
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 Cynthia Cripe
 December 15, 2003

Sudo as an Alternative to Root
 Page 1

Sudo as an Alternative to Root

Abstract

 The UNIX operating system must be secured just like any other operating
system. Since the operating system is the most important program on a UNIX
server, the root account must be guarded to ensure availability. The root account
must also be guarded to ensure data integrity. Since users often need to run
commands as the root user, alternatives to disclosing the root password are
needed. If the user cannot be added to the group which allows the needed
access and an ACL cannot be implemented, sudo is an easy, secure, and
inexpensive option.

 This paper will explain UNIX security files and the significance of user
accounts, file permissions, and groups. This will be a foundation for an overview
of the root account and why the use of this account should be kept to a minimum.
Then a detailed explanation of how to implement sudo will conclude the paper.

Body

 The anthem of the network security world is “least privileged access,” and
for very good reasons. Many issues face the network security professional which
is solved through least privileged access. One issue is protecting the
confidentiality of customer data. Another issue facing security professionals is
protecting program files. Yet another issue is protecting the computer’s
operating system files. Least privileged access restricts user access so that they
can view or alter only the files they need to in order to do their jobs.

 Computer security encompasses several aspects of computer and
information management. This paper will cover the UNIX system and its files,
users, and data as a foundation to the discussion of sudo as an alternative to
root access. UNIX security professionals are concerned with user access,
groups and file permissions. Proficient knowledge of access controls allow the
UNIX security professional to ensure the integrity of the data housed on UNIX
servers. Limiting the use of root access is paramount to assisting UNIX security
professionals in accomplishing this directive. However, there are times when
users have a legitimate need for root access. Sudo is a security tool that is easy
to implement, secure, and inexpensive. It is an excellent alternative to root
access. I will discuss root access and why its use should be kept to a minimum.
I will also discuss sudo as an alternative to root. I will then demonstrate the ease
of sudo implementation. You will see how sudo can solve an enormous UNIX
security problem.

 The root password of a UNIX system is a coveted possession in the UNIX
world. Root access on a UNIX server can make life easier by eliminating
keystrokes and knocking down the barriers of file permission restrictions. I

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 Cynthia Cripe
 December 15, 2003

Sudo as an Alternative to Root
 Page 2

understand why individuals request permanent root access. Work is made
easier while using the root account. Before root access is granted; however, the
requester needs to understand other aspects of the root user. The requester
needs to understand the significance and responsibility involved with possessing
the root password. An overview of user accounts, system groups and files sets
the stage for an understanding of the root account. It lends understanding to the
ease and benefit of using sudo as an alternative to root access. Discourse
concerning the implication of possessing the root password will also support the
premise that the root password needs very little use.

 UNIX system administrators receive numerous requests for permanent
root access to UNIX systems. There are good reasons for possessing the root
password. It is easier to accomplish many tasks with the root account. But,
before permanent root access is granted the requester needs more information
about the root account and the implications of working as the root user.

 The root user is specifically used to administer the operating system. The
importance of an operating system cannot be overstated. When a user uses a
computer they are using an operating system. (I will use computer, system, and
server interchangeably.) Most people are familiar with Windows, the graphical
interface most people see when they turn on their computers. A computer
operating system is defined by WebopediaTM as “the most important program that
runs on a computer. Every general-purpose computer must have an operating
system to run other programs (WebopediaTM).” The operating system is a group
of files working together to manage processes, manage memory, manage input
and output, and manage files. In other words, it manages all activity on the
computer. The operating system also acts as an interpreter between the
hardware (e.g., keyboard, mouse, printer, monitor, etc.) and software (e.g., DB2,
Oracle, Microsoft Word, etc.). You cannot operate a computer without an
operating system.

 A UNIX operating system consists of users, groups, and files. A
description of each component is necessary in order to give the big picture of
operating system security. In order to access files on a UNIX system a user
must have a user account. Each user account has a unique name (also called a
user name), a unique identification number (also called a UID), and a password.
The root user (also called the superuser) is the most powerful user on a UNIX
system. In Essential System Administration, AEleen Frisch defines the root user
as follows: “Unlike some other operating systems, the UNIX superuser has all
privileges all the time: access to all files, commands, etc. (7).” The root user is
primarily used to administer various tasks at the operating system level.

