GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

Case Study of IPTables and Freeswan IPSEC
GIAC Security Essentials Certification (GSEC)
Practical Assignment Version 1.4b

Option 1 - Case Study in Information Security
Author: Eric Rupprecht

Date: 10 November 2003

Abstract

Linux Netfilter and FreeS/WAN are popular tools for creating low cost firewall and
VPN gateways. Creating firewall rules for these systems can be relatively
straight forward if you understand how they work. There are many commercial
and free firewall tools that provide GUI interfaces for creating firewall rules and
VPN connections. These tools allow for less understanding of how the firewall
works since the management tool is trusted to create the correct rules. People
that manually configure or troubleshooting problems need an understanding how
the Netfilter and FreeS/WAN work to correctly administer the gateways. This
guide will discuss Netfilter and FreeS/WAN explaining how each tool works and
how the two interact. The goal is to show how a packet will flow through these
tools to provide a better understanding of these technologies and enabling the
administrator to write firewall rules with fewer errors.

Introduction

A while back, | was asked to upgrade a series of firewalls to enable IPSEC
gateway-to-gateway tunneling between two sites. The current firewalls were
running linux and using ipchains to enforce the firewall rules. The decision was
made to us FreeS/WAN for the VPN connection and use Netfilter for the firewall.
| started researching Netfilter and FreeS/WAN to gain an understanding of
exactly how they work and interact. The following is a summary of this research.

Netfilter

Netfilter is a fourth generation Linux packet filtering software. Also called
iptables, netfilter was introduced with the Linux 2.4 kernel and was designed to
replace both the ipchains and ipfwadm legacy tools. There were two main
advantages netffilter provides; simplified packet flow and stateful inspection.

Packet Flow through iptables

Understanding how packets flow through iptables allows the administrator to
correctly create the firewall rules. The good news is that Netfilter simplified the
packet flow through the chains as compared to ipchains.. The new model only

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

processes the necessary chains based on the ip appresses on the packet. There
are three main chains INPUT, OUTPUT, and FORWARD that process the
security policy. There are two chains that perform NAT and one chain for
mangling the packet. The following diagram shows the test network for the
examples in this section.

H

J==

Workstation

IPTABLES
Firewall

Figure 1: Iptables test network

The following diagram shows how a packet flows through the different iptables

chains.
Incoming Outgoing
Packet Packet

Routing

PREROUTING -
Decision

FORWARD —® POSTROUTING

Local Processing
INPUT > OUTPUT

Figure 2: Iptables flow"?

The flow through iptables is as follows:

1. The incoming packet is processed by the PREROUTING chain. This
chain is used to NAT the destination on packets before any rules are
applied®>. The PREROUTING chain is frequently used to perform a one-to-
one static destination NAT.

2. Next a routing decision is made based on the destination ip address of the
packet. The packet is processed by the INPUT chain if the packet has a
destination address that matches the IP address on the interface, i.e. the

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

packet is destine for this box'. A packet that is transferred to the INPUT
chain will be compared to the rules attached to that chain to determine if it
will be allowed. If the packet is allowed, it is transferred to the appropriate
local process on the system. Replies to this packet will leave the local
processing and traverse the OUTPUT chain.

3. A packet not destine for the box will be processed by the FORWARD
chain. The rules in the chain are checked and, if accepted, the packet is
routed to the correct interface. The packet will be dropped if ip forwarding
is not enabled or does not know how to route the packet'.

4. The OUTPUT chain is only traversed if the packets are initiated from the
local box or are replies to packets that were destine for the box. Rules are
checked and the packet passed out the correct interface’.

5. The outgoing packet is processed by the POSTROUTING chain. This
chain is used to NAT the source address on packets after rules are
applied®>. The POSTROUTING chain is frequently used to perform a
hiding NAT.

Iptables Rules and Stateful Inspection

Stateful Inspection provides the ability to do connection tracking. In a non-
stateful packet filter environment, a rule is created to allow the source address
using a random source port to go to a destination on a service port. In addition, a
rule is created to allow the return traffic. The return traffic rule needs to allow all
ports above 1024 back to accommodate the randomly generated source port
from the initial connection. This creates a very large hole in the firewall for the
return traffic. Iptables solves this through connection tracking. Connection
tracking keeps track of the packets that have been allowed. The return traffic
can be compared against the connection table. Only the return traffic that
matches the original source address and port, and destination address and port
will be allowed. This closes the huge hole that had to be opened in non-stateful
packet filters.

