GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec



http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

John Reuning
8 January 2004

Applying Information Retrieval Techniques to
Event Log Analysis for Intrusion Detection

Abstract

This paper explores the application of probabilistic information retrieval
theories to the field of log analysis and host-based intrusion detection. Strong
similarities exist between intrusion detection and information retrieval. Using
information retrieval techniques may yield significant improvements to the
performance of intrusion detection systems. This paper provides a brief review
of current relevant research in intrusion detection and log analysis, introduces
information retrieval methods appropriate for intrusion detection, and proposes a
framework for an experimental log analysis system. The proposed system is
based on Bayesian probability theory and uses a term frequency-inverse
document frequency (TF-IDF) measure to identify anomalies.

Introduction

In the field of information security, intrusion detection refers to the process
of identifying unauthorized access to computer systems or electronic data.
Several methods exist for detecting intrusions: manual inspection of a system,
audit log processing, event log analysis, file integrity checking, host-based
intrusion detection, and network intrusion detection. Each method has
advantages and pitfalls, either in the amount of human attention required to set
up and maintain the system, the accuracy of incident detection, or failure of the
system to exclude false positives.

Intrusion detection systems differ on two axes: 1) they can be either
network-based or host-based and 2) they can use rulesets or anomaly detection
to identify events. A network intrusion detection system is either a dedicated
server or network device that examines raw network traffic. A host-based
intrusion detection system can run on a server or workstation to watch tasks or
files for signs of unauthorized activity. For intrusion identification, systems use
rulesets, patterns for matching signatures of known problems; anomaly detection,
establishing a baseline for normal activity and flagging deviance; or a
combination of these two methods.

Log analysis usually refers to report generation for human inspection but

is sometimes used by host-based intrusion detection systems as a data source
for identifying problems. System or event logs can be generated by almost any

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



active software running on a computer and in Unix/Linux are frequently managed
by an application named syslog. Log message output reflects the state of the
operating system or application at a given time. Messages vary in their level of
severity, depending on the software or application design. For example, syslog
provides 8 categories ranging from “emerg” to “debug” for differing levels of event
severity. Audit logs differ somewhat from event logs. Audit logs usually consist
of transactions or process call traces instead of application error or informational
messages.

Much research is being conducted on intrusion detection systems,
especially ones that are network-based. However, little attention is directed
toward event log analysis. Commercial and open source products exist that
match known patterns in log messages and alert a system administrator when a
match occurs. This method works well, but it requires human attention and
expertise.

This paper suggests that applying a probabilistic information retrieval model (TF-
IDF term weighting and relevance judgments) to host-based event log analysis
could be an effective means of identifying security incidents and system failures.
If a system can be developed to accurately highlight problems without regular
pattern updates or specialist intervention, large and small IT organizations could
save significant system administrator and security analyst resources.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



Current Research
Anomaly-based intrusion detection

Researchers agree on the basic goal of an intrusion detection system.
Wagner and Soto state it thus: “The goal of an intrusion detection system (IDS) is
like that of a watchful burglar alarm: if an attacker manages to penetrate
somehow our security perimeter, the IDS should set off alarms so that a system
administrator may take appropriate action” (255). The intrusion detection system
assists information security professionals in maintaining data integrity.

Intrusion detection systems have traditionally been based on matching
patterns in raw network traffic. More recently, however, activity has centered
around profiling activity of a system or network and detecting anomalies.
Wagner and Soto are critical of traditional, pattern-matching intrusion detection
systems. They state that “[s]ignature-based schemes are typically trivial to
bypass simply by varying the attack slightly, much in the same way that
polymorphic viruses evade virus checkers” (Wagner and Soto 255). They
contend that anomaly detection is more resistant to the evasion tactics of
attackers (Wagner and Soto 256).

Anomaly detecting intrusion detection systems are not without their own
failings.

The current model-based approaches all share one common problem: a
truly robust intrusion detection system must solve a special case of the
machine learning problem, a classic Al problem. That is, to prevent false
alarms, the IDS must be able to infer, from statistical data, whether the
current execution of the system is valid or not. The false alarm rate of
present systems is a major problem in practice. (Wagner and Dean 1)

System administrators and security analysts want an IDS that requires little
human maintenance, is accurate in identifying problems, and has a low rate of
false positive generation.

