
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Implementing Antivirus Scanning for a iPlanet/SunONE Messaging Server:
Decision Methodology and Implementation Examples

Eric Straavaldsen
GSEC Practical Assignment
Version 1.4 Option B

Abstract:

Document a procedure to implement virus scanning on iPlanet/SunONE
Messaging server while maintaining availability and performance. Directed not at
the step by step of implementing AV scanning but more a procedure to do the
decision making process and a look at major options. Also showing an example
of the due care needed when implementing new security functions onto an
existing system.

Scenario Overview

In the spring of 2002 I was the technical head of a project to add antivirus
scanning to a large installed iPlanet/SunONE Massaging Server cluster at a
higher education campus. The implementation of an antivirus scanning solution
for an iPlanet/SunONE Messaging Server cluster can take one of two basic
methods. One solution type was to use a scanning gateway; we categorized this
as our non-integrated solution. The other solution type was to integrate a
scanning engine directly into the messaging cluster; we categorized this as our
integrated solution. I will endeavor to describe how our team examined the
options and then proceeded to test and implement our choices in scanning
agents to have minimal impact on the performance and availability of our mail
system.

Product Selection and Options

When the antivirus team was formed we started contacting vendors in order to
build a comprehensive list of the options available to us. Our first task was to
form a set of criteria to distinguish between the numerous vendors of antivirus
software in the market. Some of the factors we considered were, initial cost,
ongoing cost (in both vender fees and our time), vendor certification, comparable
experience by vendor (case studies), responsiveness of the vendor, and
consideration of what other antivirus vendors were currently deployed at our
campus.

One of our basic tools for pairing down the vendors to contact for a solution was
their antivirus certification. It was believed that independent certifications would
be an acceptable baseline for checking quality of various vendor products. The
ICSA Labs Antivirus Certificationi was the first threshold we chose to look at. Our
research into antivirus certification resulted in the discovery of other groups such

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

as, West Coast Lab’s Ceckmarkii. Which also provides a good tool to check the
antivirus selection to see if it passes a minimum standard of quality.

The other criteria that should be described, due to its unusual nature, was why
we were taking into consideration what other antivirus products were deployed at
our campus. Our team felt that since we knew that there was no one vendor that
would always be the first out with a definition for every new virus threat. There
was a slight risk in not diversifying our antivirus solutions. By making it a criteria
that we had different vendors at least being explored in our mail system solution
from our desktop solutions we could get a little more protection from the different
approaches the vendors took towards scanning. This was not to rule out what
vendors were widely deployed already from being chosen, but rather to promote
the idea of layering our security. While not seen as a vital part of the decision
making process it made us include several more vendors in our test than we
would have otherwise looked at.

With these basic criteria we were able to compile a list of our top vendors. By
doing this work we were able to have a level playing field of expectations of our
vendors. From this list we were able to start our selection of solutions.

Non-integrated Solution

The first and simplest solution that we examined was that of a non-integrated
solution. This we felt would be the simplest route to implement to our initial
charge of implementing virus scanning for the mail system. The two major
choices in this matter were either a new server running sendmail with a scanner
from the milteriii filtering system, or an appliance.

The stand-alone server doing the scanning task was quickly ruled out because of
the added cost of local system administration time over that of an appliance
solution. Our pricing exercise was that buying the new standalone server and
software for it was not substantially less expensive than an appliance. So we
turned our attention to appliance solutions as the less expensive non-integrated
solution option.

The other advantage that an antivirus appliance had was that it required no
changes in our existing mail system. Its drop in nature also meant that we could
add and remove it from the mail system function without disturbing the
configuration in anyway. This simplicity was extremely attractive to us because it
would allow us to add this important security function without altering an existing,
complex system.

The primary disadvantage was that we could not guarantee that we would scan
every message in our system. Messages that were outbound, sent within the
system, or from local native clients would not be scanned by the appliances.
Local native clients were a sticking point for us. Since the logical placement of

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

the scanners was dependant on DNS MX records, and that most mail clients do
not support MX records we could not just set them logically between mail client
software and the cluster. Previous experience had also shown that getting
80,000 end users to all change their client settings was unlikely to be practical, or
timely. So we proceeded under our initial charge, and from the collected best
practices of our vendors this was an acceptable solution, our research also
showed this solution considered a best practice by many other organizations.