 Sometimes a group of users needs access to the same files. The UNIX
system accommodates this need by grouping users through system groups. A
UNIX system group is a set of users, all of whom need access to a given set of
files. Every user name is a member of at least one group and can be a member

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 Cynthia Cripe
 December 15, 2003

Sudo as an Alternative to Root
 Page 3

of several groups. For instance, if the users steve, fred, susan, and shelly are
employees of the accounts payable department they will need access to
accounts payable files. A system administrator is likely to name a group
acct_pay and steve, fred, susan, and shelly would be placed in this group. By
default, the root user is added to all groups.

 On a UNIX system everything is a file. Each file has a set of permissions.
The file is also owned by a user name and is associated with a system group. If
you listed the attributes of a file you might see a line resembling the following:

 -rwxr-xr-- 1 john staff 512 Sept. 9 14:01 johnsfile

 The first string of characters (-rwxr-xr—) is the file permissions. The
second string of characters (1) is the number of links. The third string of
characters (john) is the file owner. The fourth string of characters (staff) is the
group associated with this file. The fifth string of characters (512) is the file size.
The sixth string of characters (Sept. 9 14:01) is the date and time the file was
last altered. And the seventh string of characters (johnsfile) is the file name.
UNIX security is primarily concerned with file permissions, the owner, and group
because these components control access to files.

 The first character in the permissions, the dash (-), signifies this entry is a
file. The second through fourth characters in the permissions (rwx) indicate that
the owner has read, write and execute permissions. The fifth through seventh
characters (r-x) indicate the group has read and execute permissions. And the
eighth through tenth characters (r--) indicate that all other users on the system
have only read permissions. Therefore the user “john” can do anything he wants
to the file. The users in the staff group can look at the file or execute the file, but
they cannot change anything inside the file. All other users on the system can
look at the file, but they cannot execute or change the file

 Now that we understand user accounts, system groups, and files with their
associated permissions, owners, and groups, I would like to discuss the
considerations for granting permanent root access. Since root has full privileges
to the entire file system on a UNIX server, the root user can read, modify,
execute or delete any file on the system.

 The first dilemma is the security of the operating system. In Essential
System Administration, AEleen Frisch states, “Therefore, it is entirely too easy for
a superuser to crash the system, destroy important files, and create havoc
inadvertently.” (7) In the book Practical UNIX, Steve Moritsugu states, “If you are
logged in as root, a simple typographical error could be disastrous for the whole
system.” (80) Since the entire computer relies on the operating system to
perform its job, it is critical that the operating system files are protected. This
means ensuring that the system is functioning so your application doesn’t crash
and you have constant access to your files. This can best be accomplished

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 Cynthia Cripe
 December 15, 2003

Sudo as an Alternative to Root
 Page 4

through limited distribution of root’s password. For a non-critical server, a system
crash could costs a company the amount of wages paid to the system
administrator who recovers the system. For a critical server, the cost could be
astronomical. Expenses would include the cost of the system administrator’s
wages as well as the wages paid to users who cannot perform their jobs. Web
servers could cost customer satisfaction would could result in the loss of
business. This translates to lost revenue. The final consequences could result in
millions of lost dollars. Not only am I concerned with protecting private
information, I am also concerned with protecting my job, your job, and the jobs of
our fellow employees by complying with these laws and helping to ensure the
financial stability of our employer.

 The second dilemma is the security of the data on each UNIX system.
Businesses now have to protect the public’s private information. Two such
federal laws are the Health Insurance Portability and Accountability Act of 1996
(HIPAA) and the Gramm-Leach-Bliley Act of 1999 (GLB). HIPAA is described on
the United States Department of Health and Human Services website as follows:
“The new privacy regulations ensure a national floor of privacy protections for
patients by limiting the ways that health plans, pharmacies, hospitals and other
covered entities can use patients' personal medical information.” (Fact Sheet)
The privacy portion of the Gramm-Leach-Bliley Act is described on the United
States Federal Reserve website as follows: “Most important, our objective is to
devise disclosure requirements and consumer "opt-out" procedures that protect
consumer privacy without overwhelmingly burdening financial institutions or
consumers (Remarks by Governor Laurence H. Meyer).” Each law spells out stiff
penalties for violations of the laws. In this litigious society, lawsuits are likely to
ensue. Lawsuits normally translate to thousands, if not millions of dollars in legal
fees, court costs, and settlements to the defendants. Disclosure of private
information could also result in damage to the company’s reputation. This will
likely translate to lost business which means lost revenue

