
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Obfuscation and Polymorphism in Interpreted Code

GIAC (GSEC) Gold Certification

Author: Kristopher L Russo, xythex@live.com
Advisor: Dr. Johannes Ullrich
Accepted: January 11th 2017

Abstract

Malware research has operated primarily in a reactive state to date but will need to
become more proactive to bring malware time to detection rates down to acceptable
levels. Challenging researchers to begin creating their own code that defeats traditional
malware detection will help bring about this change. This paper demonstrates a sample
code framework that is easily and dynamically expanded on. It shows that it is possible
for malware researchers to proactively mock up new threats and analyze them to test and
improve malware mitigation systems. The code sample documented within demonstrates
that modern malware mitigation systems are not robust enough to prevent even the most
basic of threats. A significant amount of difficult to detect malware that is in circulation
today is evidence of this deficiency. This paper is designed to demonstrate how malware
researchers can approach this problem in a way that partners researchers with vendors in
a way that follows code development from ideation through design to implementation
and ultimately on to identification and mitigation.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Kristopher	Russo,	xythex@live.com	

1. Introduction
Malware infection vectors have shifted over the last few years in response to

better detection and remediation capabilities being implemented by heavily targeted

industries. These industries include healthcare, retail, government sectors and many

others. Malware prevention continues to be the primary focus in the field of information

security, and many effective malware mitigation tools have been developed to prevent

infection of target devices by compiled code. Most of these tools utilize signature based

detection engines (Sophos, 2013) Although a few vendors are taking different approaches

to the problem. A notable example is the Next-Generation Endpoint Security space where

companies such as Carbon Black have focused on enhancing signature-based detection

by using cloud sourced and reputation based services to quickly identify new threats

(What We Do, n.d.). Other vendors have tried to reduce time to detection and the risk

presented by polymorphic threats by searching for the signatures of malicious features

and functions instead of evaluating the entire code sample (Predictive Malware

Detection). Some vendors are moving away from signatures entirely by detonating

unknown binaries in a virtual environment and then using artificial intelligence and

machine learning to evaluate the resulting behavior to look for malicious intent. Cylance

believes that this approach can decrease complexity and increase remediation

effectiveness significantly (Cylance).

In response to these advances in prevention, malware writers are increasingly

turning to macro infection techniques and other interpreted code approaches. Exploit kits

are used to generate zero-day code by relatively unsophisticated threat actors. Interpreted

zero-day code is subsequently embedded in documents and then distributed via channels

trusted by most users; channels such as e-mail, advertising networks, and content

management portals (Mell, Kent, & Nusbaum, 2005).

One of the most popular of these code interpretation engines, the Windows

Scripting Host, is ubiquitous on modern Windows-based computers. The Windows

Scripting Host does not contain any native authentication ability and allows a broad

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Kristopher	Russo,	xythex@live.com	

access to the underlying Operating system via the Windows Management Instrumentation

interface and COM libraries.

However, interpreted code is not immune to signature based detection. Instead of

looking at a code sample in its entirety anti-malware can look for the signatures of

potentially malicious functions. To bypass this detection approach, malware authors are

increasingly turning to code obfuscation and in some cases the polymorphism of code.

Since this requires knowledge of both coding techniques and the underlying operating

system it has been difficult, time-consuming, and still somewhat uncommon. It is,

however, very effective and is quickly gaining popularity.

With the rapid evolution of exploit kits, skilled coders can create black-box

frameworks that handle the complexity of malware generation and then either distribute

the framework or offer access to it as a service. These frameworks expose a very broad

audience of threat actors to sophisticated infection techniques that would otherwise be

beyond their skill level. By using these frameworks, threat actors can easily generate

zero-day exploits that can bypass all but the most sophisticated of anti-malware engines.

This paper demonstrates a framework built to create obfuscated polymorphic code

that uses the Windows Scripting Host to deliver a payload. This framework is simple in

its design and modular so as to allow easy modification and expansion. The easy

modification of the core framework is a feature recently seen in the wild that allows old

threats to evolve quickly in response to advances in anti-malware. Traditional antivirus

products and many next generation solutions do not detect the code generated by this

framework. The fifty-six anti-malware products featured on virustotal.com at the time of

this writing did not flag the code generated by this framework. Note that the framework

in this paper has been purposely crippled and will only generate code that can morph a

maximum of two iterations.

