

because it is signature based. A better method is to identify secure software and only allow that software to

run. This technique is called application white-listing. Bit9's security solution, Parity, is a leader in this

arena. This paper will delve deep in the implementation, configuration, and deployment of the product and

explore how the data provided by the product can be utilized to significantly enrich the metrics of a security

operations team.

Application White-listing with Bit9 Parity 2

Michael Weeks, mweeks9989@gmail.com

1. Introduction

Antivirus is a requirement for a host of compliance standards and is championed to be a critical

component for any security baseline (PCI-DSS 3.0-5.1). A recent google search for “Cyber Security

Breaches” in Google News shows 16,700 results in Google News. Even NIST has stated that that AV is not

an adequate control (Artes, et al, 2013). The basis for this argument is that AV, even with heuristics, looks

for methods or signatures that are known to the specific AV vendor. Bit9 Parity goes a step further and

restricts the execution of any executables or applications to those only allowed by the product (Bit9

Datasheet, 2013). Parity has a host of benefits as well as some significant drawbacks, but with proper and

careful implementation, a deployment of Parity can be successful.

Parity has multiple methods to manage and control an environment. Parity is deployed with a

server, database and console to control and manage Parity Agents. The deployed agents are a package of

executables and configuration files that contain a kernel module that sits on the hardware layer and proxies

the raw system calls from the user layer to those resources. For this reason it makes manipulation of the

agent from the user layer very difficult. There is also a management console to manipulate the server that

controls all agents on endpoints. The server has a backend database that stores data to be used by its

processes and to administer the environment. The data in the back-end database has tremendous use, not

just for managing the product, but also as a source for a security operations team to pull information.

Carbon Black, which was also recently purchased by Bit9, functions as a detection mechanism to support

Parity’s control mechanisms. According to the Bit9 site: “Records of execution, file system modifications,

registry modifications, network connections, and a copy of every unique binary” (Bit9 and Carbon Black

are Now One Company 2014).

Some weaknesses in the product are its dependency on the software-signing certificates for ease of

administration and user acceptance. This was a significant issue when Parity was compromised by

advanced actors, and the Bit9 software signing certificates were compromised (Krebs, 2013). This can be

corrected by disabling the trust of Bit9’s software-signing certificates. In addition, the execution prevention

can be bypassed by exploits and attacks that stay transient in memory as well as injecting into running

processes. One specific method for bypassing the product, outlined at Shmoocon in 2012, was to inject into

a .DLL and then migrate to the notifier.exe tool, in the Parity agent, in order elevate privileges. The

vulnerability was patched in version 6.0.0. (Shaffer 2012).

Despite these few weaknesses, Bit9 Parity can be deployed to greatly enhance endpoint protection

as well as protect against most unknown threats. However, in order to protect against unknown threats, and

prevent significant negative impact on operations it must be deployed correctly.

Application White-listing with Bit9 Parity 3

Michael Weeks, mweeks9989@gmail.com

1.1. Pre-Deployment

During pre-deployment, the first thing that must be decided is where it will be deployed. Bit9

would recommend that the product be deployed on all systems in an environment. However, this is not

feasible as the cost of the product and the complexity of most environments makes 100% immediate

deployment difficult. Parity takes a default deny approach (Bit9 Data Sheet, 2014). This is a good method

for protection but can make deployments difficult. To deal with this situation it is a good idea to deploy the

product in homogenous environments first.

Therefore, in planning deployment it is best to identify and group environments by their similarity

and their levels of criticality. The most critical could be where the protection needs to go first. However an

additional risk of deploying the product in critical environments is that by description they are critical to the

business. So the product must deployed with care, proper planning and testing.

There are two major methods of deployment. The product must first be deployed with one of two

goals in mind, protection, or control of the environment.

1.1.1. To Protect the Environment (Client-side)

Protection and prevention is absolutely ideal when it comes to deployment of Parity. When

working with dynamic and non-homogenous environments the product should be deployed in this mindset.

An excellent environment for deploying to protect would be a desktop or laptop (client side) environment.