Connection tracking in iptables

In iptables, a rule is created to allow the traffic. The “- A INPUT” directive tells
iptables to append the rule to the INPUT chain. The “-p” option will limit the rule
to a specific protocol. This can be icmp, tcp, udp, or a protocol number like 50.
The tcp and udp protocols will normally add the —dport option to specify the
destination port. The “-m state —state NEW” option tells iptables to record
information in the connection tracking table. This information can be used later
to allow the return traffic. Finally, the “-j” option tells iptables to allow action to
perform; accept, drop, or log. The following is an example of accepting a new
icmp packet with state.

iptables -A INPUT -p icmp -m state ! --state NEW -j ACCEPT

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The return traffic can be automatically allowed by creating a rule that checks for
established connections. The "-m state —state ESTABLISHED” option tells the
rule to look in the connection table to determine that the initiating connection has
already been allowed and the return traffic should also be allowed. RELATED is
also an option used here that is commonly needed for ftp. The following is an
example of a generic rule allowing already established connections.

iptables -A OUTPUT -m state ! --state ESTABLISHED, RELATED -j ACCEPT

Understanding packet flow is critical to correctly writing these rules. The
following section will go through how packets flow through the chains.

Packet flow of stateful connections not destine for the firewall

Both of the state commands above would exist on the FORWARD chain when
the packets are traversing the firewall. The initial packet is not destine for the
firewall and the routing decision has iptables evaluate the packet in the
FORWARD chain (shown in Figure 2). The return traffic is also not destine for
the firewall and is also evaluated by the FORWARD chain.

iptables -A FORWARD -p icmp -m state ! --state NEW -j ACCEPT
iptables -A FORWARD -m state ! --state ESTABLISHED, RELATED -j ACCEPT

For the first test, the firewall in the test environment was set up to accept and log
all packets.

#Set default policy to accept everything

iptables -P INPUT ACCEPT

iptables -P OUTPUT ACCEPT

iptables -P FORWARD ACCEPT

#Lets log everything on all chains

iptables -A INPUT -j LOG --log-prefix "INPUT"
iptables -A OUTPUT -j LOG --log-prefix "OUTPUT"
iptables -A FORWARD -j LOG --log-prefix "FORWARD"

A ping from the workstation to the server was issued. The Netfilter logs show
only the forward chain being processed for both the echo request (icmp type 8
code 0) and the echo reply (icmp type O code 0).

Nov 2 08:32:35 gatewayl kernel: FORWARD IN=ethl OUT=ethO SRC=10.1.1.2
DST=10.3.3.2 LEN=60 TOS=0x00 PREC=0x00 TTL=127 ID=5277 PROTO=ICMP
TYPE=8 CODE=0 ID=512 SEQ=768

Nov 2 08:32:35 gatewayl kernel: FORWARD IN=ethO OUT=ethl SRC=10.3.3.2
DST=10.1.1.2 LEN=60 TOS=0x00 PREC=0x00 TTL=126 ID=18432 PROTO=ICMP
TYPE=0 CODE=0 ID=512 SEQ=768

Packet traces show the following packet flow across the firewall interfaces.
Interface ethl faces the workstation and ethO faces the server.

ethl: 08:38:24.028043 10.1.1.2 > 10.3.3.2: icmp: echo request

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

ethO: 08:38:24.028456 10.1.1.2 > 10.3.3.2: icmp: echo request
ethO: 08:38:24.029874 10.3.3.2 > 10.1.1.2: icmp: echo reply
ethl: 08:38:24.030175 10.3.3.2 > 10.1.1.2: icmp: echo reply

This test verifies that packets being routed across the firewall only traverse the
forward chain.

In the next test, the firewall was set up with a default policy to deny all packets.
Then rules were added to allow all traffic and use stateful inspection.

#Set default policy to deny everything
iptables -P FORWARD DROP

establish state and log everything

iptables -A FORWARD -m state --state NEW -j LOG --log-prefix "FORWARD
ACCEPT STATE NEW "

iptables -A FORWARD -m state --state NEW -j ACCEPT

iptables -A FORWARD -m state --state ESTABLISHED -j LOG --log-prefix
"FORWARD ACCEPT STATE EST "
iptables -A FORWARD -m state --state ESTABLISHED -3j ACCEPT

A ping from the workstation to the server was issued. The net filter logs showed
that the "-state NEW" rule was used for the icmp echo request, and the "--state
ESTABLISHED" rule for the echo reply

Nov 2 16:09:01 gatewayl kernel: FORWARD ACCEPT STATE NEW IN=ethl
OUT=ethO SRC=10.1.1.2 DST=10.3.3.2 LEN=60 TOS=0x00 PREC=0x00 TTL=127
ID=15772 PROTO=ICMP TYPE=8 CODE=0 ID=512 SEQ=1792

Nov 2 16:09:01 gatewayl kernel: FORWARD ACCEPT STATE EST IN=ethO
OUT=ethl SRC=10.3.3.2 DST=10.1.1.2 LEN=60 TOS=0x00 PREC=0x00 TTL=126
ID=19456 PROTO=ICMP TYPE=0 CODE=0 ID=512 SEQ=1792

We can see above that the echo reply is handled by state, but how does iptables
keep track of this. The file /proc/net/ip_conntrack tracks the state of the
connections. The "-state NEW" option tells iptables to make an entry in the
ip_conntrack table for the network connection. The "-state ESTABLISHED"
option tells iptables to look in the ip_conntrack table and see if this is an already
recorded (or allowed) connection. It is difficult to see the echo request state
entry in the ip_conntrack table since it is only there a short time. As soon as the
echo reply is processed, the connection is considered closed and the state entry
removed. We can see the state entry for icmp by pinging a non-existent server
so that the echo reply is not received.

icmp 1 26 src=10.1.1.2 dst=10.3.3.3 type=8 code=0 i1d=512
[UNREPLIED] src=10.3.3.3 dst=10.1.1.2 type=0 code=0 1d=512 use=l1

Now that we have a good idea how state works, lets look at the case of TCP.

