
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Michael Hill

GSEC Certification

Pratical Assignment 1.4b

November 13, 2003

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Table of Contents

Abstract 2

Part I: Introduction 2

 1.1 A Brief History of Distributed Computing 2

Part II: The Scale of Distributed Computing 3

2.1 Distributed Protein Folding 3

2.2 The Search for ET 4

Part III: The Negative Sides and Security Implications of Distributed Computing 5

3.1 Distributed.net: Cracking the World’s Encryption One Key at a Time 5

3.2 Distributed Denial of Service Attacks 5

3.3 Case and Point: “Crime gangs extort money with hacking threat” 7

IV. The Future of Distributed Computing and Possible Solutions 8

4.1 Possible Solutions to Combat Distributed Attacks 9

V Conclusion 9

5.1 The Future of Distributed Computing 9

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 2

Distributed Computing:
An Unstoppable Brute Force

Abstract:
 Distributed computing allows groups to accomplish work that was not feasible
before with supercomputers, due to cost or time constraints. Although the primary
functions of distributed computing systems is to produce needed processing power to
complete complex computations, distributed computing also reaches outside of the
processing arena to other areas such as network usage. When used properly, both areas
compliment each other and can produce needed results. When used maliciously, either
processing or networking distributed attacks can produce a brute force that even the best
firewalls or encryption are powerless to prevent. Using distributed computing brute force
attacks on encryption algorithms, distributed denial of service attacks, distributed
reflective denial of service attacks, and other future forms of malicious attacks, there is
much to guard against with these types of computer usage. Distributed computing should
be tamed and closely guarded against such uses through efforts to filter out invalid
network packets for distributed attacks, and carefully monitoring computer software to
ensure that a distributed computing processing, brute force attacks cannot occur.

I. Introduction

1.1 A Brief History of Distributed Computing

During the earliest years of computing, any tasks that required large computations
and massive processing were generally left up the government or a handful of large
companies. These entities could afford to buy massive supercomputers and the
infrastructure needed to support them. With the price of personal computing declining
rapidly in price, and supercomputers still very expensive, an alternative was needed. In
1993, Donald Becker and Thomas Sterling introduced Beowulf clustering. Although not
the first example of clustering, this was the first time that an effort was made to enable
anyone to take off the shelf computers and build a cluster of computers that could rival
top supercomputers. The concept behind clustering, in its simplest form, is that many
smaller computers can be combined in a way to make a computing structure that could
provide all of the processing power needed, for much less money. All of the nodes of a
cluster are connected to an isolated internal network and same switch as the serving
computer (SC). The serving computer houses the results and distributes new work units
to all of the attached nodes. Each node is a single-use computer, allowed to only process
the problem that it is given and return the results when finished. Many of the problems
that hindered the first clustering efforts still cause problems today. One of the more
expensive elements is the dedicated internal network, or interconnects, which link all of
the nodes together to the server. Since these nodes are simple banks of processors,
security is almost entirely nonexistent and therefore requires a great care in isolating the
interconnected network from any outside networking. An additional element contributing
to problems is that of suitable software for the clusters to run. Even though all of the
nodes work together to process chunks of a complete dataset, the software must still be
written to take advantage of the multiples of processors and the individual resources, such
as memory, that the nodes contain. To obtain a stable and suitable software layer, it may

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 3

take months or years to perfect the software to properly process the needed results and
use all of the available power. In the end, taking a major step forward for computing
power, clustering certainly has its problems and insecurities as a relatively new
technology. With distributed computing, it manages to encompass a much wider scope
than clustering by allowing nodes to exist anywhere in the world and also be multi-
purpose/multi-function machines.