The initial configuration for the appliance solution was very simple, requiring only
three real configuration functions. First to maintain availability we chose to
purchase two appliances, each capable of handling about 75% of our peak load.
With one we felt able to handle a normal load, so the loss of one appliance would
most likely allow us to continue to function. The appliances then were configured
to know what mail systems they were scanning for. The last change was in our
MX records to point to the new antivirus appliances.

Our configuration had our DNS records set with MX weights of 10 for each of the
two antivirus appliances with the iPlanet/SunONE Messaging SMTP gateways to
5. By keeping the SMTP gateways in the MX allowed us to be sure that we
would not lose mail in the case of overwhelmed appliances or failure of
appliances. As a team we were quite happy to find that “turn key” solutions could
in fact be turn key.

The choice to keep the cluster MTAs in the MX cycle was because the principle
of availability was more important to our end users at the time than perfect
scanning coverage. The occasional virus infected email would be more
acceptable than mail being lost or delayed significantly. To accommodate this
problem of unwatched infection vectors the team suggested that all desktops and
laptops have antivirus software installed as both a protection against over flow or
failure of the appliances but to also cover other infection vectors like floppy disks
and other mail services.

The use of AV appliances served us as a very effective and easy to implement
solution. The modular nature also allowed us to logically place it in front of other
mail systems run on campus. The solution worked very well as a solution for
scanning the inbound email.

Integrated Solution

The initial implementation of a non-integrated choice gave a good initial solution
for our iPlanet/SunONE Messaging server, and for many organizations it may
have been a good final solution. Our change to an integrated solution from an
non-integrated solution was driven by a request for enhanced functionality.
Management felt that by moving our solution into our Messaging cluster it would
allow us to provide a more complete scanning protection, not only to our campus
but to the internet as a whole. With a new direction and standard set we the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

chose to pursue the other major solution option, placement of the scanner on the
iPlanet/SunONE Messaging server cluster.

Placement of the scanning internal to the iPlanet/SunONE Messaging cluster had
several key advantages for us with only a few draw backs. The most significant
advantage for us was that we could be sure that we would scan all mail passing
through our system, inbound, outbound and internal. It also simplified the
scanning of hosted multiple domains on our mails system. The drawbacks were
primarily of the difficulty of configuration and possible scaling issues.

Testing

The implementation of the integrated scanning solution was significantly more
involved than our appliance scanning solution. Our team started with a testing
strategy to both test our install configuration and performance changes to our
system. With this plan we endeavored to get a proper grip on this second phase
of our project.

To perform our test we need to gather a set of tools to do our test. The four tool
components we needed were an eicar test file, mailstone, a script to help watch
the mail queues and a set of scripts to test performance of the actual engine. The
first tool to acquire was the eicar test fileiv as a foundation for the later tools. The
basic tool for testing how the scanning engine impacted the performance of the
iPlanet/SunONE Messaging cluster was mailstonev.

Our mailstone configuration was setup to only test the SMTP function of the
Messaging cluster, for this was the only part of the system that was known to be
directly changed with the addition of antivirus scanning to the cluster. The
mailstone configuration was relatively simple. We chose to emulate a load that
was half virus infected. This was a trivial task to set it up to do this. All that was
needed to balance it was to source each of the test messages in the
configuration file, and mailstone would generate a load divided into equal shares
between the message files in the configuration. We simply used one of the
generic test emails that came in the package. We selected one to be for the
clean message and modified a copy of the same test message to contain a copy
of the eicar test file. With this static test mailstone configuration on an idle
server we were able to isolate out the performance differences in our AV engines
and SMTP configurations.

While we ran the tests we could monitor system performance with tools like
orca,vi sar, mpstat and iostat but this did not answer the question of what the
scanning agent was doing to the end user experience. Part of the solution to that
was to check how the SunONE mail queues were being affected. A baseline
was established before the scanning engine was installed. With the “imsimta qm
dir –tot” command it was possible to monitor the system’s queues. The other
part of the solution was to inject a message into the test or randomly select a

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

message from the load test and examine the headers to see how long delivery
was taking. We almost exclusively chose to randomly select a handful of the
mailstone messages from the test to check headers for delivery information.

