
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Advanced communication techniques
of remote access trojan horses on

windows operating systems

Candid Wüest

SANS GSEC Practical v1.4 option 1

January 16th 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Abstract

Trojan horses on Windows operating systems have been around for a long time. With
exemplars like SubSeven or Netbus they were never taken serious and had been smiled
at as toys for script kiddies. This paper will show the evolution of these malwares and
explain why they can become a real threat to system administrators in the near future.
New possibilities for communication methods will be outlined and the weaknesses and
strengths of these techniques will be compared to the traditional techniques. With this,
some possible attack scenarios will be illustrated and approaches for prevention will
be discussed. Indicating what already can be done to protect from such attacks and
pointing out where new methods need to be developed.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Contents

1 Introduction 3
1.1 Definitions . 3

1.1.1 Backdoor . 3
1.1.2 Rootkit . 4
1.1.3 Remote access trojan . 4
1.1.4 Keylogger . 4
1.1.5 Dropper . 4

1.2 Motivation . 4
1.3 Outline . 5

2 Standard communication techniques 6
2.1 Basic communication . 6
2.2 Stealth mode ports . 7

3 Defense tools 8
3.1 Anti-Virus tools . 8
3.2 Personal Firewalls . 9
3.3 Anti-Trojan tools . 9

4 Advanced techniques 11
4.1 DLL injection . 11
4.2 Process injection . 11
4.3 Process killing . 12
4.4 Process modification . 12
4.5 Configuration changes . 13
4.6 Protected stack bypassing . 14
4.7 Tunneling . 14

4.7.1 Simple tunneling . 14
4.7.2 Advanced tunneling . 14

4.8 Polymorphic code . 16

5 Future scenario 17

6 Conclusions 18

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chapter 1

Introduction

1.1 Definitions

The definition of a trojan horse or short form trojan varies depending on the source. A
widely accepted definition is the one below from Rita Summers:

A Trojan Horse is an apparently useful program containing hidden functions
that can exploit the privileges of the user running the program, with a result-
ing security threat. A Trojan horse does things that the program user did not
intend [1].

To make the difference between a trojan and a virus or worm clear, some characteristics
have to be pointed out. A trojan horse does not replicate or distribute itself on its own.
It does need user actions to start, usually this includes running the host program by
intention.

Over the years many denotations have been created for different kind of trojans or
related variations, like backdoor, rootkit, remote access trojan (RAT), keylogger, dropper
to name a few. Most of them do miss a vital part of the above definition of a trojan horse.
The useful feature of the host program is not present, if there is any host program used
for the camouflage at all. Nonetheless we can see them as sub categories of trojan
horses, as the basic idea of fulfilling a job hidden from the user is present in all of them.

For the rest of this paper we will concentrate on remote access trojans on Windows
operating systems. From now on every allude of trojan will refer to remote access trojans
on Microsoft Windows operating systems.

1.1.1 Backdoor

A backdoor is a program that opens a secret access to a system. Often used to bypass
system security for easy access after a successful break in. Backdoor programs are
very common in the UNIX world. After an attacker has broken into a system he will
plant a backdoor or replace a daemon with a trojanized version. This for example can
be a SSH login daemon which is altered to let any user in and grant him root privileges
if the specified password is a predefined one, for example “31337”, regardless of later
password changes.

[3]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1.1.2 Rootkit

A rootkit is a collection of files and scripts usually designed for a UNIX operating system
or derivative. They include scripts to delete log files and modified versions of standard
commands. These system scripts like the ls command are modified to hide any evi-
dence of the presence of this rootkit. Making the system administrator believe that there
is nothing wrong with his system. Rootkits are not widely used on Windows operating
systems. They are more common on UNIX operating systems [2].

1.1.3 Remote access trojan

Remote access trojans (RATs) are typically client-server programms. They are doing a
similar job like official remote control and management tools. Symantec’s PCAnywhere
can be named as an example for a remote control application [4]. The big difference is
that a RAT installs itself hidden and runs invisible for the user. It gives an attacker full
control over the infected machine as if he was sitting right in front of it. RATs are often
used to upload and implant other malware.

1.1.4 Keylogger

A keylogger is often built into a rootkit or RAT. As the name implies it logs all key strokes
made on a system, searching for passwords and secret informations. They sometimes
act as a RAT letting the attacker remotely choose when to start recording and where to
transfer the logged messages to.

1.1.5 Dropper

A dropper is a malicious program which will download or extract another trojan once
executed. It is often a small application which is implanted by some other attack into the
system. Used to put the foot in the door and later download the larger update from the
Internet onto the system and runing it.

1.2 Motivation

Remote access trojans on Windows operating systems are not a new threat. With rep-
resentatives like Back Orifice, which was released by a group called Cult of the Dead
cow (cDc) in 1998, they gained some attention. Still the Internet took these tools as
toys for script kiddies. At the beginning the features included mostly silly functions like
opening and closing the CD-ROM. The stealth techniques used where very simple. Be-
cause the security awareness of users in those days was not as high as today, trojans
where widely used to compromise systems for fun. Often playing a prank to friends.
Most of these trojans where easy to find and to remove from an infected system when
having the right informations. Because trojans where not detected by most systems,
trojan authors did not need to develop new techniques to hide. Over a long time no real
evolution took place. Trojans where used in a limited but still growing field to control
systems. With the rise of the security awareness, trojan horse authors were challenged
to evolve new techniques. In my opinion we are now at the beginning of this adaptation

[4]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

to newer techniques. Practices from virus and worm coders incorporate with new devel-
oped methods of trojan horse authors. Bringing a head start from the protection tools.
If we do not analyze this new techniques and develop counter measurements we soon
will be confronted with many large trojan horse attacks. Therefore it makes absolutely
sense to study trojan horses and learn to understand them.

