
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Elevating Security for our Clusters
Jason Tedford
GSEC Practical Assignment Version 1.4b
Option 2
December 26 th 2003

ABSTRACT

 Network and Systems security has always been only mildly important at
various times in our company. Our team has always had security stuck in the
backs of their minds somewhere and it rarely made it to the forefront of our
operations. Although there are some good security solutions designed in certain
pockets of technology at our enterprise, for the most part it seems as though we
have had a salt-and-pepper approach securing our infrastructure. Only when
large-scale issues arise does network and systems security really come into
focus. Even then, it has been only for a very limited time horizon. Luckily, in the
past 10 months, IS&T’s internal reporting structures have changed and our
technical teams now report to our “parent” company. The leadership of the
executive team, especially our COO, has a sincere interest in making sure that
IS&T develop a comprehensive security plan for all entities that are supported.
One of the primary focuses has been to get various individuals trained in the
security arena. It was paramount that the training be industry specific and not
platform or vendor specific. We found that SANS offered the best all-around
security training and did not concentrate on specific products. As such, we have
committed a substantial amount of resources to the training of our staff through
SANS and other training providers, as well as concentrating on a new found
commitment to the implementation of an enterprise-wide security strategy.
 After attending the SANS Security Essentials curriculum, I was shocked
and amazed at how readily available software tools are and the ability to acquire
knowledge and take advantage of exploits against systems in any given
environment. People with even a rudimentary knowledge of how systems and
networks function can inflict critical damage to various systems and
environments. Therefore, the focus of this paper is to look at one of our mission-
critical system’s current state and implement appropriate security fixes for our
environment. The areas that I will focus on are operating system security as well
as certain aspects of network security to derive an overall “box-hardening”
approach. This paper does not get into the security related to the central
application that communicates with the player terminals on our gaming floor.
This application is coded by a partner of the organization and therefore not
directly under the control of the IS&T department.

BEFORE

 The system that I have chosen to secure for this paper is our Account
Transaction Center. This system is a set of four RS/6000 nodes operating as

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

two two-node clusters. They are running AIX 4.3.3 maintenance level 11 for the
operating systems as well as utilizing HACMP 4.4.1. HACMP is a set of licensed
program products that allows clustering of systems as well as hardware takeover
in the event of some type of failure. The operating system was installed without
any customization with the exception of installing additional file-sets off of the AIX
media which makes it a relatively vanilla install. Our development partner for the
application running on the box has done some minor security enhancements by
assigning different port numbers for commonly used ports in a clustered
environment as well as shutting off certain services not utilized. However, this
was just a cursory look at the box from a security perspective. As was pointed
out consistently in the GSEC training, the defaults of an operating system
installation are highly insecure. The hardware consists of four RS/6000 model
H70’s with redundant fibre channel connectivity to an Enterprise Storage Server
for all storage except for the root volume groups. The root volume group
contains the operating system and is on internal disk . These machines in the
cluster serve account information for our patrons as well as keep track of all
player transactions on our gaming LAN. The LAN consists of five Cisco 6500
series switches as well as a number of 3500 series switches. These switches
allow for connectivity of our player terminals on the gaming floor. These
terminals are from various different manufacturers that include Sigma, Konami,
Leisure Time, and Oneida II. The Sigma, Konami, and Leisure time terminals are
all serial based terminals that connect to a terminal server to transmit account
activity across the network. The Oneida II terminals are Linux terminals that
provide direct Ethernet connectivity. Patrons use a card to slide into a terminal in
order to login to the terminal. After the card is in the terminal the patron is
presented with a cipher-pad in order to input their PIN. This PIN is verified with
the Transaction Center and upon success, the player’s balance is displayed at
the terminal and the patron can start gaming. The gaming transactions consist of
debits and credits to the player’s account. When the patron is finished playing at
the terminal, the card is removed and a logout transaction is sent to the
Transaction Center.