 I spoke with Glenn Heermance, a 15 year UNIX system administrator. I
asked Glenn what problems he has experienced from unintentional or intentional
misuse of the root account. Glenn explained that the biggest problem they
experience is that users do not know which directory they are in before they
make file permission, ownership or group changes. He stated that other
problems they have experienced are system shut downs, unauthorized file
system creation, and other such administrative tasks that can cause outages or
system performance problems. (Heermance)

 Glenn advised that these changes often result in two to five hundred lost
man hours in investigating system outages. He said that the average problem
takes approximately ten to twenty hours to troubleshoot. He said he and his
team experience, on average, approximately two of these outages per month.
(Heermance)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 Cynthia Cripe
 December 15, 2003

Sudo as an Alternative to Root
 Page 5

 I asked Glenn about alternatives to root access. He immediately
responded, “Consulting.” I asked him to explained, and he said that one of his
team’s primary roles is to consult with application support areas for changes to
the UNIX servers. He said that his team will evaluate the changes and make
suggestions for improvements. He said that once an agreement is reached on
system changes, the deployment team can issue the changes to the servers. He
recommended that the application areas have root access on the non-production
servers in order to learn how the UNIX environment best interacts with their
application. Glenn said that problems on non-production systems can be
mitigated with education. (Heermance)

 Now that you understand the importance of the files on a UNIX system
and the considerations for granting root access, I would like to discuss
alternatives to root access. The three alternatives I wish to discuss are system
group assignments, access control lists (ACLs) and sudo.

 Since each file is associated with a system group, users can be added to
the group or groups associated with the files the user needs to manage. If the
permissions of the files are too low, not allowing the access needed, the
permissions on the files can be changed. This will allow read, write and execute
permissions for all of the files that are needed to be managed without using the
root account.

 Since changing file permissions could stop an application from running,
system administrators can also consider access control lists (ACLs). ACLs have
to be used with care. If file permissions are changed using the hexadecimal
method, the ACL associated with the file is no longer valid. This will cause users
who are granted permission to the file via an ACL to lose their access. It will also
allow anyone who was disallowed access via the ACL to be granted access.
UNIX allows the application of ACLs but the operating system does not provide a
way of tracking the ACLs. Therefore, careful documentation of the their
existence is necessary.

 Since the use of ACLs can be time consuming and troublesome to
management, the other alternative is sudo. Sudo (pronounced SUE-DUE) is
defined on the sudo website as follows: “Sudo (superuser do) allows a system
administrator to give certain users (or groups of users) the ability to run some (or
all) commands as root while logging all commands and arguments. Sudo
operates on a per-command basis, it is not a replacement for the shell (Miller).”
If commands need to run as the root user, sudo rules can be written to grant this
access. Sudo is simple to administer. Once the commands are identified, sudo
rules can be implemented within several minutes.

 If you find sudo is a viable option, information gathering is the next step.
Receiving the information by way of via e-mail or a memo is the best approach in
order to archive the information indefinitely for future reference. If a system

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 Cynthia Cripe
 December 15, 2003

Sudo as an Alternative to Root
 Page 6

crashes and you do not have a good system back up, the documentation can be
used to recreate the sudoers file. You may also need the business case as proof
of need in an audit.

 First, it is important to obtain a business case for the access changes.
The business case should be a thorough description of the user’s needs. The
following business case is too vague: “I need to run the rm command in order to
perform my job.” The business case should be full of specific information like
path names, file names, the individuals needing access, on what servers they
need sudo access, all of the commands (along with the command path) they
need to perform using sudo, any situations where the command needs to run as
a different user, and are the rules temporary or permanent. It needs to include
specific reasons why the user must have sudo rules such as the file permissions
do not allow them to use the command. Sometimes through the business case
you will find that the user or users don’t need changes to their access.

 After you determine that the user(s) need sudo access, collect the names
and sign on IDs of the individuals who need the sudo rules. Is it one individual, is
it several different individuals with nothing in common, or is it a group of
individuals with a common UNIX group who need access? Refer to the business
case to verify this information.

 The next piece of information you need is a list of servers where the
user(s) needs the access. Refer back to the business case. Is the access
needed in the testing environment, the development environment, and/or the
production environment?

 Next, what commands does the user(s) need to run in order to perform
their jobs. Again, confirm their needs with the business case. Special care must
be exercised when granting certain commands. And some commands should
never been granted sudo privileges. I will discuss this later when I demonstrate
sudo implementation.

 Next, do the commands need to run as a user other than root. Some
programs require that the script run as a specific application ID. Sudo is flexible
enough to accommodate this need.