The goal of this paper is to help convince industry leaders and researchers that

open research, communication, and cooperation are essential in the battle against

malware. No longer can solutions and research be kept confidential and hidden.

Effectively combating modern threats will require that defenders think and work much

more like the enemy by collaborating and expanding on each other’s ideas to create

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Kristopher	Russo,	xythex@live.com	

solutions that are quicker to market, less brittle and more robust than the tools available

today.

1. Code Framework
1.1. Obfuscation

While there are many different approaches to obfuscating interpreted code,

several stand out. Base64 encoding is perhaps the most popular method of obfuscation

but is easily identified by even basic anti-malware engines. Most anti-malware products

recognize the block size of Base64 code and its telltale signs of padding. This obfuscation

method gets used so much that it is likely to trigger intrusion detection systems and anti-

malware engines that might otherwise miss the test code (Fiscus, K., 2011, April 13).

Therefore this approach was not considered for this project.

Another popular way of obfuscating VBScript is the Windows Scripting host’s

built-in encoding engine. Again, this draws unwanted attention to the code and provides

little in the way of protection (indogeek, 2015, October 15). Another common method of

obfuscating code is character substitution. Character substitution can be a very effective

technique due to the resource intensive process of scanning and then recombining

character codes into readable text. Specifically, this is very effective at hampering

signature based detection platforms by intermingling encoded, and plain text without

impacting the functionality of the code. Code padding can overburden scanning engines

to the point of impacting system performance. Anti-malware engines must make a

tradeoff between security and system performance which can be exploited by malware.

The problem with this approach is that some anti-malware platforms automatically treat

character mapping functions as a likely indicator of malicious code (Ginos, A. 2010 April

1). This approach became key to the framework presented in this paper.

To effectively evade signature based anti-malware engines, this project required

the creation of a custom encoder/decoder. This framework utilizes a symmetric system to

avoid the complexity of key management. Asymmetric key management routines can be

a dead giveaway that encryption routines are present in the code and they add

unnecessary bulk to the framework and generated code. The Windows Scripting Host has

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Kristopher	Russo,	xythex@live.com	

native support for the encoding scheme featured in this framework through the chr() and

asc() functions. One solution to evading heuristic based detection engines used in this

framework is to separate function from content. The strbObfus function of the code

sample contains the encoding engine:

strbObfus="For Each line In arrInp:For i = 1 To Len(line):workingchar =

asc(Mid(line,i,1)):a = a & Len(workingchar) & workingchar:Next:a = a & 210:Next"

This encoding function takes the decimal character designation of each ASCII

character in the source script and prepends it with an identifier. The entire chain is then

pre-pended to the obfuscated file. Using this approach allows control and non-interpreted

characters to be sprinkled into the code to create a large degree of entropy in the finished

product with no change to the source’s functionality. Many anti-malware and intrusion

detection engines simply cannot handle variables of this size and are likely to cease

scanning the code without ever scanning the decoding function at the end of the variable.

This approach helps to defeat malicious function based scanning engines.

Function brevity is key to avoid creating unique and identifiable signatures.

Malware detection engines can trigger on these signatures in obfuscated code. Therefore

each function is contained within a single line. The framework is highly variable so that

its functions can easily be modified. Additionally, only the decoding engine is included in

the obfuscated script stage which prevents the much longer encoding engine from being

exposed:

strDeOb="b=1:Do:c=Mid(a,b+1,Mid(a,b,1)):b=b+1+Len(c):d=d&Chr(c):Loop Until b>Len(a)"

The decoding engine is extremely lightweight but flexible while still being

restricted to a single line. It only utilizes the native functionality of the Windows

Scripting Host to avoid being flagged as a signature by malware defense systems. The

decoding function can parse the encoded script very quickly and then execute the

embedded action within the source script. That said, it is still the system’s weakest link

and the most likely to be detected.

For the code to maintain a minimal footprint on the target system, it had to depend

on the Execute function in VBScript. The Execute function evaluates strings as

executable at runtime. Even heavily obfuscated strings still parse properly.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

	
	

Kristopher	Russo,	xythex@live.com	

Unfortunately, there are limitations to the Execute function such as extremely

limited scoping options. Additionally, executable strings cannot store custom functions

and subroutines. It is also very difficult to escape double quotes within the string and

have it still evaluated as a string when desired and executable code at other times. The

polymorphism section covers these issues in depth.