With the tools and baselines in place, we were now able to start a proper
evaluation of our implementation. Our initial expectations were based on the
iPlanet/SunONE estimates that 30% of our capacity would be lost due to the
addition of AV. Our initial test runs of 1,000 messages seemed to hold up this
assumption, but subsequent runs of five, ten, and 20 thousand messages
seemed to show a substantial growth in our mail delivery queues and in delivery
time. When the system queues were only around 100 messages we found that
our delivery time was around one to two minuets. Larger queues grew message
delay by what seemed to be more than simple linear growth. This rapid growth
of mail delay drove the concern to make the scanning as efficient as possible to
keep mail queues down and improve how fast we could clear them after a
message storm passed.

For us to acquire accurate timings of the script (invoked by the iPlanet/SunONE
Messaging server to handle the actual scanning function) and AV engine we
wished to use the Unix time command, to show us how much time was being
spent in execution. To achieve this, we dissected the script to find what was
needed to run it outside of the messaging server environment. With the
knowledge gained from that we developed one test script to run the whole
scanning system and one to test script for the AV engines. With these two
scripts, we were able to see how tuning actions would impact performance. (See
the Appendix for example script).

Since the way iPlanet/SunONE does internal virus scanning is by running a
script, against the various message segments that the product breaks an email
message into, our initial concern was over the startup cost of a shell script. So
the first script we wrote was to run just the scanning engine against a file
repeatedly (see Appendix) and log the time the scan took. On our test system (a
SunBlade 100) the first script produced an average of about 1.15 seconds for the
engines to scan a test file.vii

The next target for analysis was the iPlanet/SunONE virus scanning script. After
much script reading and debugging, we produced a second wrapping script (see
Appendix) to test the whole infrastructure for scanning that was going to be run
under iPlanet/SunONE. We found that raw startup of the iPlanet/SunONE virus
scanning script was not a major part of our processing time for a message. The
average time the whole scanning infrastructure took was 1.2 seconds. While the
iPlanet/SunONE virus scanning script did add some overhead it was not as large
as initial fears.

All of the tested vendors came within a few percentages of each other’s
performance. So with similar performance from all our vendors we could assure

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

ourselves that there was little we could do in the scanning subsystem to gain
much in the way of a safety blanket, in the form of excess capacity. Though we
did try both a memory mapped file system for the scanning subsystem and a very
optimized shell to run the script, neither of these trials gave any noticeable
improvement in performance.

With all of the basic feasibility and performance testing done the, team was ready
to propose an integrated solution. In our estimation, the added load of antivirus
scanning would drop our excess capacity below our busiest day projections with
the current cluster hardware, and that new hardware would be required to
support the initiative. A second recommendation was that in the open
environment of higher education we could not trust that scanning at the central
mail system would be adequate to meet our virus protection needs. So we
proposed that the system be augmented with a scanning solution for the desktop
workstations on campus. The recommendation was accepted for immediate
implementation on the cluster and with desktop protection to form part of a later
project.

Implementation

 As we went forward in implementation based on the script files and fragments
from iPlanet/SunONEviii there were several aspects we felt needed to be changed
for it to be a supportable system. We needed to: alter the script provided from
iPlanet/SunONE for our needs, build an automation script to update our virus
data files, and a procedure to update the AV engine and tuning performance.

The scripts provided by iPlanet/SunONE were built as a set of tools to do several
functions beyond AV scanning. To keep the task of updating and modifying the
scripts as easy as possible we chose to simplify the provided scripts to remove
all the unused functions. By this we hoped that we could lower the cost (in both
memory and CPU utilization) of running the script (if even by a tiny amount). We
also added a feature to find out the name of the virus found and include it in the
notification. The latter was done by a simple grep statement added to the
ScriptFunctions script in the substitute_part segment. This would capture the
virus name from the scan log of the file and add it to the notification message.
Also we, chose not to notify the sender, but only pass the notification to the
recipient. We chose to first try to clean the virus from the file, but in the case that
we could not clean the virus, we chose delete the attachment and add the
message about what virus had caused the attachment’s deletion.ix

The choice to not notify the message sender of the infection was of great
importance when the Sobig.f virus came out, several of our campus users found
their email unusable because of the large numbers of notifications that were sent
to them as a result of the Sobig.f virus sending large numbers of messages
purported to be from them. This choice was of some contention in our group, but

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

we eventually felt that we were better not sending, than ending up in a situation
where our virus scanners were causing a DOS attack on a remote site.