With this method of deployment a few extra deployment options must be configured. For instance

a few extra white-listing rules to allow for dynamic approvals of a multitude of applications, specifically

.net and other development tools. Also enabling trust approvals to a certain level will ensure any software

signed by a certificate trusted by Bit9 Parity’s Database. This will remove administrative overhead

significantly by allowing those files that are “known good: to run in environment. One caveat to that being,

that a lot of DLLs and other libraries are not signed by a software certificate and will have to be identified

by administrators of the product.

Some organizations have purchased Parity purely for the external device control. Parity has

excellent control for the denial of non-approved USB keys and can prevent this type of threat. Installation

and enabling of this feature prior to any lockdown of executables can be a quick milestone accomplishment

in Parity deployment plan.

Another consideration is that Parity comes with two types of licenses: Visibility which will

provide file and event tracking, provide file bans and device blocking, as well as the Parity Suite which is

designed for getting systems into full lockdown.

Application White-listing with Bit9 Parity 4

Michael Weeks, mweeks9989@gmail.com

Figure 1 – Trust by Certificates

1.1.2. To Control the Environment (Servers)

In order to protect an environment administrators and security personnel must control and

understand their environment. However methods of deployment can differ with these underlying goals in

mind. Deploying to control should be applied in specific environments that have rigorous change control

and a low level of change. This would be server environments or other systems that are running on end-of-

life operating systems, such as Supervisory Control and Data Acquisition (SCADA) systems, as well as

some Point of Sale Systems (POS).

This method of deployment must become an integral part of the change control process, because

no changes can be made without the Parity administrator getting involved in the change. Limiting software

approvals by certificate trust level must be used sparingly. Any approvals based on trusted directories, users

and other trust levels baked into the product should not be allowed. Rules should specify a particular

process, specific directory not ending in an *, as well as a not using the “everyone” user.

This method of deployment (as well as the protection deployment) also heavily utilizes policies.

Levels of Lockdown should be created to move systems in and out of maximum lockdown. In this method

of deployment there is heavy reliance on policy, because the servers will be migrated in and out of the

policy in conjunction with the change control policy.

Application White-listing with Bit9 Parity 5

Michael Weeks, mweeks9989@gmail.com

Figure 2 – Trusted Installers

It is highly recommended to deploy separate servers for each of these methods of deployment. To

ensure that over-permissive software rules do not accidentally give excessive permissions to those servers

in the control deployment.

2. Deployment

After deciding what environment to start, it is time to build out the Parity Server and console.

According to the Bit9 installation guide, the server should have a SQL server available or a new SQL

server database, either 2005 or 2008 deployed and configured prior to installation. (Parity 6.0 Deployment

Guide, 2013) The server will also need .net framework 3.5 and a host of other web application Microsoft

requirements. All should be included with a current version of Server 2008. [Appendix A]. Prior to

installation ensure that all servers meet local hardening procedures.

It is recommended to use a database on another server for administration of more than 300

systems. After the database has been identified (or installed) the service account that is identified will need

create and owner rights for the database. The database will be called DAS – this is prepopulated by the

Parity install scripts, as well as the schema, and all tables. Logging in as the service account and running

the installation will greatly simplify deployment.

 Steps for installation are detailed in the Parity Deployment guide from Bit9, the installation is

simple and can be walked through by most experienced administrators. Ensure to install with best practices

and ensure that all drive installations are on a separate drive from the operating system. Logs should also be

on a separate drive, especially if the database is on the same server. The full document should be retrieved

from Bit9’s support portal for installation guides for the version in use.

Application White-listing with Bit9 Parity 6

Michael Weeks, mweeks9989@gmail.com

2.1. Configuration

After the server has been installed, it should be simple to browse to the https://localhost which will

direct to the Parity console if logging on locally. Browsing from another system to https://servername

which will direct the administrator to the Parity console. The default credentials should be username admin

and password admin. As always, best practices, change immediately!

Figure 4 – Login Screen

 After logging in and changing default username and password, an excellent next step is to enable

AD logins for administrators. Using local change control procedures request three security groups with

exactly the following naming convention: cn=”Bit9 Administrators” – full administrators to the console,

cn=”Bit9 Power Users” – Power Users, and cn=”Bit9 ReadOnly Users” – users that can access the console

and query data. All other users will have unauthorized access. The security groups will have to be on the

same domain that the Parity server is joined to. Administrators should be individuals familiar with the

product that, know how to maintain and own the product and its deployment. PowerUsers should be those

member of the helpdesk/desk side in a Deployed to Protect (client side) environment or System

Administrators in a Deployed to Control (server) environment. ReadOnly Users should be those in

management or possibly some security analyst that need to research executables in the environment.