1.2. Polymorphism
The problem with the polymorphic code is that it needs to maintain its base

structure to complete the morphing process, but this base structure can be detected and

then keyed off of by signature-based detection engines. Additionally, the function’s

results can trigger behavior based analytic engines. The only perfect form of code

polymorphism is the quine which overcomes these issues.

Quines are programs that can reproduce themselves entirely (biv, r. g., 2013

October). There is very little documentation on how quines are coded, and no working

examples of VBScript or other interpreted code based quines. Quines themselves are a

paradox because no code should be able to understand itself fully (iiSir, ., Foonly, .,

Ritemate, S., et el, 2008, April 18). Paradox aside, quines are quite adept at

polymorphism, able to not only reproduce themselves exactly but to introduce entropy in

each iteration without suffering source degradation.

Once again, the Execute statement in VBScript turned out to be key to solving the

quine paradox. By declaring each function as a string, it became possible for the code to

reflect on itself as it executed. There were some weird quirks with this approach, the most

frustrating of which was a code rot phenomenon occurring with double quotes. As each

string containing double quotes was parsed it would lose a set of double quotes. After a

few iterations, the code would rot to the point of being non-functional. This behavior was

not evident in the logical pseudocode and thus is purely an issue of the Windows

Scripting Host.

The solution to the code rot problem was a simple substitution routine. This is

demonstrated in the strWrt and strArrInp functions of the code. Here, using the pipe

character (which is unlikely to come up in normal VBScript) quotes can be symbolically

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

	
	

Kristopher	Russo,	xythex@live.com	

represented and replaced at runtime using the VBScript replace() function without them

being interpreted by the Windows Scripting Host:

strWrt="Set ObjFSO = CreateObject(|Scripting.FileSystemObject|):Set objFle =
objFSo.CreateTextFile(|c:\temp\quine.vbs|,True):objFle.Write
|a=|||&a&|||:|&strDeOb&|:Execute d|"

strArrInp="arrInp=split(|strDeOb=|||&strDeOb&||||&vbCrLf
&|strbObfus=|||&strbObfus&||||&vbcrlf&|strWrt=|||&strWrt&||||&vbcrlf&|strArrInp=|||&strArr
Inp&||||&vbcrlf&|Execute Replace(strArrInp,|||&Chr(124)&|||,Chr(34))|&vbcrlf&|Execute
strbObfus|&vbcrlf&|Execute Replace(strWrt,|||&Chr(124)&|||,Chr(34))|,vbCrLf)"

Execute Replace(strArrInp,"|",Chr(34))
Execute strbObfus
Execute Replace(strWrt,"|",Chr(34))

2. Proof of Concept
Once the obfuscation and polymorphism functions were written the rest of the

coding went relatively smoothly. A couple of simple ad-hoc debugging functions had to

be written and introduced to study the code while running to test the obfuscation features

at various test points. However, due to the minimal size and relative simplicity of the

framework debugging and functionality testing required minimal effort.

After testing, the code was purposely crippled to prevent its exploitation in the

wild. The flaw ensures code replication is limited to two iterations before failure.

Uploading the code to virustotal.com in its non-obfuscated as well as its obfuscated form

after one morph produced the below results.

Figure 1 shows that the non-obfuscated code being flagged by one heuristics

based engine as malicious, the specific reason is not cited. However, a single flag is

unlikely to trigger most malware defense products, and the code would end up running in

most environments.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

	
	

Kristopher	Russo,	xythex@live.com	

	
Figure	1.	–	Virustotal	flags	the	non-obfuscated	first	iteration	of	code	as	malicious	by	one	heuristics	engine	

Figure 2 shows no detection of the obfuscated and morphed code which

demonstrates that the obfuscation and polymorphism engines are effective at evading

these products.

	

Figure	2.	–	Virustotal	does	not	flag	the	obfuscated	second	iteration	of	code	as	malicious	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

	
	

Kristopher	Russo,	xythex@live.com	

3. Discussion
This framework demonstrates that not only is polymorphism and obfuscation

possible in interpreted code, but it can be accomplished entirely by native functionality

included in the code interpretation engine. The succinct and compact code written for this

demonstration was effectively able to evade all of the anti-malware engines tested.

