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Distributed Computing: 
An Unstoppable Brute Force 

 
Abstract: 
 Distributed computing allows groups to accomplish work that was not feasible 
before with supercomputers, due to cost or time constraints. Although the primary 
functions of distributed computing systems is to produce needed processing power to 
complete complex computations, distributed computing also reaches outside of the 
processing arena to other areas such as network usage. When used properly, both areas 
compliment each other and can produce needed results. When used maliciously, either 
processing or networking distributed attacks can produce a brute force that even the best 
firewalls or encryption are powerless to prevent. Using distributed computing brute force 
attacks on encryption algorithms, distributed denial of service attacks, distributed 
reflective denial of service attacks, and other future forms of malicious attacks, there is 
much to guard against with these types of computer usage. Distributed computing should 
be tamed and closely guarded against such uses through efforts to filter out invalid 
network packets for distributed attacks, and carefully monitoring computer software to 
ensure that a distributed computing processing, brute force attacks cannot occur.  
 
I. Introduction 
 
1.1 A Brief History of Distributed Computing 

During the earliest years of computing, any tasks that required large computations 
and massive processing were generally left up the government or a handful of large 
companies. These entities could afford to buy massive supercomputers and the 
infrastructure needed to support them. With the price of personal computing declining 
rapidly in price, and supercomputers still very expensive, an alternative was needed. In 
1993, Donald Becker and Thomas Sterling introduced Beowulf clustering. Although not 
the first example of clustering, this was the first time that an effort was made to enable 
anyone to take off the shelf computers and build a cluster of computers that could rival 
top supercomputers. The concept behind clustering, in its simplest form, is that many 
smaller computers can be combined in a way to make a computing structure that could 
provide all of the processing power needed, for much less money. All of the nodes of a 
cluster are connected to an isolated internal network and same switch as the serving 
computer (SC). The serving computer houses the results and distributes new work units 
to all of the attached nodes. Each node is a single-use computer, allowed to only process 
the problem that it is given and return the results when finished. Many of the problems 
that hindered the first clustering efforts still cause problems today. One of the more 
expensive elements is the dedicated internal network, or interconnects, which link all of 
the nodes together to the server. Since these nodes are simple banks of processors, 
security is almost entirely nonexistent and therefore requires a great care in isolating the 
interconnected network from any outside networking. An additional element contributing 
to problems is that of suitable software for the clusters to run. Even though all of the 
nodes work together to process chunks of a complete dataset, the software must still be 
written to take advantage of the multiples of processors and the individual resources, such 
as memory, that the nodes contain. To obtain a stable and suitable software layer, it may 
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 3 

take months or years to perfect the software to properly process the needed results and 
use all of the available power. In the end, taking a major step forward for computing 
power, clustering certainly has its problems and insecurities as a relatively new 
technology. With distributed computing, it manages to encompass a much wider scope 
than clustering by allowing nodes to exist anywhere in the world and also be multi-
purpose/multi-function machines.  

Distributed computing has a similar concept as clustering: take a large problem, 
break it into smaller units, and allow many nodes to work on the problem in parallel. 
Where distributed computing strays from this concept is by also allowing the nodes to be 
multifunction and multipurpose computers that can exist anywhere in the world while 
being attached to the Internet. Distributed computing can actually take on many different 
orientations of the nodes, all depending on how the client computers are connected to the 
Internet. In addition to this element of flexibility, there is also a level of redundancy that 
does not exist in supercomputing or clustering. With clustering and supercomputing, the 
data is generally processed only once, due to the large amounts of time that the entire 
project may take. In distributed computing, it is often the case that work units may be 
distributed multiple times to multiple nodes. This method serves two functions: to 
drastically decrease the possibilities of processing errors, and to account for processing 
that is done on slower CPUs or takes too long to return results. What makes this entire 
system possible is the application of a small piece of software called a client. This client 
handles the data retrieval and submission stages as well as the code necessary to instruct 
the CPU how to process the work unit. Clients vary in side, but most are less than 1-2 
megabytes in size. The actual data work units also vary in size, but most are between 250 
and 400 kilobytes, so that the hosting/node CPU can handle the process, and users on 
slower internet connections can easily send and receive the data. Between the small sizes 
of work units and clients, it seems unreasonable to see a disadvantage to using distributed 
computing other than the collection and analysis of data. To understand further the actual 
scale of distributed computing, several real-life examples will be used to detail the actual 
power that these large networks can create.  