Implementation techniques

Researchers have used various machine learning and data-mining
techniques for baselining normal system activity and identifying abnormalities.
Ye et al. designed and tested a system that used Bayesian networks to identify
anomalies in Unix audit log data. The system established profiles of normal
activity and identified data that deviated from this norm. The study concluded
that “Bayesian network has a promising performance in intrusion detection” (Ye
et al. 178). While detailed information was provided on the Bayesian network
design, the conclusions were quite vague. Little data was given on which types
of intrusions were correctly or falsely identified.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



Wagner and Soto examined a system that kept track of series of system
calls. The system operated as a finite-state automaton, and like most host-based
IDS’s, it “learn[ed] the normal behavior of applications and recognize[d] possible
attacks by looking for abnormalities” (Wagner and Soto 256). A study by
Sequeira and Zaki applied clustering algorithms to create an intrusion detection
system. Their system achieved an 80% accuracy rate for detecting intrusions
with a 15% false positive generation rate (Sequeira and Zaki 395).

The host-based intrusion detection systems in the Ye et al., Wagner and
Soto, and Wagner and Dean studies use process call trace audit logs instead of
event log messages. However, the general system designs are widely
applicable. While the Bayesian network method in the Ye et al. system is similar
to the method proposed in this paper, no research exists on a log analysis tool or
intrusion detection system using TF-IDF weights to identify anomalies.

Log analysis

Unlike anomaly-based intrusion detection, the topic of log analysis has
received little research attention. Commercial and open source tools are used
for generating log file reports (see http://www.loganalysis.org), but these reports
must still be examined by a specialist. In addition, many log analysis tools report
at regular intervals, such as daily or hourly, not in real time as do intrusion
detection systems. Muscat, however, outlines a framework for building an
intrusion prevention system based on patterns generated from processing event
log data. He suggests that examining system log entries in conjunction with a
finite state machine will yield effective patterns for a network-based intrusion
detection system (Muscat 78). The usefulness of log message data for intrusion
detection is acknowledged, but specific research is needed in this area.

Two log analysis tools exist that differ from the traditional pattern matching
approach, SL2 and SIDS. SL2 presents itself as an anomaly detecting system.
The documentation describes it thus: “This script will scan the directory where
your logfiles reside and report everything that it finds with the exception of the
those expressions found in the ignore file, scanlog.ignore” (Fulton and Hoffman).
While SL2 detects anomalies, it still uses predefined patterns to flag messages.
This requires an expert to configure the system with patterns. SIDS, however,
stands for Statistics-based Intrusion Detection System and goes beyond pattern
matching. Its primary target is web transaction logs, and it uses a simple form of
thresholds to identify anomalies. According to a presentation by the system’s
designer, though, it is prone to resource overutilization and a large number of
false positives (Russell).

Closely related to log analysis is the application of information retrieval

techniques to computer source code. Ugurel et al. experimented with automatic
classification of source code archive documents using support vector machines.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



Their system tried to assign source code files to application categories and
achieved an accuracy level as high as 86% with a relatively low frequency of
false positives (Ugurel et al. 637). They included programmer comments in their
tests, which are similar to the text found in log message output (Ugurel et al.
635). Both are created by software developers and tend to be concise and
technically specific. Among the conclusions of the article is that term frequency
might have improved their results (Ugurel et al. 638). The system proposed in
this paper examines event log messages as documents, much as Ugurel et al.
do with source code.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



Information Retrieval Meets Intrusion Detection

Intrusion detection aims to identify attempts, either successful or
unsuccessful, to attain unauthorized access to a system. To be effective, the
IDS needs to provide a high rate of successful identification with a low rate of
false positives. If the IDS fails to identify intrusion attempts, it does not complete
its task. Additionally, if the IDS identifies too many normal events as malicious,
system administrators and security analysts waste time investigating innocuous
leads.

Information (or document) retrieval systems are quite similar to intrusion
detection systems. A typical information retrieval system takes a user query and
matches that with documents, objects, etc. within the system. The basic goal is
to produce what the user is trying to find. Consider the example of a Web search
engine such as Google. When performing a search, the user types a query into
a text box and submits it to the system. The query is generally a few words
describing web pages that the user seeks. In response to the query, the search
engine returns a ranked list of results. Information retrieval systems primarily use
statistical or probabilistic methods to determine the likelihood that a web page
matches up with what the user is looking for.