 Finally, are the rules temporary or permanent? If a user needs to run a
command once a month using sudo, it is possible to script the sudo rule so that it
appears during the time period needed then script the rule out of the sudo file
once the command is executed. Sometimes rules are needed for installation
then they are not needed again. Sometimes the rules are needed on a daily
basis.

 Be certain to ascertain all of this information and writing the sudo rules will
be simple. Keep your lines of communication open with the users. You will have

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 Cynthia Cripe
 December 15, 2003

Sudo as an Alternative to Root
 Page 7

to have the users execute the sudo commands to ensure that sudo fulfills their
needs.

 Once you have your information in hand it is now time to implement sudo.
If sudo is not packaged with your version of Linux or UNIX, go to the Main Sudo
Page in order to download the software (Miller). First navigate to the Getting
Sudo Via FTP link found on the left side of the webpage (Miller). FTP the sudo
software to your server. Before you install the software, navigate to the
Documentation Installation Notes (Miller). Read the installation notes completely
to ensure a successful installation. Since there are several flavors of UNIX and
Linux, I will rely on your expertise to read the instructions and install the software
properly. If you plan to use sudo on all servers, I recommend that you make
sudo part of your base load.

 Once the software is in place, we need to know the parts of sudo. The
first part is the actual command itself, sudo. The sudo command will precede the
UNIX command the user wishes to execute. The location of the sudo command
will vary depending on which flavor of UNIX you are running. The second part is
the file that holds the sudo rules. This file is located in the /etc directory and the
file name is sudoers. There are several options available for the sudoers file that
I will later discuss in detail. The third part is the visudo command. This
command should always be used when editing the /etc/sudoers file. On the
O’Reilly Network website, Michael Lucas states that “visudo locks the file so only
one person can edit the configuration file at a time. It then opens the sudo
configuration file in an editor (vi by default, but i t respects the $EDITOR
environment variable). When you exit the editor, visudo parses the file and
confirms that there are no sudo syntax errors. This is not a guarantee that the
configuration will do what you want, merely a confirmation that the file is actually
a valid. (Lucas)” Using visudo protects the sys admin in two ways. First, visudo
locking the sudoers file prevents one sys admin from overwriting another sys
admin’s changes. If both individuals are in the file at the same time, the last
person saving changes will overwrite the first. Second, visudo checks for syntax
errors, which helps to minimize sudo errors.

 Now that I have given a high level overview of sudo, I will provide a
fictitious business case so that I can demonstrate the simplicity of implementing
sudo rules. The business case comes from the Human Resources department of
a fictitious company and reads as follows:

The user IDs bob, carol, ted, and alice need the ability to execute
/usr/local/bin/hrapp and /sbin/hrscript. They need the ability to run
these commands on the following servers: hrsrv1 and hrsrv2.
When running hrapp, this application’s vendor requires that the
application run as the hrappid user. We do not want to give bob,
carol, ted, and alice the password for hrappid. bob, carol, ted, and
alice also need to execute the /sbin/hrscript when performing daily

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 Cynthia Cripe
 December 15, 2003

Sudo as an Alternative to Root
 Page 8

tasks. The hrscript is owned by the root user and is associated with
the root group. They need root access to execute this script. bob,
carol, ted, and alice have to run the hrapp and hrscript in order to
perform their jobs. The user ID joseph needs to run the
/usr/local/bin/hrprocessing and /sbin/hrscript scripts on server
hrsrv1. Part of joseph’s job requires that he run this command on a
daily basis. Additionally, the UNIX group infosys needs to be
allowed to run the shutdown command on the hrsrv1 and hrsrv2
servers in order to bring down the server during the maintenance
window. The hrprocessing script and the shutdown command
require root access.

 A security conscience system administrator does not want to provide the
root password to anyone. The business case also states that the Human
Resources department does not want to distribute the password for hrappid. The
users will be able to log on as themselves and execute hpapp and hpscript using
sudo. Likewise, the joseph user wi ll be able to run the hrprocessing script and
the infosys UNIX group will be able to run the shutdown command using sudo.
No additional passwords need distribution.

 Before writing sudo rules, additional consideration must be given to
whether the company’s computer security policy dictates that users must
authenticate each time they execute a command using sudo. For the purposes
of this scenario and best security practices dictate that the users always
authenticate when using sudo. Now, I will discuss the essential components of
the sudoers file and demonstrate the ease of implementing sudo.