DURING
 In order to assess and secure the Transaction Center, I decided to utilize
for the most part the tools that are available to anyone who would want to exploit
our environment. Many of these tools were presented in the GSEC training
material. However, I will also utilize some that were not. After utilizing these
tools, I matched up what I found to how the system was configured in order
determine the appropriate changes that needed to be implemented.
 One of the first areas that anyone would look at is what services are
available on the target system. In order to determine what services the
Transaction Center was running I wanted to do a port scan on the four nodes in
the cluster. In the SANS GSEC training program, Nmap was referenced many
times as a tool of choice for network scanning. I downloaded Nmap version 3.48
in gzip compressed format and installed it on my Linux box [1]. After reading
some documentation, I decided that I would run a TCP SYN Scan as well as a

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

UDP Scan. I first utilized Nmap to TCP SYN scan all well-known ports (ports 1-
1024) on all four nodes and the results are listed below. In a normal TCP
connection the initiator of the communications sends an initial SYN packet to the
target machine. If there is an available listener on the target port, then a
corresponding SYN/ACK is sent to the originator. The originator then sends an
ACK back to the target. This process is known as the TCP Three-Way
Handshake. The TCP SYN scan or Half-Open scan sends an initial SYN packet
to the destination host. If a corresponding SYN/ACK is received by the target,
then a RST or reset packet is sent back to the target to terminate the session
immediately [2]. For UDP, there is no corresponding Three-Way Handshake
since UDP is a best effort protocol. A packet is sent from a source ip and port to
a destination ip and port address pair. If the destination machine has a listener
configured to accept packets for UDP, the packet is received and no reply is sent
back to the source. If there is no available listener, the target machine sends
back an ICMP Port Unreachable message. In the UDP scan, a packet is sent to
each port to be scanned in the list. Again, I utilized only ports 1-1024. If an
ICMP Port Unreachable messa ge is sent back to the source address, then the
port is not listening for UDP traffic and is assumed to be closed. However, if
nothing is sent back from the target host, then the target is assumed to have
received the UDP Packet. Since UDP does not need an acknowledgement at
the source that a packet has been received at the target, then the port is
assumed to be open [2]. Between both of these scans, I was able to determine
which services were running on each host. All four nodes were running the same
services for both the TCP SYN scan as well as the UDP scan. The following list
shows the ports that were available for the scans:

 TCP SYN Scan
 7 – echo 9 – discard 13 – daytime 19 – chargen 21 – FTP
 23 – telnet 25 – smtp 37 – time 80 – http

 UDP Scan
 7 – echo 9 – discard 13 – daytime 19 – chargen 37 – time
 111 – sunrpc 123 – ntp 161 – snmp

 Armed with this information, I was able to look at which ports were
required for the normal operation of the system as well as any administrative or
management ports that were required for day to day operations. The first
services I looked at were echo, discard, daytime and chargen. I had an idea of
what these services were from past experience, but I decided to research them
just to make sure.
 The echo daemon is a service that sends any information it receives back
to the originating source. This service is generally used as a tool to troubleshoot
connectivity issues with a remote system by measuring round trip times as well
as if communications exist at all [3]. The discard daemon is another
troubleshooting service that receives information on its port after a session has
been established and simply discards any information received [3]. The chargen

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

service is a character generator that sends back a character stream to the
originator when it receives activity on its port. This service is useful in order to
find delay or packet loss in the network since it sends a continuous stream of
data back to the originator. The Daytime service simply responds back to the
sender the current date and time in ASCII format [3]. These services are there
simply as a means to test and troubleshoot different types connectivity issues. In
our cluster environment, we do not utilize any of these services for testing any
part of our network or applications. As with anything that can be used for good,
these tools can also be used for evil.
 I next went out on the Internet to find any specific vulnerability associated
with these services. I found CERT Advisory CA-1996-01 UDP Port Denial-of-
Service Attack which points out that if a packet is forged such that the packet’s
source port is the echo service and its destination port is the chargen service, a
potential denial-of-service condition may arise [4] . The original packet would
cause the chargen service on the remote host to send a constant stream of data
to the spoofed address which would then echo back all of the data it received on
the echo port. This forged traffic would cause constant network traffic between
the two hosts. This race condition could saturate the network as well as cause
the two machines to concentrate their processing on network I/O and CPU
interrupts. Given the potential for outage based on this CERT advisory, I decided
that the risk was too great in order to continue to leave these services running,
especially since they are not utilized. In order to stop these services from
starting at boot time, I commented out the lines that pertain to these services in
the /etc/inetd.conf file. Since the inetd process is controlled through the System
Resource Controller in AIX, In order to make these changes take effect right
away, I issued the following command to refresh inetd and re-read the inetd.conf
file:

 refresh –s inetd

 The next service I looked at was the telnet service. Telnet allows a
remote user to open up a terminal session to a host as if they were sitting right in
front of the console [5]. All of our administrators and support personnel utilize the
telnet service to remotely log into the cluster. The problem with the telnet service
is that all of the traffic is transmitted in clear text [6]. As most administrators who
have ever utilized telnet to manage a server know, the userid and password will
be transmitted in clear-text as well. To show this I utilized a network sniffing
program called Ethereal to capture packets off of our network between my
machine and one of our nodes in the cluster. Ethereal is a network protocol
analyzer available from http://www.ethereal.com/distribution/win32. I utilized the
Windows version of the tool. The results of the packet capture show that in fact
the root password can be retrieved in clear-text. All that needs to happen is to
find the originating packet to setup the telnet session with the remote host. One
way to do this is to take the packet capture and filter by either the source or
destination IP address. The filter that would be entered is ip.addr == x.x.x.x
where x.x.x.x is one of the IP addresses in question. The first packet in the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Ethereal window should be the initial SYN packet requesting to set up the
connection with the remote system. Now all that needs to happen is to right-click
on one of the packets in the window related to the TCP connection and select
Follow TCP Stream from the popup menu. The following two windows show the
Ethereal packet capture filtered by destination IP address equal to one of our
remote test nodes and then the TCP Stream window showing exactly the
information sent across the wire. As you can see in the stream window, the root
password is readily available.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 For this cluster, this one example of retrieving passwords from sniffing the
network is so severe that it was paramount to get to an alternative solution for
remote terminal access. The solution that was chosen is OpenSSH. OpenSSH
is a free implementation of the SSH protocol that encrypts all of the traffic
between two connections to prevent various network style attacks. For AIX, I
chose to utilize the distribution that is included on the AIX Toolbox for Linux
Applications CD. I found a great paper entitled “Securing Remote Access on AIX
4.3.3 using OpenSSH” in the GIAC practical repository written by David Randell
[7]. Randell’s paper gave a detailed look at obtaining OpenSSH and the process
of installing it into our environment. I followed Randell’s instructions carefully and
downloaded all of the filesets that were indicated in his paper. After playing
around with the install for awhile and testing some connections for myself, I was
finished with the install. Kudos to Mr. David Randell for an informative paper with
great instructions.

Now that OpenSSH has been installed, you can see in the following dump
and trace that when a connection has been made to the remote cluster, the data
portion of the packets has been encrypted. I utilized an SSH client installed on
my Windows machine called PuTTY. This program will be described in a
moment.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 I next looked at the FTP service. This service allows a user with an FTP
client to attach to the port in order to do file transfers either up to or down from
the system. The cluster utilizes the FTP client services to transfer summary
records between the transaction center and our ratings database that sits on an
AS/400. The service is also used by administrators who need to be able to move
scripts and other data that has been collected to and from the system.
Therefore, FTP is not a service that will be able to be stopped from running in the
cluster without a suitable alternative. As it happens, the OpenSSH suite also
provides a means of secure file transfers over an encrypted connection. Since
we are now utilizing the OpenSSH suite to connect to remotely for terminal
sessions on our cluster, it makes sense to utilize this same service as the means
to transfer files to and from the cluster. For both the remote terminal
connections and the secure file transfers, I utilized a suite of free client software
called PuTTY. This package is available at
www.chiark.greenend.org.uk/~sgtatham/putty/download. You can download a
zip file of all the binaries which includes all of the available PuTTY clients for
secure communications or you can select only the client programs needed for a
particular environment. In our environment, I have distributed the PuTTY
terminal emulator to all of the administrators in order for them to have a
consistent tool to manage the cluster. Our applications group had to take some
time to make sure that any of the other departments that utilize a terminal
emulator for remote access were able to connect with the PuTTY client via SSH.
For the few administrators that need to transfer files to and from the cluster, the
PuTTY PSFTP client was utilized in order to conduct transfers via the SSH
protocol as well.

As far as any automated transfers that occur out of the clustered
environment, I left the ftp client programs on the box in order for the scripts to
send information to our AS/400. Currently, I was unable to find a suitable SSH
service to run on our AS/400 systems in order to remove our reliance on any of
the ftp protocol for our entire gaming environment. The cluster initiates
communications to another machine in order to transfer data automatically so it is
really acting as a client in this scenario. Therefore, the ftp server service has
been commented out of our inetd.conf file and the init process read the inetd.conf
file in again.
 Next I looked at the sendmail daemon. Sendmail is the defacto standard
for routing email messages in a UNIX environment. I have always heard that
there are many critical issues with the sendmail daemon. I found numerous
CERT Advisories on sendmail including the following:

1) CA-2003-12 Buffer Overflow in Sendmail – This advisory explains that
there is vulnerability with the sendmail daemon that can possibly allow an
attacker to gain access to a machine and run code at the user level of the
sendmail daemon [8].
2) CA-2003-07 Remote Buffer Overflow in Sendmail – This is also an
advisory that explains that a remote user could potentially exploit a

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

vulnerability that would allow code execution and the user level of the
sendmail daemon [9].
3) CA-2002-28 Trojan Horse Sendmail Distribution – This advisory
explains that some versions of the sendmail distribution had their source
modified in order to contain a Trojan which could potentially allow remote
execution of code [10].