For this test, the workstation telnets to the server on port 139 to establish a tcpip
connection. The following trace shows that only the first packet is processed by

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

the "-state NEW" rule. All other packets in the connection are processed with
state by the "-state ESTABLISHED" rule.

Nov 2 16:27:33 gatewayl kernel: FORWARD ACCEPT STATE NEW IN=ethl
OUT=ethO SRC=10.1.1.2 DST=10.3.3.2 LEN=48 TOS=0x00 PREC=0x00 TTL=127
ID=17292 DF PROTO=TCP SPT=2337 DPT=139 WINDOW=64240 RES=0x00 SYN URGP=0
Nov 2 16:27:33 gatewayl kernel: FORWARD ACCEPT STATE EST IN=ethO
OUT=ethl SRC=10.3.3.2 DST=10.1.1.2 LEN=48 TOS=0x00 PREC=0x00 TTL=126
ID=22784 DF PROTO=TCP SPT=139 DPT=2337 WINDOW=8760 RES=0x00 ACK SYN
URGP=0

Nov 2 16:27:33 gatewayl kernel: FORWARD ACCEPT STATE EST IN=ethl
OUT=ethO SRC=10.1.1.2 DST=10.3.3.2 LEN=40 TOS=0x00 PREC=0x00 TTL=127
ID=17293 DF PROTO=TCP SPT=2337 DPT=139 WINDOW=64240 RES=0x00 ACK URGP=0

Nov 2 16:27:37 gatewayl kernel: FORWARD ACCEPT STATE EST IN=ethO
OUT=ethl SRC=10.3.3.2 DST=10.1.1.2 LEN=40 TOS=0x00 PREC=0x00 TTL=126
ID=23296 DF PROTO=TCP SPT=139 DPT=2337 WINDOW=8759 RES=0x00 ACK URGP=0

This connection can be seen in the ip_conntrack table where it is shown as

established.

tcp 6 431995 ESTABLISHED src=10.1.1.2 dst=10.3.3.2 sport=2354
dport=139 src=10.3.3.2 dst=10.1.1.2 sport=139 dport=2354 [ASSURED]
use=1

Packet flow of stateful connections destine for the firewall

The chains that are processed in this case are different. Refering fo Figure 2,
you see that the packets flow through the INPUT and OUTPUT chains when they
are destine for the firewall or are initiated by the firewall. The iptables state
commands will need to be placed on both the INPUT and OUPUT chains. Thisis
also true when iptables is used to secure a server with a single interface.
Summarizing Figure 2 for this case, the initial packet is destine for the firewall
and the routing decision has iptables evaluate the packet in the INPUT chain.
The INPUT chain will have the state command establishing the NEW connection.
The return traffic is coming from the firewall and will traverse the OUTPUT chain.
The state command for the established traffic will be evaluated in the OUTPUT

chain.
iptables -A INPUT -p icmp -m state ! --state NEW -j ACCEPT
iptables -A OUTPUT -m state ! --state ESTABLISHED, RELATED -j ACCEPT

For traffic initiating from the firewall to another server, the flow is reversed.

iptables -A OUTPUT -p icmp -m state ! --state NEW -j ACCEPT
iptables -A INPUT -m state ! --state ESTABLISHED, RELATED -j ACCEPT

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

We can demonstrate this in a series of tests. For the first test, the firewall was
set up to accept and log all packets.

#Set default policy to accept everything

iptables -P INPUT ACCEPT

iptables -P OUTPUT ACCEPT

iptables -P FORWARD ACCEPT

#Lets log everything on all chains

iptables -A INPUT -j LOG --log-prefix "INPUT"
iptables -A OUTPUT -j LOG --log-prefix "OUTPUT"
iptables -A FORWARD -j LOG --log-prefix "FORWARD"

A ping was issued from the workstation to the firewall. The Netfilter logs show
the echo request entering on the input chain and the echo reply leaving through
the output chain.

Nov 2 16:33:01 gatewayl kernel: INPUT IN=eth(O OUT= SRC=10.1.1.2
DST=10.1.1.1 LEN=60 TOS=0x00 PREC=0x00 TTL=128 ID=17513 PROTO=ICMP
TYPE=8 CODE=0 ID=512 SEQ=2560

Nov 2 16:33:01 gatewayl kernel: OUTPUT IN= OUT=ethl SRC=10.1.1.1
DST=10.1.1.2 LEN=60 TOS=0x00 PREC=0x00 TTL=64 ID=48269 PROTO=ICMP
TYPE=0 CODE=0 ID=512 SEQ=2560

Packet traces show the icmp only on one interface.

ethl: 16:37:05.242283 10.1.1.1 > 10.1.1.2: icmp: echo reply
ethl: 16:37:05.241342 10.1.1.2 > 10.1.1.1: icmp: echo request

This test demonstrates that the forward chain is not traversed and only the input
and output chains are used.