 Within the sudoers file there are several options to consider while writing
sudo rules. The first option I will discuss is setting up users aliases. If a group of
users needs the same sudo rules and one or more of the users does not belong
to the same UNIX group, the system administrator can group them in the sudoers
file under a user alias. A user alias is comparable to a UNIX group. The user
alias syntax is case sensitive and should look like the following example:

 User_Alias HRUSERS=bob,carol,ted,alice

 The next option is grouping servers. If bob, carol, ted, and alice need
identical access on the same group of servers, the system administrator can
create a host alias. The host alias syntax is case sensitive and should look like
the following example:

 Host_Alias HRSRVS=hrsrv1,hrsrv2

 The next option is grouping commands. If bob, carol, ted, and alice need
an identical list of commands, the system administrator can create a command
alias. It is important to include the path when creating the list or visudo will return

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 Cynthia Cripe
 December 15, 2003

Sudo as an Alternative to Root
 Page 9

an error while trying to save the sudoers file. If the commands need to span
more than one line, use a backslash (\) in order to tell UNIX that the line
continues on the next line. It is best to line up the commands for readability. The
command alias is case sensitive and should look like the following example:

 Cmnd_Alias HRCMNDS=/usr/local/bin/hrprocessing,\
 /sbin/hrscript

 The final option I will discuss is the creation if a run-as alias for a user ID
to run a command. An example of this option is when a user needs to open an
application and the vendor of the application requires that the application run as
a specific user ID. This specific user ID is the run as ID. The syntax for run as
aliases are case sensitive and should look like the following example:

 Runas_Alias HRAPPID=hrappid

 Before granting sudo access to a script, a system administrator needs to
carefully examine the contents of the script to ensure that no commands are
executed within the script that allow the users to break out of the command and
receive a shell prompt. If the user breaks out into a shell prompt, they will be the
root user, since sudo runs the script as root. The user can then access any file
on the server and possibly plan malicious code or drop a root kit. If the script
contains a command that has a break command to a shell prompt, the system
administrator should follow company policies in order to have the sudo request
denied. Granting this type of access will leave a hole in security.

 The Sudoers Manual Page is an excellent source of information for
additional options allowed in the /etc/sudoers file. It will also give tips on how to
enhance and organize your sudoers file.

 Now that we know the different parts of the sudoers file, we can write rules.
The first step is to switch to the root user. Once you receive the pound sign (#)
indicating a root system prompt, type visudo and press the [ENTER] key.
Example:

 $ su
 root’s password:
 # visudo

 If the /etc/sudoers file was never configured, a blank script will appear with
a series of tildes (~) along the left side of the screen. Press the ‘A’ key to append
and begin typing the rules. Below is an example of the sudoers file for the above
business case.
 #User Aliases
 User_Alias HRUSERS=bob,carol,ted,alice
 #Host Aliases

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 Cynthia Cripe
 December 15, 2003

Sudo as an Alternative to Root
 Page 10

 Host_Alias HRSRVS=hrsrv1,hrsrv2
 #Command Aliases
 Cmnd_Alias HRCMNDS=/usr/local/bin/hrprocessing,\
 /sbin/hrscript
 #Runas Aliases
 Runas_Alias HRAPPID=hrappid
 #sudo Rules
 HRUSERS HRSRVS = (hrappid) PASSWD:/usr/local/bin/hrapp
 HRUSERS HRSRVS = PASSWD:/sbin/hrscript
 joseph hrsrv1 = PASSWD: HRCMNDS
 %infosys HRSRVS = PASSWD: /usr/sbin/shutdown

 A detailed explanation of the rules will show the flexibility of sudo. The
first line, HRUSERS HRSRVS = (hrappid) PASSWD:/usr/local/bin/hrapp states
that the users listed in the HRUSERS user alias, on the servers listed in the
HRSRVS host alias, will run as hrappid user ID, requiring user authentication
through the use of the user’s password, to run the command /usr/local/bin/hrapp.
The second line is similar to the first, only the /sbin/hrscript will not run as a
different user. It will run as root via sudo. The third line, joseph hrsrv1 =
PASSWD: HRCMNDS states that the user joseph, on server hrsrv1, is required
to authenticate with joseph’s password and has the capability to run the
commands listed under the command alias HRCMNDS. The fourth line,
%infosys HRSRVS = PASSWD: /usr/sbin/shutdown states that the users in the
UNIX group infosys, on the servers listed in HRSRVS, must authenticate with
their individual password, in order to execute the shutdown command.