 After the security groups have been configured, it is a simple process of enabling the AD

authentication under the Administration Tab > General Tab under Active Directory / LDAP integration.

This configuration should be carefully considered in the Deploy to Control method for deployment, with

this type of configuration the security of Active Directory must be considered absolute.

Application White-listing with Bit9 Parity 7

Michael Weeks, mweeks9989@gmail.com

2.1.1. Bit9 Knowledge Base

Another critical component is the Bit9 knowledgebase. The Bit9 knowledgebase is one of the

single largest collection of known good executables available commercially. This will require outbound

connectivity to the Bit9 knowledgebase servers on port 443 from the Parity server. It will also require a

license from Bit9 knowledgebase. There is an open API to query the data through a restful API. (Script

attached – Appendix B) The knowledgebase can be configured in the Administration tab > Licensing >

Parity Knowledge Activation.

2.1.2. Other System Administration

 On the system administration tab there are a host of other setup actions that can be accomplished

on this tab as well. On the mail tab, the SMTP settings for alerts can be configured to send alerts for status

of systems. The advanced options has the ability to back-up the database, configure automated updates, log

out times for the parity console, file uploads configuration, old computer cleanup, software rule

completion, and certificate options. Most of these options are not of much concern, however the cleaning

up of old agents should be configured.

 The Security tab under Administration has a critical configuration. The Parity agents communicate

with the Parity Console through certificate authentication. The date the certificate expires should be noted,

when this happens the agents will not be able to communicate with the server. In Deploy to Protect

configuration, this can be production impacting because if agents cannot communicate with the Parity

Console then the memory will spike on the servers causing resource depletion. Which is not something that

will make operations personnel very happy. A script is attached to move agents from lockdown policy in

case a situation like this occurs. [Appendix B]

 The events tab have two important configurations. Event Log Management need to be well

thought out and minimized to ensure system performance is not significantly impacted. The External Event

Logging can send events to a SIEM or other syslog server for off-box storage and retention of logs. This

can be set to send in CEF, syslog, and other formats.

Application White-listing with Bit9 Parity 8

Michael Weeks, mweeks9989@gmail.com

2.1.3. Policy Configuration

Designing the policies in Parity is absolutely critical to having a successful deployment. The

default policies that come with the product are a good place to start. “Default Policy” which is designed for

the agents to go to once the agent is initially installed. The “Local Approval Policy” which is designed to

approve any running executables on the system. The “Template Policy” which is designed to be copied and

configured for new policies.

Initially four new policies need to be created for management of agents. “Lockdown Policy” must

be created to replace the Default Policy and to be the final stop for agents during configuration. “Lockdown

Reporting” policy which will be configured on systems to report as if they were in lockdown without

actually blocking, and a “Monitoring Policy” to start hashing and collecting execution information on

systems. “Disabled Policy” should also be created to for the installation of the agents, and removal of the

agents if necessary.

The cycle of agents to move for installations should be as follows:

- “Disabled Policy” for installation, configuration will allow systems to be installed and

uninstalled easily without issue. Also with initial installation of disabled agents on systems,

agents can be deployed in mass to a list of systems.

- “Monitor Policy” agents will start to hash all files on the system. This activity is processor

intensive and should be implemented on systems during downtime, or on one system at a

time.

- “Lockdown Reporting” agents will behave and report as if the agent is in lockdown mode.

This should be utilized for monitoring of agents to remove false positives during tuning.

- “Lockdown” agents will lockdown and not allow any approved executables to run.

Application White-listing with Bit9 Parity 9

Michael Weeks, mweeks9989@gmail.com

Figure 5,6,7 – Policy Configurations

The next critical point to configuration and deployment are software rules. Software rules are a

unique feature in Parity and can be the key to a successful deployment or can possibly, undo any

protections Parity may provide. After configuring the policies and any trusts for software certificates,

software rules should be configured. If the environment is a windows environment some of the default rules

should be turned on. Updates for Windows should be enabled, and depending on the environment

(Server/Client) all other available software updates that are available on the systems. Most software can be

approved through certificates by watching for executions, researching the execution and approving. Some

Application White-listing with Bit9 Parity 10

Michael Weeks, mweeks9989@gmail.com

software creates dynamic executables or DLLs, or .pyc python executables, an example being is the .Net

framework.