In the next test, the firewall was set up with a default policy to deny all packets.
Then rules were added to allow all traffic and use stateful inspection.

#Set default policy to deny everything
iptables -P INPUT DROP
iptables -P OUTPUT DROP

establish state

iptables -A INPUT -m state --state NEW -3 LOG --log-prefix "INPUT
ACCEPT STATE NEW "

iptables -A INPUT -m state --state NEW -j ACCEPT

iptables -A OUTPUT -m state --state NEW -j LOG --log-prefix "OUTPUT
ACCEPT STATE NEW "

iptables -A OUTPUT -m state --state NEW -j ACCEPT

iptables -A INPUT -m state --state ESTABLISHED -j LOG --log-prefix
"INPUT ACCEPT STATE EST "

iptables -A INPUT -m state --state ESTABLISHED -j ACCEPT

iptables -A OUTPUT -m state --state ESTABLISHED -j LOG --log-prefix
"OUTPUT ACCEPT STATE EST "

iptables -A OUTPUT -m state --state ESTABLISHED -j ACCEPT

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

A ping from the workstation to the firewall was issued. The Netfilter logs showed
that the "-state NEW" rule on the input chain was used for the icmp echo request,
and the "--state ESTABLISHED" rule on the output chain was used for the echo

reply.

Nov 2 16:46:29 gatewayl kernel: INPUT ACCEPT STATE NEW IN=ethl OUT=
SRC=10.1.1.2 DST=10.1.1.1 LEN=60 TOS=0x00 PREC=0x00 TTL=128 ID=17822
PROTO=ICMP TYPE=8 CODE=0 ID=512 SEQ=4352

Nov 2 16:46:29 gatewayl kernel: OUTPUT ACCEPT STATE EST IN= OUT=ethl
SRC=10.1.1.1 DST=10.1.1.2 LEN=60 TOS=0x00 PREC=0x00 TTL=64 ID=48276
PROTO=ICMP TYPE=0 CODE=0 ID=512 SEQ=4352

This case is different than the case of the forward chain since two chains are
being processed. This means that the administrator needs to be careful to place
the "--state NEW" and "--state ESTABLISHED" options on the correct chains.

The tcp protocol is a little more complicated. For this test, the workstation telnets
to the firewall on port 111 to establish a tcpip connection. The following trace
shows that only the first packet (the SYN packet) is processed by the "-state
NEW" rule. All other packets in the connection are processed with state by the "-
state ESTABLISHED" rule, but now we can see that the "-state ESTABLISHED"
rules are being processed on both the input and output chains for a single
connection.

Nov 2 16:53:09 gatewayl kernel: INPUT ACCEPT STATE NEW IN=ethl OUT=
SRC=10.1.1.2 DST=10.1.1.1 LEN=48 T0S=0x00 PREC=0x00 TTL=128 ID=17880 DF
PROTO=TCP SPT=2383 DPT=111 WINDOW=64240 RES=0x00 SYN URGP=0

Nov 2 16:53:09 gatewayl kernel: OUTPUT ACCEPT STATE EST IN= OUT=ethl
SRC=10.1.1.1 DST=10.1.1.2 LEN=48 T0S=0x00 PREC=0x00 TTL=64 ID=0 DF
PROTO=TCP SPT=111 DPT=2383 WINDOW=5840 RES=0x00 ACK SYN URGP=0

Nov 2 16:53:09 gatewayl kernel: INPUT ACCEPT STATE EST IN=ethl OUT=
SRC=10.1.1.2 DST=10.1.1.1 LEN=40 T0OS=0x00 PREC=0x00 TTL=128 ID=17881 DF
PROTO=TCP SPT=2383 DPT=111 WINDOW=64240 RES=0x00 ACK URGP=0

Nov 2 16:53:28 gatewayl kernel: INPUT ACCEPT STATE EST IN=ethl OUT=
SRC=10.1.1.2 DST=10.1.1.1 LEN=41 T0OS=0x00 PREC=0x00 TTL=128 ID=17884 DF
PROTO=TCP SPT=2383 DPT=111 WINDOW=64240 RES=0x00 ACK PSH URGP=0

Nov 2 16:53:28 gatewayl kernel: OUTPUT ACCEPT STATE EST IN= OUT=ethl
SRC=10.1.1.1 DST=10.1.1.2 LEN=40 T0OS=0x00 PREC=0x00 TTL=64 ID=18256 DF
PROTO=TCP SPT=111 DPT=2383 WINDOW=5840 RES=0x00 ACK URGP=0