Basing the code sample on the embedded Windows Scripting Host gives its

payload significant functionality on the target system. It can execute in the context of the

user, or if combined with a privilege escalation exploit it can run as an elevated user. The

use of the Windows Scripting host also allows the code to execute from the browser.

Browser based execution may not require interaction from the end user and removes the

need for a third-party distribution platform. While most browsers have security measures

in place to prevent this type of execution they are often easily bypassed or have already

been disabled to enable websites to access legacy functions.

The non-obfuscated code generated by this framework is never written to disk and

is therefore not exposed to most anti-malware solutions. The no-execute flag and storing

the code withing a single variable assigned to the Windows Scripting host makes

identification of the non-obfuscated code unlikely in volatile memory. The approach used

in this framework is not the only effective approach to obfuscation. This framework

makes heavy use of random characters for padding, but often it can be more effective to

pad with legitimate code. For instance, if the code padded itself with the header

information of a legitimate file it could masquerade as code that should be running on the

system. Obfuscation could also take the form of hollowing out executables on the target

system or inserting itself as a function of an existing executable. The framework could

also be expanded on to pad both sides of the code with legitimate data. Hiding with data

files is the approach used in steganography.

Mixing polymorphism into this project ensures that the framework remains fresh

and relevant. Polymorphism will continue to play a role in the future of evolving threats.

The design of this framework focuses on fully polymorphic code, but in practice, this is

may not be necessary. Partially polymorphic code is often sufficient if it is effective at

mimicking legitimate code, at least until anti-malware engines flag the non-polymorphic

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

	
	

Kristopher	Russo,	xythex@live.com	

part as a signature. Using the polymorphism engine to changes the code to mimic code on

the endpoint reduces the likelihood of identification even further. Partial polymorphism

would allow for more flexibility and complexity in the framework.

The modular design of this framework allows it to easily be expanded on to add

additional functionality with minimal core code alteration. Adding new modules involves

just a few lines of code. There is much potential for future research with this project. The

payload could be modified to execute additional code on the target system. The de-

obfuscation engine could also be further enhanced to prevent its detection.

There is also room for improvement by introducing a mechanism for code

distribution. Invoking the Windows Management Instrumentation system could allow this

code to self-replicate to other computers on the same network. Combining this with

polymorphism allows a unique instance of the code to exist on each endpoint which

would make identification difficult with most existing anti-malware tools. The individual

instances could be set up to maintain code on each known workstation creating a matrix

configuration.

Effective detection of the code generated by this framework would require

behavioral analysis on end-points of all processes to try to identify abnormal behavior.

This identification system would have to have a previously known good baseline of the

target environment. Additionally, it would only work in an environment where endpoints

are tightly managed, and application distribution is centrally managed. In most

environments, the end-points change too often on a day to day basis to make this a

feasible approach. Application Whitelisting might also be an effective mitigation to this

type of code, but it would have to do a deep inspection if the target environment uses

interpreted code for systems management. The environment would also have to support

certificates or some other form of code management to identify legitimate code. In

practice, this is very resource intensive and has a high impact on the end user experience

and systems administrators. There may also be other, yet undisclosed, mitigations to

defend against this type of threat.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

	
	

Kristopher	Russo,	xythex@live.com	

4. Conclusion
The goal of this project was to serve as a challenge to inspire malware researchers

to come up with new and innovative ways of tackling threats. By demonstrating that new

exploits are still easily within reach by a few lines of code, it is easy to see that there is

still much work to be done. These problems are not solvable by simple iterations of

existing technology. It will take new and revolutionary approaches to detecting malicious

attacks. These solutions will not be born in a single R&D department but by the

combined efforts of countless researchers each doing a little bit and sharing their results.

Only by adopting the same collaborative approach that threat actors use to create

malicious code in the first place can researchers hope to outsmart them at their own

game.

Today’s approach of alternating between buying the latest greatest security

product and blaming end-users for its inability to protect them also isn’t going to solve

this problem. Today’s malware problems are not budget or user education issues; they are

the result of a fundamental breakdown in the entire malware defense strategy.

There is nothing sophisticated or novel in the framework presented in this paper.