The .Net framework creates dynamic DLLs inside multiple directories. There are multiple paths

for file creation with specific care to ensure that only DLLs can be written and the specific process is

csc.exe.

Figure 5 - .Net framework file creation

 This will allow the .DLLs to be written as needed to the specified directories as well as only by the

specified process. This protects the creation of the files but does not automatically approve the files created

on disk. This is only one half of the equation, it is necessary to add the execution control of DLLs on the

.net framework. Ensuring that only

<Reg:HKLM\Software\Microsoft\.NetFramework\InstallRoot>*\mscorsvw.exe and <Reg:HKLM-

SoftwareX86\Microsoft\.NetFramework\InstallRoot>*\mscorsvw.exe are allowed to run DLLs will go a

long way towards protecting the environment from methods of exploiting the .net framework.

Application White-listing with Bit9 Parity 11

Michael Weeks, mweeks9989@gmail.com

Figure 6 - .Net Framework Execution Rule

 This is one of the more unique rules that required to be created in the majority of Windows

environments. For most rules, a good rule of thumb is to monitor systems in lockdown reporting and review

the blocks as block events come in. If the software was a legitimate piece of software, copy the path, and

the process that executed the software. Then add a rule to the software rules that allows the software to

execute with the specified process. In higher security environments (server) it may be ideal to enter a

username as well.

 Scripts and software become difficult because it becomes necessary to ensure those scripts can

execute as well. There are pre-built rules for the execution of scripts however they can be somewhat

permissive. It is slightly better to designate specific directories and not allow those scripts to start other

executable processes, or even better utilize script signing and sign scripts that are allowed to run in an

environment.

Application White-listing with Bit9 Parity 12

Michael Weeks, mweeks9989@gmail.com

2.2. Deploying Agents

After all the agent configuration policies have been created and some basic software rules like the .net

software rule, it is time to start deploying agents. The agents can be downloaded from

https://parityserver/hostpkg/. It is best to start with an agent disabled policy.

Figure 7 – Agent Removal Policy

 Installing the agent can be done on all systems through multiple methods, GPO, software

packaging and through scripting. Scripting is beneficial, because it can be scheduled and the output can be

collected for error checking. See appendix B for an example installation script.

 Installing the agents is a slow process which requires getting a list of all devices, verifying in the

Parity Console the assets are available and the communication level of the agent. Something to consider is

that any Windows version after Server 2008 and Windows 7 should deploy the agents without the need for

a reboot. However older versions will require a reboot. If the agents are not communicating with the Parity

Server ensure that agents can reach the server on TCP port 41002 or reboot the system if necessary.

2.3. Locking Down the Agents

 After ensuring that all agents are deployed it is time to start locking down agents. This can be

accomplished by selectively moving agents into the “Monitoring Policy”. This step in the installation

process has the most impact on the system therefore it is best to move agents into this policy during times

of less usage and only move a few agents at a time. The Parity agent will start to hash every file on the

system at this time and will utilize CPU and memory. If deploying to client systems, initiate after hours. If

it is a server environment attempt to stagger it between failover between high-availability environments, or

during maintenance windows.

After all agents have been moved to the “Monitor Policy” utilize the same method to move the

agents into “Lockdown Reporting”. As systems start reporting blocked executables slowly approve

individual executables as well as create software rules to ensure that valid executables are approved. This

Application White-listing with Bit9 Parity 13

Michael Weeks, mweeks9989@gmail.com

process can be slow, however it is crucial to ensure that the false block rate is a low as possible in order

reduce the impact to business operations. Once the block rate has been reduced to an acceptable level it is

time for the most difficult portion of the deployment process.

2.3.1. Policies and Procedures

Before moving any systems into lockdown (other than testing systems) it is time to ensure there is

a process for addressing blocked executables that users/administrators need to run on the systems. It is

likely that any organization that is going to deploy Parity will have methods and processes for IT workflow.

This is an ideal method for dealing with end user issues with Parity blocks of potentially useful and needed

executables. This should be communicated with the user population to ensure that users know where to go

in case they have Parity block.