Distributed computing has a similar concept as clustering: take a large problem,
break it into smaller units, and allow many nodes to work on the problem in parallel.
Where distributed computing strays from this concept is by also allowing the nodes to be
multifunction and multipurpose computers that can exist anywhere in the world while
being attached to the Internet. Distributed computing can actually take on many different
orientations of the nodes, all depending on how the client computers are connected to the
Internet. In addition to this element of flexibility, there is also a level of redundancy that
does not exist in supercomputing or clustering. With clustering and supercomputing, the
data is generally processed only once, due to the large amounts of time that the entire
project may take. In distributed computing, it is often the case that work units may be
distributed multiple times to multiple nodes. This method serves two functions: to
drastically decrease the possibilities of processing errors, and to account for processing
that is done on slower CPUs or takes too long to return results. What makes this entire
system possible is the application of a small piece of software called a client. This client
handles the data retrieval and submission stages as well as the code necessary to instruct
the CPU how to process the work unit. Clients vary in side, but most are less than 1-2
megabytes in size. The actual data work units also vary in size, but most are between 250
and 400 kilobytes, so that the hosting/node CPU can handle the process, and users on
slower internet connections can easily send and receive the data. Between the small sizes
of work units and clients, it seems unreasonable to see a disadvantage to using distributed
computing other than the collection and analysis of data. To understand further the actual
scale of distributed computing, several real-life examples will be used to detail the actual
power that these large networks can create.

II. The Scale of Distributed Computing

2.1 Distributed Protein Folding

Distributed computing can be a tremendous tool for any research or other
noteworthy purpose when it is used for positive goals. To give an illustration of the better
uses of distributed computing, a group from Stanford University is currently running a
distributed system to work on the problem of protein folding. The goal of the project is to
try and determine the function of proteins by how they form, or ‘fold’. The simple
version is that proteins assemble themselves into certain ‘folds’ which dictate what their
function will be. When these proteins fail to fold properly, they result in such diseases as
“…Alzheimer's disease, cystic fibrosis, BSE (Mad Cow disease), an inherited form of
emphysema, and even many cancers are believed to result from protein misfolding.”
(Stanford) Continuing from the blueprint of DNA, which specifies the sequence of amino
acids, these scientists are taking research to the next level by trying to figure out how
proteins, strings of amino acids, form and function. To accomplish this goal, the research
group has enlisted the help of their own distributed network people, the Pande Group, to

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 4

create Folding@Home. Distributed computing enters this challenge by simulating the
various folds that protein can form. The concept doesn’t appear that it would require
massive amounts of computing power to complete it, but the fact is that regular computer
simulations just aren’t fast enough. A protein fold may occur as fast as a millionth of a
second, which is a very long time for a computer to simulate. The team estimates that
“…there is a 1000 fold gap between the simulation timescales (nanoseconds) and the
times at which the fastest proteins fold (microseconds).” (Stanford) Currently, the group
has completed the initial portion of their project in under a year with approximately two-
hundred and seventy thousand registered members, of which one-hundred and twenty
thousand processors are active. Phase one was to determine the feasibility of using
distributed computing with using some of the less complex folding possibilities. The
second phase will use data from the first phase to calculate more complex folding
possibilities on a much larger scale. This next phase also has managed to secure Intel as a
sponsor for the project. By using the resources of distributed computing, this group has
been able to successfully accomplish many steps on the path to their ultimate goals. In
this instance, distributed computing has performed its role well and may advance the
medical field into new areas. By comparison, however, this project should be considered
only a very small example of what distributed computing can do. Currently the largest
distributed network in operation, SETI@Home has produced some astronomical
computational results.