We examined the script provided by our engine provider (NAI). The script found
in the documentation was not satisfactory. It did not have what we felt was
adequate level of error checking. After searching for other work written to do NAI
dat file updates, we found the script provided to update the NAI dat files from the
FreeBSD project. This gave us a good basis for what we needed to build a script
that met our standards (example of our script can be found in the Appendix).
The primary alteration beyond what was needed to run it on Solaris was, that
there must be a check to make sure that the scanner did in fact work after an
update. This addition was vital for us to be sure that we would know that after an
update we would have a functioning scanner. We also tested the impact of
scanning mail when the script was running to see if we would miss viruses.
After a series of tests we felt that the risk of missing a virus (or damaging/losing
an email) while running this script was low enough that we could use the script
whenever there was a new virus threat.

The AV engine updates turned out to be an invasive procedure. It was fairly
clear that the engine could not be updated on an active system. So to ensure
availability we had to monitor our mail load and select a time where we could
take one of our SMTP hosts offline when it would not impact our mail delivery.
The order of action was quite simple, we first stopped the tcp_smtp_server
service that handles inbound traffic and then used the queue watching
commands that are part of the iPlanet/SunONE server to find out when the
conversion channel (the section of the system that the AV scanner runs under)
was clear of messages. Then run the NAI installer to do the update followed by
the dat file update script. After we knew that the dat files were current we would
start up the tcp_smtp_server subsystem and watch the conversion and virus logs
to see if we were catching viruses before we could call the update complete.

The tuning of virus scanning on iPlanet/SunONE is more a matter of trial and
error for the specific hardware running it. The two relevant files are the
job_controller.cnf and the imta.cnf. It is in these two files that you set the number
of jobs available to run the conversion channel (the channel that runs the AV
scanning engine). The selection of how many jobs to have available for
scanning is a balancing act between building up mail queues and over loading
the systems. While it is not simple to give a formula of how to set these for the
specific system this is running on, an example of what we have found a good
balance for a Sun 280R running only as a SMTP server can be found in the
Appendix, and is probably a good starting point for tuning the system. While
tuning, the most important things to watch are system loadx and queue depth (a
good reason to have done some initial performance profiling). If either of these
variables start to climb you may have a situation that will negatively impact
availability. If queue depth grows more jobs may help at the risk of overloading
the system’s CPUs. The inverse of this is true also, if the system load grows too

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

much lowering the number of jobs will lower the load at the possible growth of
queues. System tuning is finding the balance by changing the number of jobs to
keep the queues manageable while leaving system headroom.

Lessons of Sobig

During this implementation we did not manage to get AV scanners on the
desktop. This became an issue for members of the team in the summer of 2003
with the release of the Sobig.f virus. Not only as a concern for the performance
of the scanners on the iPlanet/SunONE messaging server but as part of the
campus’s general response to this major virus.

During the crisis we had to revisit scanning on the desktop as part of campus
wide AV policy. In part because this virus had infection vectors other than email,
our organization found a need to implement a campus wide desktop solution.
While this change in itself was not significant, the impact was.

In a review of the events around the summer of 2003 Sobig virus outbreak, we
examined our mail scanner logs. The result of our investigation was surprising.
We found that we had cut the number of virus infected emails originating from on
campus by over half. While we had expected a change in our stats we had not
anticipated such a large drop. The lesson of multiple layers of security improving
our security was driven home by this very quantitative result.

There are several areas still open for improvement. Two of the still pending
projects are implementing a system to drop notification to the end user when we
have very large virus load and a way to simply change the notification. The first
of these two has already been partly done (in the wake of sobig.f). The major
limitation is the lack of a documented way to drop a message from the mail
server. A work around using the held function has been found, but would require
a second utility to clean held messages. The current solution for this function is
being handled by the spam scanning system we have in place. Spam rules on
the scanners are set to mark high flow virus messages as spam. This allows
people to selectively block high flow messages about virus infections as an opt-in
function. This temporary function using the spam scanner may end up being our
permanent one. The simple change of the notification message is not seen as a
high priority, and may be shelved indefinitely.