 
II. The Scale of Distributed Computing 
 
2.1 Distributed Protein Folding 

Distributed computing can be a tremendous tool for any research or other 
noteworthy purpose when it is used for positive goals. To give an illustration of the better 
uses of distributed computing, a group from Stanford University is currently running a 
distributed system to work on the problem of protein folding. The goal of the project is to 
try and determine the function of proteins by how they form, or ‘fold’. The simple 
version is that proteins assemble themselves into certain ‘folds’ which dictate what their 
function will be. When these proteins fail to fold properly, they result in such diseases as 
“…Alzheimer's disease, cystic fibrosis, BSE (Mad Cow disease), an inherited form of 
emphysema, and even many cancers are believed to result from protein misfolding.” 
(Stanford) Continuing from the blueprint of DNA, which specifies the sequence of amino 
acids, these scientists are taking research to the next level by trying to figure out how 
proteins, strings of amino acids, form and function. To accomplish this goal, the research 
group has enlisted the help of their own distributed network people, the Pande Group, to 
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create Folding@Home. Distributed computing enters this challenge by simulating the 
various folds that protein can form. The concept doesn’t appear that it would require 
massive amounts of computing power to complete it, but the fact is that regular computer 
simulations just aren’t fast enough.  A protein fold may occur as fast as a millionth of a 
second, which is a very long time for a computer to simulate. The team estimates that 
“…there is a 1000 fold gap between the simulation timescales (nanoseconds) and the 
times at which the fastest proteins fold (microseconds).” (Stanford) Currently, the group 
has completed the initial portion of their project in under a year with approximately two-
hundred and seventy thousand registered members, of which one-hundred and twenty 
thousand processors are active. Phase one was to determine the feasibility of using 
distributed computing with using some of the less complex folding possibilities. The 
second phase will use data from the first phase to calculate more complex folding 
possibilities on a much larger scale. This next phase also has managed to secure Intel as a 
sponsor for the project. By using the resources of distributed computing, this group has 
been able to successfully accomplish many steps on the path to their ultimate goals. In 
this instance, distributed computing has performed its role well and may advance the 
medical field into new areas. By comparison, however, this project should be considered 
only a very small example of what distributed computing can do. Currently the largest 
distributed network in operation, SETI@Home has produced some astronomical 
computational results. 

 
2.2 The Search for ET 

Considered to be one of the first distributed computing groups, SETI@Home is 
the search for extra terrestrials, or perhaps Marvin the Martin if you prefer. The SETI 
team leases the Arecibo Radio Telescope for a few weeks out of the year. During those 
weeks of the year, that the SETI team scans as much of the sky as possible and stores the 
resulting data on 35 gigabyte DLT tapes per day. The tapes are then mailed to Berkley, 
CA from the Puerto Rico site. Then the tapes are stored in massive tape libraries to be 
broken down and analyzed for data computations. Having no other practical or affordable 
way of data mining through all of the data for possible key events, the SETI team formed 
the SETI@Home project. The project takes the data tapes, breaks small portions of data 
into 250 kilobyte units, and distributes those units to anyone willing to run the nifty little 
SETI@Home screensaver. To promote a form of competition, the organization presents 
real-time statistics on their website, along with awarding certificates of accomplishment 
to members or teams completing a certain numbers of work units at different milestones. 
The user-base for the project boasts a registered user-base of four and three-quarters of a 
million people, with a combined processing power in the neighborhood of 14.19 
Teraflops/sec(Seti@Home). To give an idea of the scale and financial implications, the 
current top-of-the-line offering from the supercomputer manufacturer Cray “features 
powerful vector processors combined with an interconnect that scales to peak 
performances of multiple tens of teraflops”(Cray, Inc), and the pricing of a single Cray 
X1 is approximately $2.5 million dollars. So the project is producing tons of power and 
saving millions of dollars by using a distributed computing setup to mine their data to 
find communications from little green men. Truly withstanding the test of time, 
SETI@Home has been in existence since 1998 and continues to compete with a very 
active user-base. 
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The problem of both of these examples and distributed computing, as a whole, is 
the issue of security and infrastructure. In essence, it is the Internet itself providing a 
medium of attack. The distributed clients, having control over thousands of computers, is 
the provided means of attack.  