User notifications can be configured in the Parity Console to inform the user where to go if they

do receive a block, as well as very basic workflows in the product. The workflows in the product are not

entirely complete and will require some type of process to track changes and to ensure that software is

approved for use. Initial deployment will be painful, but with proper project management and

communication skills this process can go well. See appendix C for example Policy/Procedures documents.

For server deployments, to ensure that false blocks are mitigated, use the change control system.

In the change control process there should be a method for changing systems. The Parity administrator and

team will have to get involved with the change control process. An excellent method is to move the agents

into the “Local Approval” policy during maintenance, and then back into lockdown when the maintenance

is completed. For emergency changes the Parity Administrators will have to have on-call rotations, or if

resources are limited ensure that System Administrators are trained to deal with situations where Parity

could prevent the execution of duties.

Using these methods and working slowly and methodically, Parity can be locked down efficiently

and with minimal incidents.

3. Operational Uses for Parity

There are many other uses for Parity other than just to protect the environment. It is an excellent

source of information showing exactly what is running in an environment. By querying the data in Parity, a

Security Analyst could research to find if a downloaded malicious file actually reached the endpoint system

or not. An Analyst could also upload a hash from doing analysis on another system to Parity to block across

the install base. The server actually has a very simple SOAP API utilizing JSON that can be called very

simply from web posts. (Example Script Attached Appendix A)

Another consideration is the recent acquisition of Carbon Black by Bit9. The purchase of Carbon

Black also has tremendous potential for Security Analytics utilizing the visibility that Parity has into an

environment. Its ability to delve into the memory could tremendously offset some of the places that Parity

Application White-listing with Bit9 Parity 14

Michael Weeks, mweeks9989@gmail.com

fall-short in prevention. Some organizations may want to purchase this additional tool to augment their

security analysis.

As mentioned earlier, another very significant protection that Parity provides is the blocking of

USB devices. This happens at the kernel level, so a huge sector of USB attacks can be mitigated using

Parity.

4. Conclusion

When evaluating any technology technologist and security practitioners should carefully analyze

with due care the technologies, especially those that will require employee time and energy as well as

significant capital expenditure. Bit9’s Parity will take significant time, funds, and energy to deploy. It will

take a concerted effort from senior leadership to decide on the product and then organizational push to

deploy it.

The approach that Application-Whitelisting takes is a simple one, trust only what is known and all

other executables and binaries are not trusted and are not allowed to run. If an organization believes that

they may be targeted by an advanced actor then the advanced protection provided by an approach like

Application-Whitelisting should be evaluated.

The decision is a risk decision, the protections Parity offers are significant. If deployed properly,

malware will not be able to gain a persistence on a network, as well a huge number of other attacks will be

mitigated. If an organization deems that they need the level of security, the costs and energy that Parity

takes to deploy are well worth the efforts.

Application White-listing with Bit9 Parity 15

Michael Weeks, mweeks9989@gmail.com

5. References

Artes, Francisco, Baylor, Ken PhD Phatak, Vikram (2013), NSS Labs – NIST: Cyber Security Framework

RFI, Retrieved from: http://csrc.nist.gov/cyberframework/rfi_comments/040813_nss_labs.pdf, on

08/31/2014

Beachey, Jim, (2010). “Application Whitelisting Panacea or Propaganda?”, SANS Reading Room,

Retrieved from: http://www.sans.org/reading-room/whitepapers/application/application-

whitelisting-panacea-propaganda-33599 on 08/21/2014

Krebs, Brian, (2013), “Security Firm Bit9 Hacked, Used to Spread Malware”, KrebsonSecurity, Retrieved

from: http://krebsonsecurity.com/2013/02/security-firm-bit9-hacked-used-to-spread-malware/ on

08/21/2014

Krebs, Brian, (2013), “Bit9 Breach Began in July 2012”, KrebsonSecurity, Retrieved from:

http://krebsonsecurity.com/tag/bit9-breach/ on 08/21/2014

Shaffer, Curt, (2012), “Raising the White Flag-Bypassing Application Whitelisting”, Foreground Security,

Retrieved from: http://foregroundsecurity.com/resources/blog/164-raising-the-white-flag-

bypassing-application-white-listing, on 09/02/2014

Unknown (2014), “DATA SHEET | The Bit9 Security Platformv7”, Bit9, Retrieved from:

https://www.bit9.com/download/data-sheets/Bit9-Security-Platformv7.pdf on 08/21/2014