Nov 2 16:53:39 gatewayl kernel: INPUT ACCEPT STATE EST IN=ethl OUT=
SRC=10.1.1.2 DST=10.1.1.1 LEN=40 T0OS=0x00 PREC=0x00 TTL=128 ID=17886 DF
PROTO=TCP SPT=2383 DPT=111 WINDOW=64240 RES=0x00 ACK FIN URGP=0

Nov 2 16:53:39 gatewayl kernel: OUTPUT ACCEPT STATE EST IN= OUT=ethl
SRC=10.1.1.1 DST=10.1.1.2 LEN=40 T0OS=0x00 PREC=0x00 TTL=64 ID=21063 DF
PROTO=TCP SPT=111 DPT=2383 WINDOW=5840 RES=0x00 ACK FIN URGP=0

Nov 2 16:53:39 gatewayl kernel: INPUT ACCEPT STATE EST IN=ethl OUT=
SRC=10.1.1.2 DST=10.1.1.1 LEN=40 T0OS=0x00 PREC=0x00 TTL=128 ID=17887 DF
PROTO=TCP SPT=2383 DPT=111 WINDOW=64240 RES=0x00 ACK URGP=0

This demonstrates that state is just another rule in iptables. The packet is

processed by the chain that is appropriate based on the source and destination
ipaddress on the packet. Both the input and output chains need “-state

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

ESTABLISHED” rules to allow the tcpip connection to be handled correctly. The
ip_conntrack table entry can be seen in the tcp connection as follows.

tcp 6 431990 ESTABLISHED src=10.1.1.2 dst=10.1.1.1 sport=2386
dport=111 src=10.1.1.1 dst=10.1.1.2 sport=111 dport=2386 [ASSURED]
use=1

Iptables Limitations

Iptables is very powerful in securing IP traffic to the linux machine, but is limited
in that it cannot secure ip traffic in transit on the network. Other mechanisms
must be used to add this additional security. Application level encryption can be
used to provide some security; PGP is used to encrypt email and SSL is typically
used to encrypt web traffic. IPSEC can be used to encrypt all IP traffic at the
network level. The next section will discuss IPSEC and how it can be used to
secure data in transit on the network.

FreeS/WAN

FreeS/IWAN is an IPSEC implementation for Linux that gives the ability to provide
encryption and authentication. IPSEC is one of several technologies for
encrypting data on the internet. PGP, SSH, and SSL are examples of application
level encryption technologies. IPSEC has an advantage over the application
level technologies in that it can “protect a mixture of application protocols running
over a complex combination of media®.” IPSEC can also provide protection
without user interaction.

FreeS/WAN typically provides gate-to-gate IPSEC encryption linking two trusted
networks. This will basically make the two networks look like they are directly
linked by a router even though in actuality, the internet is separating these
networks. The two trusted networks have a secured connection since all network
traffic in the IPSEC tunnel (on the internet) is encrypted. Also, the security
provided is transparent to the end user since encryption happens automatically
between trusted networks.

Packet Flow through FreeS/WAN

Understanding how packets flow through FreeS/W AN will be described below.
This information will be needed in the last section when the FreeS/WAN and
Netfilter flows are combined. A simple test system will be used to demonstrate
the packet flow.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Untrusted
Trusted Network Network

Unencrypted Encrypted Trusted Network
packets packets Unencrypted
packets
L= CE=
Workstation - 3 - 3 Server
FreeS/WAN FreeS/WAN
Gateway Gateway

Figure 3:IPSEC test network

Encrypted IPSEC Packets Enter the Gateway

The following diagram illustrates how an incoming ESP encrypted IPSEC packet
flows through FreeS/WAN and leaves the gateway decrypted to the trusted
network. There is an assumption that the IKE key exchange has already been
completed and a security association has been made.

Outgoin
Incoming IPSEC going
Decrypted
Packet
Packet

Packet not destine
for machine.
Packet routed to
correct interface

Routing
Decision

Incoming Public

——® Outgoing Interface
Interface

Packet Destine for KLIPS
Machine authenticates Packet moved to Routin
; e ———m IPSEC interface g
Transferred to packet and . Decision
KLIPS decrypts. psec0

Local Processing

Figure 4: FreeS/WAN Incoming Encrypted Packet Flow®

The Packet flow through FreeS/WAN for IPSEC packets entering the gateway is
as follows:

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1. The incoming packet enters the gateway through the public interface.
This packet is IPSEC encrypted (ESP protocol 50).

2. Next, a routing decision is made. If the ESP packet is not destine for the
gateway, routing will transfer the packet to the correct interface and
forward it on to the real destination. If the packet is destine for the
gateway, It is transferred to the KLIPS process.

3. The KLIPS process authenticates the packet and decrypts the ESP packet
to the original IP packet.

4. The unencrypted packet is moved to the ipsec network interface. This is
specified in the ipsec configuration file and is normally the named ipsecoO.
A routing decision is now made based on the destination ip address of the
unencrypted packet. The packet will either be transferred to the local
system or routed to the correct network interface. In our example listed
below, the unencrypted packet will be routed out to the network to the
actual destination.