  
III. The Negative Sides and Security Implications of Distributed Computing 
 
3.1 Distributed.net: Cracking the World’s Encryption One Key at a Time  
 Another group of people pioneering the use of distributed computing is the 
Distributed Computing Technologies Inc. business running http://www.distributed.net. 
The initial purpose of this group was to prove that the RC5 encryption algorithm, at the 
time which was set to replace DES-III encryption, was quite vulnerable to brute force 
attacks should not be considered as the DES-III replacement. Being another pioneer of 
distributed technology, the group started their first computation challenge in October 
1997 by using brute force to try every possible key in cracking an RC5-64bit challenge. 
The key took 250 days to locate. After that challenge, the group added another distributed 
client for nodes that would process the keys for DES-II 1st challenge in February 1998. 
That key was determined in only 39 days after testing 90% of the possible keys. After 
reassembling the group and changing their distributed DES client some more, the team 
continues onward to complete the DES-III challenge in January 1999 by beating the 
previous record of 56 hours and completing the task in only 22 hours and 15 minutes 
from the time that the challenge was issued. Having help from the Electronic Frontier 
Foundation’s supercomputer “Deep Crack” and approximately 100,000 volunteer 
distributed nodes, the two teams were able to brute force test “…245 billion keys per 
second.”(McNatt) Time and time again, the distributed.net team has proven that with 
enough computing power, even some of the higher encryption algorithms can be broken 
with persistence. Consider this power when thinking of encryption standards and 
companies and offices still using older encryption techniques to secure data. If these 
teams can beat similar methods in less than a day, think of what a mischievous person 
could do with several hundred thousand clients processing keys unbeknownst to the 
owners of the computers. If viruses can infect computers and coordinate their efforts to 
knock out network targets, could they not also be used to compute complex problems and 
submit results to decrypt even the strongest of algorithms? This should be a question on 
all security experts’ minds, especially when planning for the future. 
 The power that distributed computing can attain has already been shown through 
examples of existing projects and their respective numbers. Used in healthy and 
noteworthy environments, distributed computing works well to provide useful 
information to those seeking it. It is when it’s used for improper reasons that it can create 
a nearly unstoppable brute force against security features such as encryption and or the 
bandwidth of the Internet itself. 
 
3.2 Distributed Denial of Service Attacks 
 One of the areas that distributed computing has been used to stage successful 
attacks, has been against bandwidth and the structure of the Internet. Distributed denial of 
service attacks (DDoS) have been among the most successful to target certain sites and IP 
ranges. The attacks involve the complete saturation of the network with traffic from 
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hundreds of compromised computers working in concert to bring the network or site 
down. These feats were accomplished with the use of a distributed ‘Zombie’ client that 
was installed on PCs that had a security hole in the operating system, notably Microsoft-
based. Once the client was installed and running on the computer, it would literally 
‘phone home’ to the controller on a locked, private IRC channel. From there, the 
controller could tell these compromised computers to attack a specific site and send 
ICMP packets, or pings, at the fastest rate with the largest amount of data possible, 
without waiting for any return ACKnowledge signal or the return packet. In the biggest 
attacks, ping packets were sent out as fast as the sending computers could possibly 
process them, with a maximum size of 64 kilobytes. In these cases, the attacking 
machines were computers running Microsoft® Windows®, and the maximum size of a 
ping packet is 64 kilobytes. A single dialup user sending these out is mere noise, but with 
a significant group of computers broadcasting these packets of data in unison could easily 
take down a network, especially if each node of this distributed system had a utilization 
of 100% of its allotted bandwidth to the internet. This is actually not much of a stretch for 
most people to realize that the Internet’s backbones can only handle so much bandwidth. 
Unless your firm can pony up large amounts of money for huge connections to the 
Internet, smaller ones such as T1, T3’s and OC3’s usually have to suffice. To bring this 
all to reality, let us consider the following example: 
    [Example] 