After reading these three CERT Advisories as well as many other documents
related to sendmail, I started to investigate how our cluster was utilizing the
service. It turns out that the only thing that the cluster utilized sendmail for was
to send email to a remote system. The remote system simply allowed the
aggregation of email from the four node cluster into one mailbox for easier
viewing of the mail.
 I found an interesting article called “Improving Sendmail Security by
Turning It Off” [11]. This article points out that most systems running sendmail
are probably running it by default. It also points out that there are really only two
reasons to need to run sendmail. The first reason is to listen on port 25 for
messages destined for the machine from the outside and the second reason is to
flush the local mail queue if unsent mail on a periodic basis. In our cluster, the
machines simply send email to a different machine. Therefore, there is no
reason for sendmail to be listening on port 25 of these machines for incoming
mail. Since these machines need to email out, sendmail needs to be invoked in
order to clear the mail queue on the machines . After working with the operations
team as well as our administrators, we decided to invoke sendmail out of the
crontab every 15 minutes. The following entry was added to the crontab for root
on each system in the four node c luster:

 0,15,30,45 * * * * * /usr/sbin/sendmail –q

This crontab entry will spawn sendmail to deliver queued message four times per
hour. Also, since the machines do not receive mail, the decision was made to
stop sendmail from listening every time the machines reboot. In AIX, the
sendmail daemon controlled through the System Resource Controller. The
System Resource Controller allows an administrator to create and control
subsystems or groups of programs that run as services. Subsystems can be
started, stopped, added or removed. The System Resource Controller starts in
the inittab and then all of the subsystems are started. I removed the sendmail
subsystem from the resource controller of each of the four nodes by issuing the
following command:

 rmssys –s sendmail

 The next two services I looked at were time and ntp. The time service
sets the clock of the local machine to the time of another machine running the
time service in master mode. The master server controls time for all of the
machines that check in with it utilizing the time protocol. NTP is the network time

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

protocol. This service also sets the local clock to that of a master server. Our
network utilizes a time server that gets time from satellite as well as another
server in our DMZ that gets time from the Internet. This time server utilizes
listens for ntp requests from devices on our network and sends out ntp replies.
Since ntp is used for time in our environment, there is no need to run the time
service on port 37. The four node cluster is pointed to both of our NTP servers in
order to synchronize time across the cluster.
 The next protocol looked at was http or port 80. We are not utilizing port
80 for anything in our environment currently. There has been some development
work going on in order to view application specific statistical information in the
future. This development has only been looked at in our test and development
environments. Since we currently are not utilizing any http services for this
cluster, simply shutting the service down is appropriate for our environment.
 The last protocol I looked at was SNMP. SNMP is called the Simple
Network Management Protocol. It our environment we utilized SNMP as a tool to
manage and collect information from our systems and networking devices. We
utilize Tivoli Netview as our SNMP network manager. After learning about SNMP
vulnerabilities in the SANS curriculum as well as viewing a large amount of the
CERT advisories on SNMP, I knew this was an area that needed to be
addressed. First and foremost, our entire infrastructure utilized the public and
private community names. These default community names allow anyone with a
MIB browser or snmpget tools to query and write information to our systems and
networking devices. Since SANS class the entire infrastructure has changed
both the public and private community strings to something else. To change the
community names for the cluster the community lines in the /etc/snmpd.conf file
were changed. The Netview system also had to have its configuration changed
in order to allow all of the polling that takes place to continue. One other piece
that was added to the /etc/snmpd.conf file on each community line was the
addition of the ip addresses of the network management stations that are allowed
to issue requests to the read/write and read-only communities. This now allows
our snmp environment to be slightly more secure that it previously was. Also,
since our network management stations are connected to the same subnet as
the cluster, I requested for our network team to block all incoming and outgoing
SNMP requests on the routers and firewalls for this segment.
 Now that the cluster has been looked at from the perspective of services
that were available from the network, I decided to look at a couple of other things.
Since it is possible for someone to spoof an ip address of one of the network
stations, I decided it was important to attempt to keep track of this. I utilized a
program called arpwatch which is available from http://www-
nrg.ee.lbl.gov/nrg.html. Arpwatch is a tool that keeps a database of ip address to
Ethernet address mappings. The arpwatch man-page describes the tool pretty
well. The database is a flat file with the default name of arp.dat. The information
stored in the flat file is MAC Address, IP Address, epic time, and hostname. The
program keeps track of changes by references changes with either the MAC
address or IP address and time since the epic. Any changes in the network
mappings are logged in the database and an email is generated. This email gets