There are a couple of points here. The interface the IPSEC packets enter on
only see encrypted packets. The ipsec interface ipsecO will see the unencrypted
ipsec packets enter the gateway.

Unencrypted Packets Enter the Gateway

Unencrypted packets that flow into the FreeS/WAN gateway follow the flow
shown below.

Incoming Outgoing
unencrypted Encrypted
Packet Packet

Incoming trusted
network Interface

Routing
Decision

» Outgoing Interface

Routing routes
packettothe b Packet transferred L KLIPS encrypts

IPSEC interface toKLIPS packet.

Routing
Decision

Figure 5: FreeS/WAN Incoming Unencrypted Packet Flow".

The Packet flow through FreeS/WAN for unencrypted packets entering the
gateway is as follows:

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1. The incoming unencrypted packet enters the gateway through the private
interface.

2. Next, a routing decision is made. If the packet is not destine to a network
defined as an ipsec encryption network, routing will transfer the packet to
the correct interface and forward it on to the real destination. If the packet
is destine to a network defined as an ipsec encryption network, the packet
will be routed to the ipsec interface.

3. The unencrypted packet is moved to the ipsec network interface. The

ipsec interface will transfer the packet to KLIPS.

The KLIPS process encrypts the packet.

Finally, a routing decision is made, and the encrypted packet is routed out

to the appropriate FreeS/WAN gateway.

ok

There are a couple of points here to consider about packets that are processed
by FreeS/IWAN. Packets enter the VPN gateway unencrypted on the private
interface (ethl in this example). These packets are also seen on the ipsecO
interface unencrypted. Packets leaving the gateway on the public interface
(eth0) are encrypted and transmitted using ip protocol 50.

For out test, a ping was issued from the workstation to the server shown in
Figure 3. The following trace was taken on the first gateway.

ethl: 17:24:16.834153 10.1.1.2 > 10.3.3.2: icmp: echo request
ipsecO: 17:24:16.834331 10.1.1.2 > 10.3.3.2: icmp: echo request
ethO: 17:24:16.835998 gatewayl > gateway2:

ESP (spi=0x8e54bd59, seq=0x126)

ethO: 17:24:16.840983 gateway2 > gatewayl:

ESP (spi=0xdf4e5b06, seq=0x126)
ipsecO: 17:24:16.840983 10.3.3.2
ethl: 17:24:16.841311 10.3.3.2

\

icmp: echo reply

10.1.1.2:
10.1.1.2: icmp: echo reply

\

This test demonstrated that the private interface (ethl) and ipsec interface
(ipsecO) see unencrypted packets. The public interface (eth0O) only sees
encrypted packets.

FreeS/WAN Limitations

IPSEC does have some limitations. First, IPSEC cannot be secure if you
computer or network is not secure. Itis very important to secure network access
points to your trusted network with a firewall. Secondly, IPSEC does not limit IP
protocols that pass between gateways. FreeS/MWAN is designed to pass all IP
between the two trusted networks®. These FREES/WAN limitations and the
limitation of iptables can be addressed by using both technologies together.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Using iptables and FreeS/WAN Together

Many of the limitation of FreeS/WAN and IPSEC can be eliminated be using
each technology to secure the other. There are several firewall/VPN products
available that combine these technologies out of the box. Smoothwall* is an
example of a product that combines iptables and FreeS/WAN. Products like
Smoothwall will give a GUI to configure rules and IPSEC, but an understanding
of how iptables and IPSEC interact is still essential to properly securing and
troubleshooting your network. This section is going to concentrate on manually
configured iptables and FreeS/WAN to explain how the two products are used
together.

IPSEC uses two protocols to send out encrypted packets onto the network. The
first is Internet Key Exchange (IKE). IKE uses udp port 500 to setup the
parameters for the encryption between the two vpn gateways. IKE is best known
for exchanging encryption keys that will be used to encrypt the data. The second
protocol used is Encapsulating Security Payload (ESP). This is where the
encrypted data is transmitted using protocol 50.

Packet Flow through IPTABLES and FreeS/WAN

Packet flow through iptables and through FreeS/WAN was described in the
previous sections. This section will show how packets flow through both
technogies when used in combination. The test network will be the same as the
one used in the FreeS/WAN packet flow section above. The following diagram
shows an IPSEC encrypted packet entering the gateway, being decrypted, and
routed to the trusted network.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Incoming IPSEC
Packet

Incoming Public outgoing
Interface Decrypted
Packet
¢ Packet not destine
for machine.
IPTABLES Routing Packet routed to Outgoing
PREROUTING . correct interface. ————p»f Interface.
; Decision
Chain Traverses
IPTABLES
FORWARD Chain A
Packet Destine for
Machine.
Traverses
IPTABLES INPUT
Chain
Packet moved to
hKL”.DS IPSEC interface. IPTABLES Rou
aggcek”;'tc;r:‘;s ——» Traverses B POSTROUTING D:C“ig?gn
q s IPTABLES Chain
ecrypis. FORWARD Chain

Local Processing

Figure 6: IPSEC packet entering Firewall-VPN Gateway

The Packet flow through Firewall-VPN for IPSEC packets entering the gateway is
as follows:

1. The incoming IPSEC encrypted (ESP) packet enters the gateway
through the public interface.

2. The incoming packet traverses the PREROUTING Chain. Typically,
there will not be rules here that affect the ESP packet.