2.2 The Search for ET

Considered to be one of the first distributed computing groups, SETI@Home is
the search for extra terrestrials, or perhaps Marvin the Martin if you prefer. The SETI
team leases the Arecibo Radio Telescope for a few weeks out of the year. During those
weeks of the year, that the SETI team scans as much of the sky as possible and stores the
resulting data on 35 gigabyte DLT tapes per day. The tapes are then mailed to Berkley,
CA from the Puerto Rico site. Then the tapes are stored in massive tape libraries to be
broken down and analyzed for data computations. Having no other practical or affordable
way of data mining through all of the data for possible key events, the SETI team formed
the SETI@Home project. The project takes the data tapes, breaks small portions of data
into 250 kilobyte units, and distributes those units to anyone willing to run the nifty little
SETI@Home screensaver. To promote a form of competition, the organization presents
real-time statistics on their website, along with awarding certificates of accomplishment
to members or teams completing a certain numbers of work units at different milestones.
The user-base for the project boasts a registered user-base of four and three-quarters of a
million people, with a combined processing power in the neighborhood of 14.19
Teraflops/sec(Seti@Home). To give an idea of the scale and financial implications, the
current top-of-the-line offering from the supercomputer manufacturer Cray “features
powerful vector processors combined with an interconnect that scales to peak
performances of multiple tens of teraflops”(Cray, Inc), and the pricing of a single Cray
X1 is approximately $2.5 million dollars. So the project is producing tons of power and
saving millions of dollars by using a distributed computing setup to mine their data to
find communications from little green men. Truly withstanding the test of time,
SETI@Home has been in existence since 1998 and continues to compete with a very
active user-base.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 5

The problem of both of these examples and distributed computing, as a whole, is
the issue of security and infrastructure. In essence, it is the Internet itself providing a
medium of attack. The distributed clients, having control over thousands of computers, is
the provided means of attack.

III. The Negative Sides and Security Implications of Distributed Computing

3.1 Distributed.net: Cracking the World’s Encryption One Key at a Time
 Another group of people pioneering the use of distributed computing is the
Distributed Computing Technologies Inc. business running http://www.distributed.net.
The initial purpose of this group was to prove that the RC5 encryption algorithm, at the
time which was set to replace DES-III encryption, was quite vulnerable to brute force
attacks should not be considered as the DES-III replacement. Being another pioneer of
distributed technology, the group started their first computation challenge in October
1997 by using brute force to try every possible key in cracking an RC5-64bit challenge.
The key took 250 days to locate. After that challenge, the group added another distributed
client for nodes that would process the keys for DES-II 1st challenge in February 1998.
That key was determined in only 39 days after testing 90% of the possible keys. After
reassembling the group and changing their distributed DES client some more, the team
continues onward to complete the DES-III challenge in January 1999 by beating the
previous record of 56 hours and completing the task in only 22 hours and 15 minutes
from the time that the challenge was issued. Having help from the Electronic Frontier
Foundation’s supercomputer “Deep Crack” and approximately 100,000 volunteer
distributed nodes, the two teams were able to brute force test “…245 billion keys per
second.”(McNatt) Time and time again, the distributed.net team has proven that with
enough computing power, even some of the higher encryption algorithms can be broken
with persistence. Consider this power when thinking of encryption standards and
companies and offices still using older encryption techniques to secure data. If these
teams can beat similar methods in less than a day, think of what a mischievous person
could do with several hundred thousand clients processing keys unbeknownst to the
owners of the computers. If viruses can infect computers and coordinate their efforts to
knock out network targets, could they not also be used to compute complex problems and
submit results to decrypt even the strongest of algorithms? This should be a question on
all security experts’ minds, especially when planning for the future.
 The power that distributed computing can attain has already been shown through
examples of existing projects and their respective numbers. Used in healthy and
noteworthy environments, distributed computing works well to provide useful
information to those seeking it. It is when it’s used for improper reasons that it can create
a nearly unstoppable brute force against security features such as encryption and or the
bandwidth of the Internet itself.