Conclusion

The system developed through this process has given us a stable solution for
virus scanning. Not only does it provide reliable and efficient scanning in all but
the most severe message storms, but it also requires virtually no maintenance to
keep it running. By doing all the research and testing we were able to add this
security function in without changing the mail system’s performance or
administrative overhead.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

This document has provided a guide to implementing an iPlanet/SunONE
messaging server with AV that maintains availability. Providing an example
methodology of adding security to an existing system with minimal impact on the
function of that system.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix

AV engine performance testing scripts:
In the same directory both of these files and a real infected file if possible or the
eicar file.
spin.ksh
#!/bin/ksh
let test=1
set the number of test cycles
let cycle=10
./vreset
while ((test <= cycles)); do
timex /usr/local/bin/uvscan -m /tmp --clean --unzip infected-file.exe
./vreset
let test="test + 1"
done

vreset.ksh
#!/bin/ksh
cp infected-file infected-file.exe

AV scripts and engine performance testing scripts/environment:
In the same directory both of these files and a real infected file if possible or the
eicar file.
spin-script.ksh
#!/bin/ksh
let test=1
let cycles=11
export INPUT_FILE=/path-to-testing-dir/scantest/infected-file.exe
export OUTPUT_FILE=/path-to-testing-dir/scantest/infected-file.exe
export NAME=test
export INPUT_TYPE=Application
export MESSAGE_HEADERS=/ path-to-testing-dir/scantest/msg-headers
export INPUT_HEADERS=/ path-to-testing-dir/scantest/msg-headers
./vreset
while ((test <= cycles)); do
timex /path-to-testing-dir/scantest/multiscan.sh
./vreset1
let test="test + 1"
done

NAI DAT File Update Script

update_dat.ksh
#!/bin/ksh
Based on the FreeBSD script and modified for solaris

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

by eric straavaldsen
#
needs the Sun Packages for gnu-tar and ncftp
SFWgtar & SFWncftp
setup for ----------- iPlanet AV Scanner by
e9s 9/23/02
updated with more comments and a few fixes.
e9s 9/30/02
#
UVSCANDIR="/usr/local/uvscan"
DAT_SITE="ftp://ftp.nai.com/pub/datfiles/english/"
DAT_FILES="clean.dat internet.dat names.dat scan.dat readme.txt"
TMPDIR="/tmp/datupdate"

AWK="/bin/awk"
CP="/bin/cp"
ECHO="/bin/echo"
GREP="/bin/grep"
GTAR="/opt/sfw/bin/gtar"
FTP="/opt/sfw/bin/ncftpget"
MKDIR="/bin/mkdir"
MV="/bin/mv"
RM="/bin/rm"
SED="/bin/sed"

progname="update_dat.sh"

while getopts vf: arg; do
 case $arg in
 v) verbose=1 ;;
 f) dat_tar="${OPTARG}" ;;
 esac
done

${MKDIR} ${TMPDIR}

if [-n "$dat_tar"]; then
 if ! (${GTAR} -x -C ${TMPDIR} -f $dat_tar readme.txt >/dev/null); then
 ${ECHO} "$progname: unable to extract readme.txt"
 ${RM} -rf ${TMPDIR}
 exit 1
 fi
else
 # Fetch the ReadMe file to read the latest version of the DAT files.
if ! (cd ${TMPDIR}; ${FTP} -V ${DAT_SITE}readme.txt >/dev/null); then
 ${ECHO} "$progname: unable to fetch ${DAT_SITE}readme.txt"

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 ${RM} -rf ${TMPDIR}
 exit 1
 fi
fi

curver=`${AWK} '/DAT Version/ { print $4; exit }' ${TMPDIR}/readme.txt | ${SED}
-e 's/^.*\([0-9][0-9][0-9][0-9]\).*$/\1/'`

oldver=`${AWK} '/DAT Version/ { print $4; exit }' ${UVSCANDIR}/readme.txt |
${SED} -e 's/^.*\([0-9][0-9][0-9][0-9]\).*$/\1/'`

if [$curver -le $oldver]; then
 if [-z "$verbose"]; then
 ${ECHO} "$progname: VirusScan DAT files are current ($oldver)"
 fi
else
 if [-z "$dat_tar"]; then
 dat_tar=${DAT_SITE}dat-$curver.tar
 if (cd ${TMPDIR}; ${FTP} -V $dat_tar >/dev/null); then
 dat_tar=${TMPDIR}/dat-$curver.tar
 else
 ${ECHO} "$progname: unable to fetch $dat_tar"
 ${RM} -rf ${TMPDIR}
 exit 1
 fi
 fi