3. Next, a routing decision is made. If the ESP packet is not destine for
the gateway, routing will transfer the packet to the correct interface and

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

forward it on to the real destination. If the packet is destine for the
gateway, the packet traverses the INPUT chain.

4. If the ESP packet is allowed by the INPUT chain, it is transferred to the
KLIPS process.

5. The KLIPS process authenticates and decrypts the ESP packet resulting
in the original IP packet.

6. The unencrypted packet is moved to the ipsec network interface. Since
our unencrypted packet has a source of the workstation and a destination
of the server, the FORWARD chain is now traversed.

7. Next, the POSTROUTING chain is traversed. These rules would perform
a source NAT if necessary.

8. Finally, a routing decision is now made based on the destination ip
address of the unencrypted packet. The packet will be transferred to the
correct network interface.

The ESP packets enter on the public interface (ethO) and are evaluated by the
INPUT chain. Therefore, the INPUT chain will need to have rules to allow ESP
(ip protocol 50) and the IKE key exchange (udp/500). When an unencrypted
packet enters the gateway and is sent out IPSEC encrypted, the flow is reversed.
This means that the output chain will also need rules to allow ESP and IKE.

The ipsec interface ipsecO will always see unencrypted packets. Because of
this, tcpdump can be run on this interface for debugging IPSEC network
problems. Iptables rules can specify the ipsecO interface to limit the traffic
flowing through ipsec tunnels.

The following test will demonstrate the ipsec packet flowing through the
combined system. For the test on the combined Netfilter and FreeS/WAN
system, the gateways had iptables rules applied to accept all packets with state
and log everything.

#Set default policy to deny everything

iptables -P INPUT DROP

iptables -P OUTPUT DROP

iptables -P FORWARD DROP

establish state

iptables -A INPUT -m state --state NEW -3 LOG --log-prefix "INPUT
ACCEPT STATE NEW "

iptables -A INPUT -m state --state NEW -j ACCEPT

iptables -A OUTPUT -m state --state NEW -j LOG --log-prefix "OUTPUT
ACCEPT STATE NEW "

iptables -A OUTPUT -m state --state NEW -j ACCEPT

iptables -A FORWARD -m state --state NEW -j LOG --log-prefix "FORWARD
ACCEPT STATE NEW "

iptables -A FORWARD -m state --state NEW -j ACCEPT

iptables -A INPUT -m state --state ESTABLISHED -j LOG --log-prefix
"INPUT ACCEPT STATE EST "

iptables -A INPUT -m state --state ESTABLISHED -j ACCEPT

iptables -A OUTPUT -m state --state ESTABLISHED -j LOG --log-prefix
"OUTPUT ACCEPT STATE EST "

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

iptables -A OUTPUT -m state --state ESTABLISHED -j ACCEPT

iptables -A FORWARD -m state --state ESTABLISHED -j LOG --log-prefix
"FORWARD ACCEPT STATE EST "

iptables -A FORWARD -m state --state ESTABLISHED -3j ACCEPT

The workstation sent a ping to the server. The following trace shows the packet
traverse the interfaces of the first gateway.

ethl: 17:42:52.387349 10.1.1.2 > 10.3.3.2: icmp: echo request
ipsecO: 17:42:52.387814 10.1.1.2 > 10.3.3.2: icmp: echo request
ethO: 17:42:52.388474 gatewayl > gateway2:

ESP (spi=0x8e54bd59, seq=0x12f)

ethO: 17:42:52.392692 gatewayZ2 > gatewayl:

ESP (spi=0xdf4e5b06, seq=0x12f)
ipsecO: 17:42:52.392692 10.3.3.
ethl: 17:42:52.393750 10.3.3.2

N

2: icmp: echo reply

> 10.1.1.
10.1.1.2: icmp: echo reply

1.
1.

\%

0

The iptables log entries show all three chains being traversed for the ping.