3.2 Distributed Denial of Service Attacks
 One of the areas that distributed computing has been used to stage successful
attacks, has been against bandwidth and the structure of the Internet. Distributed denial of
service attacks (DDoS) have been among the most successful to target certain sites and IP
ranges. The attacks involve the complete saturation of the network with traffic from

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 6

hundreds of compromised computers working in concert to bring the network or site
down. These feats were accomplished with the use of a distributed ‘Zombie’ client that
was installed on PCs that had a security hole in the operating system, notably Microsoft-
based. Once the client was installed and running on the computer, it would literally
‘phone home’ to the controller on a locked, private IRC channel. From there, the
controller could tell these compromised computers to attack a specific site and send
ICMP packets, or pings, at the fastest rate with the largest amount of data possible,
without waiting for any return ACKnowledge signal or the return packet. In the biggest
attacks, ping packets were sent out as fast as the sending computers could possibly
process them, with a maximum size of 64 kilobytes. In these cases, the attacking
machines were computers running Microsoft® Windows®, and the maximum size of a
ping packet is 64 kilobytes. A single dialup user sending these out is mere noise, but with
a significant group of computers broadcasting these packets of data in unison could easily
take down a network, especially if each node of this distributed system had a utilization
of 100% of its allotted bandwidth to the internet. This is actually not much of a stretch for
most people to realize that the Internet’s backbones can only handle so much bandwidth.
Unless your firm can pony up large amounts of money for huge connections to the
Internet, smaller ones such as T1, T3’s and OC3’s usually have to suffice. To bring this
all to reality, let us consider the following example:
 [Example]

Consider an example of what kind of bandwidth a small distributed group could
crush. A T1 connection to the Internet has a theoretical bandwidth of 1.5 megabits
which equals about 175 kilobytes per second possible throughput up and
downstream. Due to the increase in broadband connections to home users, also
assume that there are a multitude of users sitting on cable modem connections
with vulnerable Microsoft® Windows XP® Professional PCs. The majority of
cable modem connections have a limitation on the amount of upstream bandwidth
they’re allowed, this is usually 256 kilobits per second. Since there are 8 bits in a
byte, this amounts to a rough limit of 32 kilobytes per second possible transfer
speeds. Already you can see that a single cable modem, if used to 100% of
possible capacity, is roughly a third of the bandwidth that a corporate T1 line can
handle. Take that single computer and multiply it by ten to twenty and now you
see the problem. So why not simply ask the gateway routers from the main
Internet trunks to your T1 to filter out this traffic? There are several problems to
this solution. To block certain packets with today’s equipment, you need to know
certain pieces of information in the packets that all of the malicious packets have
in common; a common source, type, size, or even the content. With distributed
attacks, almost none of this information is the same from one node to another.
Even if the attack is using ICMP packets to ping a site to death, blocking those
types of packets might stop the current attack, but it would also partially cripple
the site by not allowing certain services such as return pings. Current solutions
lend themselves to creating more problems.

 Compounding these problems is the formation of the packet itself. A normal
TCP/IP packet contains, in the header, the source IP of the computer sending the data
packet out. This is the receiving computer’s way of finding its way back to the sending

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 7

computer so that it can communicate. This system establishes a form of ‘dialogue’ with
the two computers. In most distributed denial of service attacks, this portion of the packet
is ‘spoofed’ to make it look like the packet came from an entirely different source.
According to Steve Gibson of Gibson Research Corp., prior to the release of Windows
2000 and Windows XP, this problem was almost trivial because the Windows 9x and ME
series of operating systems did not support full Unix-style sockets. By not fully
supporting these types of sockets, the OS didn’t allow applications to fully control the
formation of data packets leaving these types of sockets. In these cases, the software
would try to modify the packet but fail to completely replace the source IP addresses.
There was still enough information in the header that the packets could be traced back to
the source. However, with the release of Windows 2000 and Windows XP, this single
element soon ended due to the facts that both of these operating systems include support
for Unix-style sockets. With these types of sockets, software essentially has free reign on
the way that packets can be formed. The software is free to create the header how it
pleases and thus creates a new problem and form of attack, distributed reflection denial of
service attacks, or DRDoS.
 Distributed reflection denial of service attacks are similar to DDoS attacks in the
manner that they also use a similar client hosted on compromised computers to do all of
the work. The key difference to these types of attacks is that instead of using the nodes to
attack a certain target, they trick large corporate or other massive sites into doing the
attack for them; ‘them’ being the controller(s). The planning stage would require the
attacker to find sites that have very large pipelines connected to the Internet. An example
of such sites might be the powerhouses of CNet or Google, where they can accommodate
massive amounts of traffic. The attacker chooses as many of these sites as he or she can,
and then sets to work. Using the compromised node machines to do the dirty work, the
attacker gives the nodes modified packets to send to these large sites. The packets are
modified so that the source IP is not the node’s IP or a random IP, but the IP of the target
site or computer. The process of the communication goes as follows:

1.) Compromised node accepts attack command from creator
2.) Command includes altered headers in packets to send out. The header now has the

IP address of the target site set to be the ‘Source IP’
3.) Node computer sends packet out to predetermined Internet ‘powerhouses’ with

large pipelines to the Net.
4.) ‘Powerhouses’ send ACK packets as a return to the initial packet, but they send it

to the actual target instead of a random IP or the IP of the compromised Node.
5.) Cumulative power in all of the attacking sites causes denial of service to the target

and they are overwhelmed and forced off of the Net.
With very little effort, a creative programmer with malicious intent can easily take down
some of the largest sites on the Internet, and with serious financial ramifications.
Interestingly enough, during the writing of this paper, a DDoS attack was being used to
blackmail a company in Europe into paying out a large amount of money.

3.3 Case and Point: “Crime gangs extort money with hacking threat”
 In an article from Financial Times.com (FT.com), they reported on Tuesday
November 11, 2003 that “…a new type of international extortion racket emerged on
Tuesday with revelations that blackmailers have been exploiting computer hacking

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 8

techniques to threaten the ability of companies to conduct business online.” (Nuttall) The
article continues onward with saying that these gangs focused on eastern European
businesses and attacked businesses repeatedly using distributed denial of service attacks,
causing some businesses to lose millions of dollars per day due to downtime. A very real
and true example of how the power distributed computing has within its domain of
control to those willing to use them for malicious intent. The future of distributed
computing will be to gain an understanding and determine the possible solutions needed
to prevent and combat these types of attacks.

IV. The Future of Distributed Computing and Possible Solutions

4.1 Possible Solutions to Combat Distributed Attacks
 First and foremost, solutions require knowledge of the problems and how these
attacks are achieved. One of the best documented examples of distributed denial of
service attacks is an account from Steve Gibson at Gibson Research Corp.
(http://www.grc.com). His business was attacked by a series DDoS attacks in May 2001
by a thirteen-year old boy commanding over one hundred compromised computers. This
person and another cohort managed to take the GRC site down several times in a short
period of time and keep it down for hours at a time. The only things that saved Gibson
was his knowledge of networking and abilities to contact the vendors operating the edge
devices between his two T1’s and part of the Internet backbone. Initially Gibson blocked
ICMP packets to get his site back online, but knew that was only a temporary stop-gap.
He captured many of the packets as they came across his line to build a database of what
was coming in and who sent it. Following that line, he asked for users on his newsgroups
to submit a copy of the ‘Zombie’ client which was infecting vulnerable machines. He
studied that client for a while and decidedly altered it so that it would not produce any
attacks but would still show him what all it was made to do. Eventually the ‘Zombie’
client led him back to a locked IRC channel where he observed silently in the background
watching people use these clients to send out attacks. In the end he simply followed all of
the paths back the chain to the source and even though he never pinpointed the exact
person attacking, he found out much more than he anticipated and was able to create
countermeasures to combat such things. He was able to work with the vendor and design
a series of filters for the routers to use so that they could block and discard invalid
packets to stop the attacks at that edge of the connection and keep his site online. Gibson
also freely shares his experiences to let the Internet community know what all is floating
around and can easily strike. The full account of his ordeal is documented on his site at
http://grc.com/dos/grcdos.htm.
 The second aspect to combating distributed attacks of any form is keeping your
operating system as impenetrable as possible. It is always possible that things will sneak
up when least expected, but it seems that part of being able to own this level of software
is to keep that software patched for security and running only the essential components. It
is paramount that all unnecessary services be stopped to prevent intrusion attempts. Even
under Linux, UNIX, Mac OS X or other systems, it is crucial that only necessary
services, such as mail or file sharing, be run when needed and turned off when they are
not. An open door is an easy target for someone looking to break into a computer, so by
reducing the chances of finding such doors, these attempts can be seriously decreased.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 9