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

sent to the mailbox of the user who launched the application. I set up a machine
(a pc acting as a server) with RedHat 8.0 with the arpwatch program and
connected it to our network. Obviously I disabled nearly every port on the
machine and also installed ssh in order for me to get to the machine remotely. I
also configured the crontab to start sendmail to empty the mail queue every 10
minutes. When the program (arpwatch) is started, it references a file in the
/etc/sysconfig directory named arpwatch. This file contains any options to utilize
when running the program. By default, there is an entry OPTIONS=”-u pcap”
which causes the program to run as the pcap user instead of root. I also
configured a .forward file on this machine to my own internal email address. The
.forward file will take any mail destined for the user on the local machine and
send those emails to the email address in the file. Now, anytime an ip-MAC pair
is changed in our network for whatever reason, an email is generated and
various people are alerted. We have come up with some new internal
procedures for normal maintenance and service of computers on our network so
certain emails received are ok to get. If there is not a corresponding
maintenance request to match up to an email that has been received, the
networking team will investigate in order to see why the mapping has changed.

AFTER
 This paper shows that with a very limited amount of effort, our cluster
environment was able to go from a state of excessive exposure to a relatively
secure system. Much of the effort was to determine if the services that were
running on the system were actually needed for the proper operation of the
environment. In cases where services were not needed, simply shutting them
down is one of the best alternatives. A next step for these unneeded services
will be to remove the actual binaries themselves in order to further limit exposure
in the event that the system is compromised. Although this step was not part of
the process for this paper, we will be identifying the filesets for each service that
was disabled and remove them in the future.
 For the protocols that were being utilized within the clustered environment,
a simple investigation into alternatives to the less secure protocols yielded great
alternatives. Migrating from the unencrypted Telnet and FTP services to
OpenSSH makes eavesdropping or sniffing on the wire a much more difficult task
since the traffic on the network is encrypted. As everyone knows there have
been recent security issues with certain implementations of SSH. Even though
we are now much more secure with SSH installed, the recent issues in certain
versions of the protocol point out that security architecture and implementation is
an ongoing task. All of the people responsible for security will need to continue
their education and training as well as stay abreast of new alerts and issues in
order to minimize our exposure to all of the systems in the environment.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

References

[1] “Downloading NMAP”. URL:
http://www.insecure.org/nmap/nmap_download.html (5 August 2003).

[2] Fyodor. “The Art of Port Scanning.” 6 September 1997. URL:
http://www.insecure.org/nmap/nmap_doc.html (5 August 2003).

[3] Haden, Rhys. “IP Small Services”. URL:
http://www.rhyshaden.com/ip_small.htm (6 August 2003).

[4] “CERT Advisory CA-1996-01 UDP Port Denial-of-Service Attack”. 24
September 1997. http://www.cert.org/advisories/CA-1996-01.html. (6 August
2003).

[5] Stevens, W. Richard. TCP/IP Illustrated, Volume 1. Reading: Addison
Wesley Longman, Inc, 1994. 401.

[6] Stevens, W. Richard. TCP/IP Illustrated, Volume 1. Reading: Addison
Wesley Longman, Inc, 1994. 417.

[7] Randell, David. “Securing Remote Access on AIX 4.3.3 using OpenSSH.”
http://www.giac.org/practical/GSEC/David_Randell_GSEC.pdf. (September
2003).

[8] “CERT Advisory CA-2003-12 Buffer Overflow in Sendmail.” 29 May 2003.
http://www.cert.org/advisories/CA-2003-12.html. (8 August 2003).

[9] “CERT Advisory CA-2003-07 Remote Buffer Overflow in Sendmail.” 9 June
2003. http://www.cert.org/advisories/CA-2003-07.html. (8 August 2003).

[10] “CERT Advisory CA-2002-28 Trojan Horse Sendmail Distribution.” 25 March
2003. http://www.cert.org/advisories/CA-2002-28.html. (8 August 2003).

[11] Pomeranz, Hal. “Improving Sendmail Security by Turning It Off” Sys Admin
Magazine June 2003 (2003): 8-11.