Nov 3 17:42:52 gatewayl kernel: FORWARD ACCEPT STATE NEW IN=ethl
OUT=ipsecO0 SRC=10.1.1.2 DST=10.3.3.2 LEN=60 TOS=0x00 PREC=0x00 TTL=127
ID=45865 PROTO=ICMP TYPE=8 CODE=0 ID=512 SEQ=21505

Nov 3 17:42:52 gatewayl kernel: OUTPUT ACCEPT STATE EST IN= QOUT=ethO
SRC=1.1.1.2 DST=1.3.3.2 LEN=112 TOS=0x00 PREC=0x00 TTL=64 ID=28614
PROTO=ESP SPI=0x8e54bd59

Nov 3 17:42:52 gatewayl kernel: INPUT ACCEPT STATE EST IN=ethO OUT=
MAC=00:a0:c9:c5:4a:2a:00:20:af:ab:a7:0a:08:00 SRC=1.3.3.2 DST=1.1.1.2
LEN=112 TOS=0x00 PREC=0x00 TTL=63 ID=4997 PROTO=ESP SPI=0xdf4ebb06
Nov 3 17:42:52 gatewayl kernel: FORWARD ACCEPT STATE EST IN=ipsecO
OUT=ethl SRC=10.3.3.2 DST=10.1.1.2 LEN=60 TOS=0x00 PREC=0x00 TTL=126
ID=39681 PROTO=ICMP TYPE=0 CODE=0 ID=512 SEQ=21505

This demonstrates the need for rules on all three interfaces. The INPUT and
OUTPUT chains handle the encrypted traffic, and the FORWARD chain
processes the unencrypted traffic.

Writing iptables rules to secure IPSEC

Writing IP tables rules for FreeS/WAN connections becomes relatively easy with
the knowledge we gained above. We will walk through an example for the rules
on the first gateway to secure all connections with the second gateway and only
allow icmp through the IPSEC tunnel.

First, we will set the default policy to deny all packets.

#Set default policy to deny everything
iptables -P INPUT DROP

iptables -P OUTPUT DROP

iptables -P FORWARD DROP

Next, we will create rules to allow state for established connections on all chains.

iptables -A INPUT -m state --state ESTABLISHED -j ACCEPT

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

iptables -A OUTPUT -m state --state ESTABLISHED -j ACCEPT
iptables -A FORWARD -m state --state ESTABLISHED -3j ACCEPT

The following rules will allow the IKE and ESP requests on the public interface of
the gateway. These need to be on both the input and output chains.

IKE negotiations

iptables -A INPUT -i ethO -p udp --sport 500 --dport 500 -m state --
state NEW -3 ACCEPT

iptables -A OUTPUT -i ethO -p udp --sport 500 --dport 500 -m state --
state NEW -3 ACCEPT

ESP encryption and authentication

iptables -A INPUT -i ethO -p 50 -3j ACCEPT

iptables -A OUTPUT -i ethO -p 50 -j ACCEPT

The last rules that we need are to allow the ICMP to flow through the IPSEC
tunnel. These rules are placed on the forward chain and can be linked to the
ipsecO interface if desired.

Allow icmp through the tunnel
iptables -A FORWARD -i ipsecO -p icmp -m state --state NEW -j ACCEPT

This is all we need to secure the VPN gateway in our example. More forward
rules can be added as needed to allow additional traffic through the ipsec tunnel.

Limitations of combined iptables and FreeS/WAN

The above system solved many limitations, but not all. The solution does not
authenticate users. Authentication is based off of machines or networks.
Another product would need to be added to our solution to provide user level
authentication.

Conclusion

The knowledge gain above was applied to a mesh VPN network to link four
remote sites together. Creating Netfilter rules was straight forward and we have
high confidence that the rules put in place are properly securing the networks.
This guide should provide you with enough knowledge to write secure rules for
VPN networks.

References

1. Russell, Rusty. "Linux 2.4 Packet Filtering HOWTQO" 24 Jan 2002. URL:
http://www.netfilter.org/documentation/HOWTO//packet-filtering-
HOWTO.txt (6 Oct. 2003).

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2. Russell, Rusty. " Linux 2.4 NAT HOWTQ" 14 Jan 2002, Version 1.18.
URL: http://www.netfilter.org/documentation/HOWTO/NAT-HOWTO.txt (7
Oct. 2003).

3. Unknown. “FreeS/WAN documentation" 15 April 2003. URL.:
http://www.freeswan.org/freeswan_trees/freeswan-2.02/doc/ (7 Oct.
2003).

4. Unknown “SmoothWall: Secure your digital world”, URL:
http://www.smoothwall.org/about/ (20 Oct. 2003).

5. Friede, Marcus “linux-ipsec: diagram to show packet flow *DONE*” 01 Dec
2000. URL: http://www.sandelman.ottawa.on.ca/linux-
ipsec/html/2000/12/msg00006.html (20 Oct. 2003).

6. Kent, S. “IP Encapsulating Security Payload (ESP)” July 2003. URL:
http://www.ietf.org/internet-drafts/draft-ietf-ipsec-esp-v3-06.txt (3 Nov
2003).

7. Kaufman, Charlie “Internet Key Exchange (IKEv2) Protocol” Oct 9, 2003
URL.: http://www.ietf.org/internet-drafts/draft-ietf-ipsec-ikev2-11.txt (3 Nov 2003)

8. Insolvivile, Gianluca “Kernel Korner: Inside the Linux Packet Filter”
February 2002, URL: http://www.linuxjournal.com/article.php?sid=4852 (4
Nov 2003)

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