Consider an example of what kind of bandwidth a small distributed group could 
crush. A T1 connection to the Internet has a theoretical bandwidth of 1.5 megabits 
which equals about 175 kilobytes per second possible throughput up and 
downstream. Due to the increase in broadband connections to home users, also 
assume that there are a multitude of users sitting on cable modem connections 
with vulnerable Microsoft® Windows XP® Professional PCs. The majority of 
cable modem connections have a limitation on the amount of upstream bandwidth 
they’re allowed, this is usually 256 kilobits per second. Since there are 8 bits in a 
byte, this amounts to a rough limit of 32 kilobytes per second possible transfer 
speeds. Already you can see that a single cable modem, if used to 100% of 
possible capacity, is roughly a third of the bandwidth that a corporate T1 line can 
handle. Take that single computer and multiply it by ten to twenty and now you 
see the problem. So why not simply ask the gateway routers from the main 
Internet trunks to your T1 to filter out this traffic? There are several problems to 
this solution. To block certain packets with today’s equipment, you need to know 
certain pieces of information in the packets that all of the malicious packets have 
in common; a common source, type, size, or even the content. With distributed 
attacks, almost none of this information is the same from one node to another. 
Even if the attack is using ICMP packets to ping a site to death, blocking those 
types of packets might stop the current attack, but it would also partially cripple 
the site by not allowing certain services such as return pings. Current solutions 
lend themselves to creating more problems.  

 
 Compounding these problems is the formation of the packet itself. A normal 
TCP/IP packet contains, in the header, the source IP of the computer sending the data 
packet out. This is the receiving computer’s way of finding its way back to the sending 
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computer so that it can communicate. This system establishes a form of ‘dialogue’ with 
the two computers. In most distributed denial of service attacks, this portion of the packet 
is ‘spoofed’ to make it look like the packet came from an entirely different source. 
According to Steve Gibson of Gibson Research Corp., prior to the release of Windows 
2000 and Windows XP, this problem was almost trivial because the Windows 9x and ME 
series of operating systems did not support full Unix-style sockets. By not fully 
supporting these types of sockets, the OS didn’t allow applications to fully control the 
formation of data packets leaving these types of sockets. In these cases, the software 
would try to modify the packet but fail to completely replace the source IP addresses. 
There was still enough information in the header that the packets could be traced back to 
the source. However, with the release of Windows 2000 and Windows XP, this single 
element soon ended due to the facts that both of these operating systems include support 
for Unix-style sockets. With these types of sockets, software essentially has free reign on 
the way that packets can be formed. The software is free to create the header how it 
pleases and thus creates a new problem and form of attack, distributed reflection denial of 
service attacks, or DRDoS.  
 Distributed reflection denial of service attacks are similar to DDoS attacks in the 
manner that they also use a similar client hosted on compromised computers to do all of 
the work. The key difference to these types of attacks is that instead of using the nodes to 
attack a certain target, they trick large corporate or other massive sites into doing the 
attack for them; ‘them’ being the controller(s). The planning stage would require the 
attacker to find sites that have very large pipelines connected to the Internet. An example 
of such sites might be the powerhouses of CNet or Google, where they can accommodate 
massive amounts of traffic. The attacker chooses as many of these sites as he or she can, 
and then sets to work. Using the compromised node machines to do the dirty work, the 
attacker gives the nodes modified packets to send to these large sites. The packets are 
modified so that the source IP is not the node’s IP or a random IP, but the IP of the target 
site or computer. The process of the communication goes as follows: 

1.) Compromised node accepts attack command from creator 
2.) Command includes altered headers in packets to send out. The header now has the 

IP address of the target site set to be the ‘Source IP’ 
3.) Node computer sends packet out to predetermined Internet ‘powerhouses’ with 

large pipelines to the Net.  
4.) ‘Powerhouses’ send ACK packets as a return to the initial packet, but they send it 

to the actual target instead of a random IP or the IP of the compromised Node.  
5.) Cumulative power in all of the attacking sites causes denial of service to the target 

and they are overwhelmed and forced off of the Net.  
With very little effort, a creative programmer with malicious intent can easily take down 
some of the largest sites on the Internet, and with serious financial ramifications. 
Interestingly enough, during the writing of this paper, a DDoS attack was being used to 
blackmail a company in Europe into paying out a large amount of money.  
 