 The sudo rules need to be added to each server. Be sure to only apply
those rules that are needed for each individual server. Adding additional,
unnecessary rules could cause security vulnerabilities by allowing users access
to programs and files that they shouldn’t have. For example, user ID bob needs
to perform sudo /usr/bin/maintscript on servera but not on serverb. If you create
the sudo rules for bob on both servers and bob has a user account on both
servers, bob can run the script via sudo on both servers. This violates the rule of
least privileged access.

 As an added feature, sudo logs each time a user invokes a command
using sudo. The sudo log is stored in the syslog. The location of syslog varies
depending on which flavor of UNIX you are running. Sudo will log each
successful and unsuccessful attempt.

 Once the sudo rules are in place, the users need to be instructed on how
to use their new access. When instructing the users, the system administrator
needs to include the fact that sudo should precede the command. The system
administrator should also include the fact that the command needs to include the
fully qualified path. Often I have received calls stating that the sudo commands
don’t work. It has usually been one of two problems. Either the user forgot to

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 Cynthia Cripe
 December 15, 2003

Sudo as an Alternative to Root
 Page 11

include sudo at the beginning of the command line or the user did not include the
fully qualified path immediately before the command name. The users should
also be advised that they could gain a list of their sudo rules by typing sudo –l at
a system prompt.

 I searched the Internet for sudo security vulnerabilities. I found
vulnerabilities that were two to six years old. The vulnerabilities I found were
addressed by Todd Miller and fixed in a subsequent sudo upgrade release.
Therefore, the sudo solution to root access is very secure.

 The only secure server is the server that is shut off. Since a computer is
of little value when it is turned off, security professionals are tasked with
identifying vulnerabilities in their systems. Once the vulnerabilities are identified,
they must determine the methods and costs of mitigating the vulnerabilities. And
finally, they should present their findings to corporate management for a decision
on funding. When it comes to reducing the use of the root account, sudo is a
freeware option. This is a price hard for any corporate manager to refuse.

 In conclusion, I discussed how the operating system (OS) is the most
important program on a computer. On a server running the UNIX OS, the root
account is very powerful and needs to be guarded closely. I showed how sudo
could be used instead of granting root access to everyone who has a legitimate
need. I also demonstrated how simple it is to implement sudo. I also explained
how to make sudo a secure alternative to root. Then I discussed how there are
virtually no known security vulnerabilities with sudo. Lastly, I discussed the low,
low price of $0 for the sudo software. Sudo is an excellent alternative to granting
permanent root access due to its ease of implementation, security, and low cost.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 Cynthia Cripe
 December 15, 2003

Sudo as an Alternative to Root
 Page 12

Works Cited

Fact Sheet: Protecting the Privacy of Patients’ Health Information. 14 Apr. 2003.
U.S. Department of Health & Human Services. 11 Sep. 2003.
<http://www.hhs.gov/news/facts/privacy.html>.

Foremost IT. Operating System. 22 Oct. 2003.

<http://www.foremost.co.uk/glossary/operating_system.html>.

Frisch, AEleen. Essential System Administration. 3rd ed. Sebastopol: O’Reilly,

2002.

Heermance, Glenn R. Personal interview. 2003 Sep. 30

Lucas, Michael. O’Reilly Network. “Eliminating Root with Sudo.” 22 Oct. 2003.

<http://www.onlamp.com/lpt/a/2680>.

Miller, Todd C. Sudo Main Page. 28 Oct. 2003.

<http://www.courtesan.com/sudo/sudo.html>.

-- Sudo in a Nutshell. 12 Sep. 2003.

<http://www.courtesan.com/sudo/intro.html>.

-- Getting Sudo Via FTP. 28 Oct. 2003.

<http://www.courtesan.com/sudo/ftp.html>.

-- Sudo Installation Notes. 28 Oct. 2003.

<http://www.courtesan.com/sudo/install.html>.

n Sudoers Manual. 23 Oct. 2003.
<http://www.courtesan.com/sudo/man/sudoers.html>.

n
Moritsugu, Steve, David Pitts, and Sanijv Guha. Practical UNIX. Indianapolis:

Que, 2000.

Remarks by Governor Laurence H. Meyer. 12 Sep. 2003. Board of Governors

of the Federal Reserve System. 12 Sep. 2003.
<http://www.federalreserve.gov/boarddocs/speeches/2000/20000203.htm
>.

(Webopedia)TM. 11 Sep. 2003.

<http://www.webopedia.com/TERM/o/operating_system.html>.