 ${GTAR} -x -C ${TMPDIR} -f $dat_tar

 # Backup old dat-* tar files.
 if ["`${ECHO} ${UVSCANDIR}/*.tar`" != "${UVSCANDIR}/*.tar"]; then
 for file in ${UVSCANDIR}/*.tar; do
 ${MV} -f $file $file.old
 done
 fi

 # Backup old DAT files.
 for file in ${DAT_FILES}; do
 file=${UVSCANDIR}/$file
 if [-f $file.dat]; then
 ${MV} -f $file $file.bak
 fi
 done

 # Copy new DAT files into place.
 for file in ${DAT_FILES}; do
 ${CP} -f ${TMPDIR}/$file ${UVSCANDIR}/$file

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 done
 ${CP} -f $dat_tar ${UVSCANDIR}
 ${RM} -f ${UVSCANDIR}/*.old
 ${ECHO} `date` Successfully updated VirusScan DAT files to $curver.
fi

${RM} -rf ${TMPDIR}
test the scanner function
/usr/local/uvscan/uvscan /usr/local/uvscan/eicar.com 2>/dev/null 1>/dev/null
retcode=$?
if [$retcode = 2]; then
 echo " Driver integrity check failed. Possible scanner problem"
fi
if [$retcode = 6]; then
 echo " A general problem occurred. Possible scanner problem"
fi
if [$retcode = 8]; then
 echo " Driver could not be found. Possible scanner problem"
fi
if [$retcode = 15]; then
 echo "The scanner's self check failed; it may be infected or damaged"
fi
if [$retcode = 13]; then
 echo "The scanner's test succeeded."
fi

exit 0

imta.cnf and job_controller.cnf examples
imta.cnf
!
! the 6 at the end will be adjusted for performance
! it maintains the number of threads for the conversionn pool
! also make sure that the job_controller.cnf is also updated
! to reflect the number of threads
! conversion
conversion subdirs 20 maxjobs 3 POOL CONVERSION_POOL threaddepth 2
conversion-daemon

!
! conversion_ext
conversion_ext subdirs 20 maxjobs 5 POOL CONV_EXT_POOL threaddepth 2
conversion_ext-daemon

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

job_controller.cnf
[POOL=CONVERSION_POOL]
job_limit=3
!
[POOL=CONV_EXT_POOL]
job_limit=5
!

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

i http://www.icsalabs.com/html/communities/antivirus/certifiedproducts.shtml
(12/2003)
ii http://www.westcoast.com/checkmark/index.htm (12/2003)
iii http://www.milter.org/ (12/2003)
iv http://www.eicar.org/anti_virus_test_file.htm (12/2003) The eicar test file
allowed us to do test of effectiveness of scanning with out having to use a real
virus. Since it also comes as a zip and com file we could test our scanner’s
ability to check within zip files.
v http://www.mozilla.org/projects/mstone/ (12/2003) The current home of the
mailstone stress and performance tool.
vi Orca is an open source system performance graphing tool, for details please
see http://www.orcaware.com (12/2003)

vii An interesting function we found was that the time it took to do the first scan in
a test was 10-20% more than subsequent scans. As long as we scanned more
frequently than once a minuet we did not lose this gain. After looking into the
issue it was driven by the memory caching of the system of I/O.
viii http://docs.sun.com/source/816-6092-10/scan_sh.tar.gz (12/2003) also see
David Evans GSEC certification paper “MTA based Virus Scanning with Sun One
Messaging and Sophos” http://www.giac.org/practical/David_Evans_GSEC.doc
(12/2003) for a good step by step and tools for Sophos.
ix We chose to scan the message and clean if possible and if not possible to the
delete it. We wanted to be as non-invasive as we could be.
x For watching system load on a Sun server I strongly suggest that you use the
mpstat tool. This will most accurately show how much of your processor
performance you are using. Tools like top and prstat show you the system load,
and while is useful may not show you how much of your CPU time you are using.
Beyound idle time you should watch to make sure your system time does not
become more than 1 part in 3 of your user time. More than 1 part in 3 of system
time is reason to look for resource contention.