3.3 Case and Point: “Crime gangs extort money with hacking threat” 
 In an article from Financial Times.com (FT.com), they reported on Tuesday 
November 11, 2003 that “…a new type of international extortion racket emerged on 
Tuesday with revelations that blackmailers have been exploiting computer hacking 
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techniques to threaten the ability of companies to conduct business online.” (Nuttall) The 
article continues onward with saying that these gangs focused on eastern European 
businesses and attacked businesses repeatedly using distributed denial of service attacks, 
causing some businesses to lose millions of dollars per day due to downtime. A very real 
and true example of how the power distributed computing has within its domain of 
control to those willing to use them for malicious intent. The future of distributed 
computing will be to gain an understanding and determine the possible solutions needed 
to prevent and combat these types of attacks. 
 
IV. The Future of Distributed Computing and Possible Solutions 
 
4.1 Possible Solutions to Combat Distributed Attacks 
 First and foremost, solutions require knowledge of the problems and how these 
attacks are achieved. One of the best documented examples of distributed denial of 
service attacks is an account from Steve Gibson at Gibson Research Corp. 
(http://www.grc.com). His business was attacked by a series DDoS attacks in May 2001 
by a thirteen-year old boy commanding over one hundred compromised computers. This 
person and another cohort managed to take the GRC site down several times in a short 
period of time and keep it down for hours at a time. The only things that saved Gibson 
was his knowledge of networking and abilities to contact the vendors operating the edge 
devices between his two T1’s and part of the Internet backbone. Initially Gibson blocked 
ICMP packets to get his site back online, but knew that was only a temporary stop-gap. 
He captured many of the packets as they came across his line to build a database of what 
was coming in and who sent it. Following that line, he asked for users on his newsgroups 
to submit a copy of the ‘Zombie’ client which was infecting vulnerable machines. He 
studied that client for a while and decidedly altered it so that it would not produce any 
attacks but would still show him what all it was made to do. Eventually the ‘Zombie’ 
client led him back to a locked IRC channel where he observed silently in the background 
watching people use these clients to send out attacks. In the end he simply followed all of 
the paths back the chain to the source and even though he never pinpointed the exact 
person attacking, he found out much more than he anticipated and was able to create 
countermeasures to combat such things. He was able to work with the vendor and design 
a series of filters for the routers to use so that they could block and discard invalid 
packets to stop the attacks at that edge of the connection and keep his site online. Gibson 
also freely shares his experiences to let the Internet community know what all is floating 
around and can easily strike. The full account of his ordeal is documented on his site at 
http://grc.com/dos/grcdos.htm. 
 The second aspect to combating distributed attacks of any form is keeping your 
operating system as impenetrable as possible. It is always possible that things will sneak 
up when least expected, but it seems that part of being able to own this level of software 
is to keep that software patched for security and running only the essential components. It 
is paramount that all unnecessary services be stopped to prevent intrusion attempts. Even 
under Linux, UNIX, Mac OS X or other systems, it is crucial that only necessary 
services, such as mail or file sharing, be run when needed and turned off when they are 
not. An open door is an easy target for someone looking to break into a computer, so by 
reducing the chances of finding such doors, these attempts can be seriously decreased. 
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Finally, it is necessary for an IT professional to know all aspects of his or her 
computer operating system and environment. Knowledge should especially include what 
services and programs should be running and which should not. It is always the case 
during these distributed attacks that the surrogate nodes’ operators generally have no clue 
that their computer is involved in attacks against another system. In cases with multiple 
servers or workstations, take software inventories if possible or even a simple file index 
to run a differentiate program against. It all comes down to how much work is willing to 
be put forth to protect the investment of an individual or a business. 
 
V. Conclusion 
 
5.1 The Future of Distributed Computing 

The future of distributed computing is still quite uncertain since it is one of many 
new types of computing. The technology has truly shown its worth as a useful research 
tool as well as its potential for being a threatening tool to cause serious damage to 
systems and infrastructure, financially and otherwise. An IT security professional should 
always be on guard for such attacks and know the attacker and technology used to 
perform such intrusions. Knowledge is the key to ensuring that such attacks can be 
prevented or at least stopped once they occur, even with it being a brute force. 
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