The field of information retrieval employs the concept of relevance and
measures the success or performance of a system in terms of recall and
precision. Relevance is used to describe a match between what is available and
what a user is trying to find. In terms of a Web search engine, this might be
finding Web sites on intrusion detection systems when typing “intrusion detection
system” into Google. For an IDS, a highly relevant match would be the
identification of an intrusion attempt, since that is what the system is looking for.
Nonrelevant would describe Google returning www.4greyhounds.org for the
abovementioned query or an IDS flagging a legitimate user login on a system.

Performance of a retrieval system includes measures of recall and
precision. Recall refers to the percentage of the total number of relevant
documents available to the system that is returned for a given query. A high
recall value means that the system correctly identifies all of the desired items.
Precision is the percentage of how many relevant documents are retrieved based
on a given query. A high precision measure means that few nonrelevant
documents are identified, or a low rate of false positives is attained. In terms of
recall and precision, a good IDS should have a high value in both. That would
indicate that the IDS identifies almost all unauthorized activity and produces a
low number of false positives.'

! Spam filters can also be evaluated in terms of precision and recall. A successful spam filter
identifies almost all spam email messages (high recall) and blocks very few legitimate messages
(high precision). In fact, some spam filters use the same statistical and probabilistic methods
described in this paper to identify unwanted email.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



Most information retrieval systems use a ranking method for generating
results. Google, for example, ranks web pages by how closely it thinks the page
document fits (or is relevant to) a user’s query. The relevance of a document is
determined by how closely the query terms match the terms in the document.
One ranking method is based on a TF-IDF (term frequency - inverse document
frequency) weight. Each word or term in an information retrieval system'’s
knowledgebase is given a weight based on how many documents contain that
term. When generating results, the retrieval system uses these weights to rank
the items presented to the user.

This TF-IDF calculation can also be applied to log analysis. Each log
message is treated as a separate entity, much like Google treats web pages. In
information retrieval terminology, each log message is a document, and the
elements of the message are document terms. Instead of matching a search
query with a list of web pages, the log analysis tool would index a set of log
messages and use the TF-IDF weighting calculation to determine whether a new
log message deviates from the norm.

The “IDF” part of TF-IDF is inverse document frequency. The weight
value of a term is inversely related to the number of documents that contain the
term. Less frequently occurring terms are given a higher weight. This means
that commonly occurring log messages have a lower weight than do those with
infrequently occurring elements. For log analysis, the result is that log messages
with only frequently occurring elements are given a low weight. Messages that
do not occur frequently are given a high weight and can easily be flagged as
anomalous. Since only a human expert can make a final determination, the
weight calculations in this case represent a higher or lower probability that the log
message is anomalous.

An advantage of the TF-IDF method of log analysis is that the weight
calculations can be done very quickly. A list of terms and corresponding IDF
weights can be stored as a hash, which generally yields fast results for
searching. The TF, or term frequency, component merely involves counting the
number of times each element occurs in an individual log message. Since log
messages are typically quite terse, counting elements should take few system
resources beyond parsing the message itself.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



Proposed Log Analysis System

The previous section described how information retrieval methods can be
applied to log analysis and intrusion detection. The following is a framework for
implementing an experimental system.

The system bases identification of security incidents and system failures
on event log messages that deviate from the norm on a given server or
workstation. A two stage process is required for the system to function: training
and running classification. A training process is required for the system to
establish a norm. System training involves indexing log messages for a given
time period (e.g. one or two months). The process is similar to that of a search
engine indexing web pages.

The experimental system employs Croft’'s TF-IDF weight for identifying
anomalous events. This method involves keeping a count of the total number of
documents or log messages indexed. The IDF weight for each element or term
is calculated as log(N/n), where N is the total number of log messages and n is
the number of messages that contain the given term (Croft 288).

A hash table similar to an inverted document index is constructed, keeping
track of how many times each term occurs in a document. Afterward, an IDF
weight is calculated for each term. The result might look like:

failed 5.734
sftp 3.781
sshd 1.278
unknown_user 8.529
user1 1.241
user2 2.003

As indicated in the previous section, less frequently occurring elements receive
higher weights. The TF-IDF weighting assumes that terms will reoccur, so
random or semi-random strings would require exclusion (e.g. TCP sequence
numbers in firewall log messages).