This framework builds upon years old, well-documented and widely publicized flaws in

systems. By making a slight pivot off of work that’s freely available a framework can be

thrown together that potentially bypasses the security measures put in place by many

individuals and corporations. Classic signature detection is no longer good enough for

effective defense. Even next generation technologies such as function introspection and

application whitelisting are not a magic bullet. To protect against constantly evolving

threats

Malware researchers should be encouraged to think outside of the box and

challenged to test the limits of available technologies to improve the capabilities of those

technologies and prepare them to meet tomorrow’s threats. Researchers must band

together and freely share and build upon each other’s work. They should be encouraged

to seek solutions collaboratively and share those solutions to advance the understanding

and effectiveness of the entire information security community.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

	
	

Kristopher	Russo,	xythex@live.com	

	
References

	
biv, r. g. (2013, October). Quines.txt. Retrieved February 13, 2016, from

http://spth.virii.lu/v4/codes/roy_g_biv/Quines.txt

Cylance. (n.d.). Prevention vs. Detect & Respond. Retrieved January 30, 2016, from

Cylance:

https://cdn2.hubspot.net/hubfs/270968/All_Web_Assets/White_Papers/Prevention

vsDetectandRespond.pdf?t=1454116903252

Fiscus, K. (2011, April 13). Base64 Can Get You Pwned. In SANS Reading Room.

Retrieved from https://www.sans.org/reading-room/whitepapers/detection/base64-

pwned-33759

Ginos, A. (2010, April 1). Use offense to inform defense. Find flaws before the bad guys

do. In SANS Penetration Testing. Retrieved from http://pen-

testing.sans.org/resources/papers/gpen/windows-script-host-hack-windows-

120189

iiSir, ., Foonly, ., Ritemate, S., swoof, ., chii, ., & zxqart, . (2008, April 18). A vbs to

output its own source code. In whirlpool. Retrieved February 13, 2016, from

http://forums.whirlpool.net.au/archive/959630

indogeek, . (2015, October 15). Polymorphism In JavaScript and VBScript Using

Microsoft Script Encoder. In Indogeeks. Retrieved from

http://indogeeks.com/polymorphism-in-javascript-vbscript-using-microsoft-script-

encoder/

Mell, P., Kent, K., & Nusbaum, J. (2005, November). Guide to Malware Incident.

Retrieved from NIST Special Publication 800-83:

http://csrc.nist.gov/publications/nistpubs/800-83/SP800-83.pdf

Predictive Malware Detection. (n.d.). Retrieved January 30, 2016, from Reversing Labs:

http://reversinglabs.com/technology/reversinglabs-hash-algorithm.html

Sophos. (2013). Security Threat Report 2014. Oxford: Sophos Ltd. Retrieved from

https://msisac.cisecurity.org/whitepaper/documents/3.pdf.

What We Do. (n.d.). Retrieved January 30, 2016, from Bit9 + Carbon Black:

https://www.bit9.com/

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

	
	

Kristopher	Russo,	xythex@live.com	

Appendix

polyobf_R1.vbs	
strDeOb="b=1:Do:c=Mid(a,b+1,Mid(a,b,1)):b=b+1+Len(c):d=d&Chr(c):Loop Until b>Len(a)"
strbObfus="For Each line In arrInp:For i = 1 To Len(line):workingchar = asc(Mid(line,i,1)):a = a &
Len(workingchar) & workingchar:Next:a = a & 210:Next"
strWrt="Set ObjFSO = CreateObject(|Scripting.FileSystemObject|):Set objFle =
objFSo.CreateTextFile(|c:\temp\quine.vbs|,True):objFle.Write |a=|||&a&|||:|&strDeOb&|:Execute d|"
strArrInp="arrInp=split(|strDeOb=|||&strDeOb&||||&vbCrLf
&|strbObfus=|||&strbObfus&||||&vbcrlf&|strWrt=|||&strWrt&||||&vbcrlf&|strArrInp=|||&strArrInp&||||
&vbcrlf&|Execute Replace(strArrInp,|||&Chr(124)&|||,Chr(34))|&vbcrlf&|Execute
strbObfus|&vbcrlf&|Execute Replace(strWrt,|||&Chr(124)&|||,Chr(34))|,vbCrLf)"
Execute Replace(strArrInp,"|",Chr(34))
Execute strbObfus
Execute Replace(strWrt,"|",Chr(34))

polyobf_child_r1.vbs	
a="31153116311426831012792982612342982612492582683111258299261277310531002402972442982432492442773