Unknown (2013), Payment Card Industry (PCI) Data Security Standard – Requirements and Security

Assessment Procedures, Retrieved from:

https://www.pcisecuritystandards.org/documents/PCI_DSS_v3.pdf on 08/31/2014

Bit9 Inc., Installing Parity, Document Version: 6.0.2c, September 8, 2011

Unknown (2014), Bit9 and Carbon Black are Now One Company, Retrieved from:

https://www.bit9.com/solutions/bit9-and-carbon-black-one-company/, on 08/31/2014

Application White-listing with Bit9 Parity 16

Michael Weeks, mweeks9989@gmail.com

6. Appendix A - From “Installing Parity” V. 6.0.2

If you are using IIS 7.0, in the IIS Roles Manager, verify the following configuration:
• Common HTTP Features: All
• Application development:

- ASP.NET
- .NET Extensibility
- CGI - ISAPI Extensions
- ISAPI Filters

• Health & Diagnostics:
- HTTP Logging
- Logging Tools
- Request Monitor
- Tracing

• Security:
- Basic Authentication
- Windows Authentication
- URL Authorization
- Request Filtering
- IP and Domain Restrictions

• Performance: None
• Management Tools:

- IIS Management Console
- IIS Management Scripts and Tools

Application White-listing with Bit9 Parity 17

Michael Weeks, mweeks9989@gmail.com

- Management Service
• FTP Publishing Service: None

(This is not a full excerpt for server requirements please follow Bit9 – Parity Installation Guide
from vendor for all information)

7. Appendix B

#!/usr/bin/powershell
Pass API calls to console
post hash to parity and blockify it
function Upload-HashToParity($hash,$ParityURL,$feed){
 #Requries pshell 3.0
 $ParityLoginUrl = "$ParityURL/login.php"
 $cred = Get-Credential
 $username = $cred.GetNetworkCredential().UserName
 $Credentials = New-Object System.Management.Automation.PSCredential -
ArgumentList $UserName, $adPW
 $password = $Credentials.GetNetworkCredential().Password
 $useragent = "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; Win64; x64;
Trident/4.0; .NET CLR 2.0.50727; SLCC2; .NET CLR 3.5.30729; .NET CLR 3.0.30729;
.NET4.0C; .NET4.0E; InfoPath.3)"
 #$headers = @{}

 Invoke-WebRequest -Uri $ParityLoginUrl -UserAgent $useragent -Method Get -
SessionVariable Parity

 $loginPostData =
@{username=$username;password=$password;oldURL='/home.php';oldURLParams='';dbuse=
'das';submit='Submit'}

 Invoke-RestMethod -Uri $ParityLoginUrl -UserAgent $useragent -WebSession
$parity -Method POST -Body $loginPostData

 #let's see if we have a cookie set
 if ($Parity.Cookies.Count -eq 0) {
 Write-Host "fail to connect"
 break
 }
 else
 {
 $rule = "$feed-$dte"
 $description = "Malware+Artifacts"
 $fileUrl = "$ParityURL/file-policy-details.php"
 $uploaddata = @{
 fileRuleName=$rule
 ruleActionSelect='3'
 nameOrHash='hash'
 Platform='1'
 fileName=''
 hashType='MD5'
 hash=$hash
 antibody_id_list=''
 antibody_id=''
 description="Malware+Artifacts"
 policyScope='allHostGroups'
 formAction='create'
 returnUrl='/approvals.php?tab=fileRules'
 fromFileDetails='false'
 }
 $upload = Invoke-WebRequest -Uri $fileUrl `
 -ContentType application/x-www-form-urlencoded `
 -UserAgent $useragent `
 -Method post `
 -WebSession $Parity `
 -body $uploaddata
 }
}

Application White-listing with Bit9 Parity 18

Michael Weeks, mweeks9989@gmail.com

#############agent Removal Script##############
Param ([string]$password)

$computer = get-content .\listofcomputers.txt

invoke-command -ComputerName $computer -ScriptBlock {
 c:\Program Files (x86)\Bit9\Parity Agent\dascli.exe password $password
 c:\Program Files