Finally, it is necessary for an IT professional to know all aspects of his or her
computer operating system and environment. Knowledge should especially include what
services and programs should be running and which should not. It is always the case
during these distributed attacks that the surrogate nodes’ operators generally have no clue
that their computer is involved in attacks against another system. In cases with multiple
servers or workstations, take software inventories if possible or even a simple file index
to run a differentiate program against. It all comes down to how much work is willing to
be put forth to protect the investment of an individual or a business.

V. Conclusion

5.1 The Future of Distributed Computing

The future of distributed computing is still quite uncertain since it is one of many
new types of computing. The technology has truly shown its worth as a useful research
tool as well as its potential for being a threatening tool to cause serious damage to
systems and infrastructure, financially and otherwise. An IT security professional should
always be on guard for such attacks and know the attacker and technology used to
perform such intrusions. Knowledge is the key to ensuring that such attacks can be
prevented or at least stopped once they occur, even with it being a brute force.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 10

Works Cited / Resources

1. About the Pande Group. Stanford University. 11 Dec. 2002.

<http://www.stanford.edu/group/pandegroup/>.

2. About SETI@Home. Seti@Home. Copyright 2001.

<http://setiathome.ssl.berkeley.edu/about_seti/about_seti_at_home_1.html>.

3. [ANNOUNCE] [ADMIN] The secret message is... David McNett. 24 Feb. 1998.

<http://lists.distributed.net/hypermail/announce/0039.html>.

4. Beowulf History. Phil Merkey. Copyright 2000-2003 Scyld Computing Corporation

<http://www.beowulf.org/beowulf/history.html>.

5. Cray X1 System Specifications. Cray, Inc. November 10, 2003.

<http://www.cray.com/products/systems/x1/>.

6. Crime gangs extort money with hacking threat. Chris Nuttall. London. 11 Nov. 2003.

<http://news.ft.com/servlet/ContentServer?pagename=FT.com/StoryFT/FullStory
&c=StoryFT&cid=1066565805264&p=1012571727088>.

7. Cryptographic Challenges. RSA Laboratories.Copyright 2003.

<http://www.rsasecurity.com/rsalabs/challenges/>.

8. Distributed.net completes rc5-64 project (list announcement). David McNett. 25 Sept.

25, 2002. <http://www.distributed.net/pressroom/news-20020926.html>.

9. Distributed Computing: Distributed Communities. Howard Feldman. 22 May 2003.

<http://www.onlamp.com/pub/a/onlamp/2003/05/22/distributed.html>.

10. Distributed.net Current Projects, Distributed.net RC5 Challenges, Distributed.net

DES Challenges. Distributed Computing Technologies, Inc. Copyright 1997-
2003. <http://www.distributed.net/projects.php , http://www.distributed.net/rc5/ ,
http://www.distributed.net/des/>.

11. RSA Code-Breaking Contest Again Won by Distributed.Net and Electronic Frontier

Foundation (EFF). RSA Laboratories. 19 Jan. 1999.
<http://www.rsasecurity.com/company/news/releases/pr.asp?doc_id=462>.

12. RSA's DES Challenge III is solved in record time. RSA Laboratories. 18 Jan. 1999.

<http://www.rsasecurity.com/rsalabs/challenges/des3/index.html>.

13. The RC5(R) Encryption Algorithm General Information. RSA Laboratories. 7 Apr.

1995. <ftp://ftp.rsasecurity.com/pub/rsalabs/rc5/readme>.