Once the system has established a norm, new log messages can be
processed and anomalies flagged. The steps for log message evaluation are as
follows:

1. Parse the log message into elements with term frequency calculated. The

frequency is the number of occurrences of a given element in the parsed
log message.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



2. Look up each term in the table and obtain its IDF weight. Unknown terms
will be assigned an IDF value of the most uncommon term in the index.?

3. Calculate the TF-IDF weight for each term and a total score for the log
message. The total score for the message is the sum of the TF-IDF
weights of the terms.

Log messages with a total score above a given threshold are considered
anomalous and are flagged as indicating a security incident or system failure.
Determining the most effective threshold for flagging messages will require
experimentation during system development.

In keeping with a multilayered approach to security, this method of log
analysis would be best applied either as a component of an IDS or in conjunction
with other security tools. For example, this log analysis tool could be combined
with a network IDS (or IPS), file integrity checking, or another host-based IDS.
The system framework described here is meant for logs such as Unix/Linux
syslog. However, the theory could be applied to snort logs (to reduce the high
false positive rate) or to firewall logs.

2 Adding a constant to this weight for unknown terms may provide better system performance.
Further research during system development is needed.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



Summary

Intrusion detection systems is currently an active field of research in
information systems and security. As indicated above, most of the current
attention is focused on network-based systems, less being devoted to host-
based systems. Existing research has examined several data mining and
machine learning techniques in host-based IDS’s, yet none has used the TF-IDF
ranking approach for classifying log messages.

The specific implementation method outlined in this paper has not been
explored. If this approach proves successful, the resulting system will help
further the field of information security and improve the quality of automated
intrusion detection systems. This paper focuses on Unix and Linux log
messages generated through syslog; however, the results should be applicable
to other types of event logs on a wide range of operating systems.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



References

Croft, W. B. and D. J. Harper. “Using Probabilistic Models of Document Retrieval
Without Relevance Information.” Journal of Documentation 35(4) (1979):
285-295.

Fulton, Russell, and Harry Hoffman. SL2 source code.
<http://www.ip-solutions.net/syslog-ng/s|2>

Innella, Paul, and Oba McMillan. “An Introduction to Intrusion Detection
Systems.” December 6, 2001.
<http://www.securityfocus.com/infocus/1520>

Muscat, Andre. “A Log Analysis Based Intrusion Detection System for the
Creation of a Specification Based Intrusion Prevention System.”
Proceedings of the 2003 University of Malta Computer Science Annual
Research Workshop, July, 2003.
<http://www.cs.um.edu.mt/~csaw/Proceedings/LogAnalysis|DS.pdf>

Russell, Ryan. “Statistics-based Intrusion Detection System.”
<http://www.internettradecraft.com/sids/sids.ppt>

Sequeira, Karlton and Mohammed Zaki. “ADMIT: Anomaly-based Data Mining
for Intrusions.” Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, July, 2002.

Sparck Jones, Karen. “Search Term Relevance Weighting Given Little
Relevance Information.” Journal of Documentation 35(1) (1979): 30-48.

Sparck Jones, Karen and Peter Willett, eds. Readings in Information Retrieval.
San Francisco: Morgan Kaufmann, 1997.

Ugurel, Secil et al. “What's the Code?: Automatic Classification of Source Code
Archives.” Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, July, 2002.

Wagner, David and Drew Dean. “Intrusion Detection via Static Analysis.”
Proceedings of the IEEE Symposium on Security and Privacy, May 2001.
<http://www.cs.berkeley.edu/~daw/papers/ids-oakland01.pdf>

Wagner, David and Paolo Soto. “Intrusion Detection: Mimicry Attacks on Host-
based Intrusion Detection Systems.” Proceedings of the 9th ACM
conference on Computer and Communications Security, November, 2002.
<http://www.cs.berkeley.edu/~daw/papers/mimicry.pdf>

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



Ye, Nong et al. “Probabilistic Networks with Undirected Links for Anomaly
Detection.” Proceedings of the 2000 IEEE Workshop on Information
Assurance and Security, June, 2000.

Zanero, Stefano and Sergio. M. Savaresi. “Unsupervised Learning Techniques
for an Intrusion Detection System.” Proceedings of the ACM Symposium
on Applied Computing (ACM SAC 2004), March, 2004.
<http://www.elet.polimi.it/upload/zanero/papers/IDS-SAC.pdf>

http://www.loganalysis.org/

http://www.logwatch.org/

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