10531002402972442982442492412412582982612982432492432763101311024029924125831002613100238267310431

14240299241258276311131113112232285311031163105310823229826227631013110240297241234210311531163114

29827929831023117311526123427031113114232269297299310423231083105311031012322733110232297311431142

73311031122582703111311423231052322612322492322843111232276310131102403108310531103101241258311931

11311431073105311031032993104297311423226123229731152992402773105310024031083105311031012443105244

24924124125829723226123229723223823227631013110240311931113114310731053110310329931042973114241232

23823231193111311431073105311031032993104297311425827831013120311625829723226123229723223823225024

92482582783101312031162342103115311631142873114311626123428331013116232279298310627028327923226123

22673114310129731163101279298310631012993116240312428329931143105311231163105311031032462703105310

83101283312131153116310131092792983106310129931163124241258283310131162323111298310627031083101232

26123231112983106270283311124626731143101297311631012843101312031162703105310831012403124299258292

31163101310931122923113311731053110310124631182983115312424428431143117310124125831112983106270310

83101246287311431053116310123231242972613124312431242382972383124312431242583124238311531163114268

31012792982383124258269312031012993117311631012323100312423421031153116311426531143114273311031122

61234297311431142733110311226131153112310831053116240312431153116311426831012792982613124312431242

38311531163114268310127929823831243124312431242383118298267311427631022322383124311531163114298279

29831023117311526131243124312423831153116311429827929831023117311523831243124312431242383118298299

31143108310223831243115311631142873114311626131243124312423831153116311428731143116238312431243124

31242383118298299311431083102238312431153116311426531143114273311031122613124312431242383115311631

14265311431142733110311223831243124312431242383118298299311431083102238312426931203101299311731163

10123228231013112310829729931012403115311631142653114311427331103112244312431243124238267310431142

40249250252241238312431243124244267310431142402512522412413124238311829829931143108310223831242693

12031012993117311631012323115311631142982792983102311731153124238311829829931143108310223831242693

12031012993117311631012322823101311231082972993101240311531163114287311431162443124312431242382673

10431142402492502522412383124312431242442673104311424025125224124131242443118298267311427631022412

34210269312031012993117311631012322823101311231082972993101240311531163114265311431142733110311224

42343124234244267310431142402512522412412102693120310129931173116310123231153116311429827929831023

11731152102693120310129931173116310123228231013112310829729931012403115311631142873114311624423431

2423424426731043114240251252241241210":b=1:Do:c=Mid(a,b+1,Mid(a,b,1)):b=b+1+Len(c):d=d&Chr(c):Loop

Until b>Len(a):Execute d

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

	
	

Kristopher	Russo,	xythex@live.com	

License
The	FreeBSD	Copyright	
	
Copyright	1992-2012	The	FreeBSD	Project.	All	rights	reserved.	
	
Redistribution	and	use	in	source	and	binary	forms,	with	or	without	
modification,	are	permitted	provided	that	the	following	conditions	are	
met:	
	
1.	Redistributions	of	source	code	must	retain	the	above	copyright	notice,	
this	list	of	conditions	and	the	following	disclaimer.	
	
2.	Redistributions	in	binary	form	must	reproduce	the	above	copyright	notice,	
this	list	of	conditions	and	the	following	disclaimer	in	the	documentation	
and/or	other	materials	provided	with	the	distribution.	
	
THIS	SOFTWARE	IS	PROVIDED	BY	THE	FREEBSD	PROJECT	``AS	IS''	AND	ANY	
EXPRESS	OR	IMPLIED	WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	
IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	
PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	THE	FREEBSD	PROJECT	OR	
CONTRIBUTORS	BE	LIABLE	FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	
EXEMPLARY,	OR	CONSEQUENTIAL	DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,	
PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR	
PROFITS;	OR	BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY	THEORY	
OF	LIABILITY,	WHETHER	IN	CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING	
NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF	THE	USE	OF	
THIS	SOFTWARE,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.	
	
The	views	and	conclusions	contained	in	the	software	and	documentation	
are	those	of	the	authors	and	should	not	be	interpreted	as	representing	
official	policies,	either	expressed	or	implied,	of	the	FreeBSD	
Project.	
	