 (x86)\Bit9\Parity Agent\dascli.exe enable
 c:\Program Files (x86)\Bit9\Parity Agent\dascli.exe setpolicy 'agent
removal'
dards
}
#################end Script##############################

##########################agent installation Script#####################
$servers = Get-Content .\servers.txt

foreach ($server in $servers)
{
 invoke-command -ComputerName $server -ScriptBlock {
 cmd.exe "\\uncpathtoparitymsi"
 }
}

#########################end Script#####################################

Application White-listing with Bit9 Parity 19

Michael Weeks, mweeks9989@gmail.com

Appendix C

Sample Policy and Procedures:

Desk-Side Parity Procedures

1. Purpose

Anti-virus software has been significant tool in combating malicious software and unwanted software.
However the organization has decided that the protections AV provide are insufficient and have taken an
application whitelisting approach. Application whitelisting is an approach to only allowed approved
software to be allowed to run in the environment.

2. Scope

The organization has chosen Bit9’s product Parity for the implementation on end-point systems. The agent
will be installed on all end-point systems to protect the organization against unwanted software. The end
goal is to have all endpoint systems in a lockdown configuration.

3. Policy

All systems that users log into directly to work that are client side system and managed by the desk-side
support team will have the agent installed. The agent will be installed in the following fashion:

- When a new system is built out, and on all current systems the agent will be installed. This
will be accomplished within 5 days of system build.

- After the agent is installed the agent will be moved into monitor mode to hash all endpoints
on the system. This will be accomplished within 5 business days after installation.

- Once the hashing of all files are complete the agent will be moved into lockdown reporting.
This will be accomplished within 5 business days after moved into monitor mode.

- Configuration will be handled by the Parity Administrator team to ensure that false positives
are mitigated to a <5% level. This will be accomplished within 20 business days of the
installed system.

4. Enforcement

Any systems that do not meet the compliance date will be restricted from network communication until
lockdown is complete.

Procedure for Software Approvals

The software approval list is at the following location: http://internal-corporate-
site/approvallist.organization.com. All software on this list will be configured and allowed to run. If there
are any additional items requested from the user population the following procedures will be met:

- User will submit a helpdesk ticket requesting the additional software.
- The user’s supervisor will review the software for an approved business use.
- Ticket will then be routed to the Desk-Side Support Team to ensure the software can be

supported.
- The ticket will be routed to the Security Operations team will review the software for

malicious sources.
- Finally the Parity Administration team will review the ticket and either whitelist the

installation file and/or create any software rules to allow the software to run.

Application White-listing with Bit9 Parity 20

Michael Weeks, mweeks9989@gmail.com

Deploy to Protect (Server) Example Policy and Procedures:

Change Control Process Utilizing Parity

1. Purpose

The change control monitoring for the organization is a rigorous and important process to protect the
environment from dangerous changes as well as security vulnerabilities. For this reason has decided to use
an integrity control application from the Bit9 called Parity.

2. Scope

The software will be deployed on all production servers providing services to customers.

3. Policy

The Parity agent will be deployed to any production servers in a disabled policy. Any new servers will
receive the agent according to the in-house build process. The agent will then be moved to the Monitor
policy in order to hash files on the system. This change will be scheduled and change controlled. After all
files have been hashed the agent will then be moved into Local Approval, to approve any files on the
system. After all files on the system have been approved, the agents will be moved into Lockdown
Reporting for the Parity Administration team to create any software rules that are necessary for the server
function. Finally the server will be moved into Lockdown to prevent any unauthorized changes.

After the completion of the Change Control Process – see http://internal-corporate-
site.organization.com/ChangeControlProcess.doc. The Parity Administrator will move the servers into local
approval to approve any changes that will occur during the change window. After the change window is
complete the Parity Administrator will move the server into Lockdown Reporting to monitor any potential
blocks of valid executables that may have changed after the installation. After a sufficient amount has
passed but no more than 24 hours, the Parity Administrator will move the system back into lockdown.

For any emergency or exception changes the Parity Administrator will be available on-call to change the
server into the appropriate policy to perform the maintenance necessary. The emergency or exception
change will be reviewed according to the change control policy.

4. Enforcement

Any employee or administrator that does not follow the rules in this policy may be subject to disciplinary
action, up to and including termination of employment.