1.3 Outline

Chapter 2 will introduce the common communication methods used by trojan horses
today.

In Chapter 3 we will discuss the security software used to protect against trojan horses
showing their strengths and weaknesses.

An overview of new attack techniques is given in Chapter 4. Explaining each method
and illustrating possible ways to defend against them.

Chapter 5 will show how a possible scenario in the future could look like.

The conclusions gained in this paper are explained in Chapter 6.

[5]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chapter 2

Standard communication techniques

In this Chapter we will see which standard communication techniques remote access
trojans use today, by discussing the weaknesses and strengths of these methods.

2.1 Basic communication

A remote access trojan mainly uses client-server techniques to communicate and there-
fore consists of two files, the client and the server part. The server application gets
installed on the victims machine and the client application is controlled by the attacker.
The client can also be a telnet client or a browser. How the server is installed on the tar-
get system is a different story and will not be covered in this paper. The reader may think
of ways like receiving it as an email attachment, distributing it over instant messaging
systems or through file share networks.

To allow the communication the trojan horse server will open a listening port on the
infected machine, enabling the attacker to establish a connection to it. To avoid con-
flicts with other installed applications and because of limited privileges, a non privileged
higher port greater 1024 is normally used. In some cases it can also be the server part
initiating the connection to the client. At the time when trojan horses began to appear,
each trojan had its default communication port. Knowing the port number gave the pos-
sibility to identify an installed trojan by mapping the listening port to the corresponding
trojan name. Nowadays every trojan has the opportunity to configure the listening port
to any port the attacker wish, therefore making it impossible to identify the trojan’s name
by the port number. However there are still many old trojans running on systems in the
Internet on their default ports. There are free lists showing the mapping of port number
to trojan name available in the Internet, an accurate one is the one at Simovits website
[3].

As the connection oriented TCP protocol is a lot easier to handle as the connec-
tionless UDP protocol, trojan coders often use TCP communication between server and
client application. Avoiding the hassle of dealing with reordering and lost packets re-
quired with UDP. Even thought that open UDP ports are more difficult to detect from
remote and would thus provide more concealment.

When the connection is established an authentication password might be submitted.
If implemented at all, this authentication method normally uses a hard-coded password

[6]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

in the server that was configured before the installation of the server part. So far very
few trojans use challenge response systems or other zero knowledge authentication
methods. This is of course not a high priority task for a trojan horse author, as this
password is only set to prevent others from overtaking this victim server.
The first goal for trojan horse writer is generally to remain hidden in the system. Once
spotted and revealed the work of the trojan is finished. But exactly the hiding is not well
done when using common communication methods as described above. A detection is
not difficult with protection tools used today as we will see in Chapter 3.

2.2 Stealth mode ports

As pointed out in Section 2.1 a good starting point for detecting a trojan horse infection is
to check for new listening ports on the local machine. Therefore it is also clear that trojan
authors try to eliminate this possibility. One way to achieve this is to set the network card
in a local state of promiscuous mode or to intercept the TCP/IP stack by hooking into
it. It is not needed to listen to all the traffic on the network, only traffic directed to the
infected machine is of interest. Having this setup it is possible to define a secret port
sequence as a kind of password. For example an attacker can define that it is required
to send a special crafted packet to TCP port 21, 23 and 80 in a time frame of 10 seconds
and then the hidden communication port 4242 will be opened in listening state. With the
help of this sniffer approach there is no open port that could be detected by a netstat

command or by a remote port scan performed by the administrator. This would make
this method really stealth, were it not for the promiscuous mode which will rise a huge
red alert flag for every administrator. This is maybe also the reason why this method is
not widely used and does not get much attention.

[7]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chapter 3

Defense tools

This Chapter will illustrate the defense tools used nowadays on an end-user system to
protect from trojan horse attacks, explaining where the strengths and weaknesses lie.

3.1 Anti-Virus tools

Even at home nearly all PCs have now an anti-virus software installed and running.
Not all of them have it turned on the whole time or updated the anti-virus signatures
regularly. Still as these products evolve, most of them offer a fair level of protection right
out of the box with little configuration.

But having an installed and up-to-date anti-virus tool running, does not necessarily
protect from trojan horse attacks. First of all, as the name implies anti-virus products
where made to protect from viruses and not from trojans. This sounds kind of silly, but
viruses and trojans are different as we remember from the introduction. This means that
most solutions today will treat trojans as viruses and try to detect them with the same
methods. As we all know one disadvantage of a signature based anti-virus product is,
that it can only detect malware for which it has a signature for. Therefore it has to be
captured sometime before and analyzed by a specialist. There is the rub. Trojan horses
unlike viruses do not replicate themselves. Normally they are placed more or less sys-
tematicly on a finite number of targets and do not spread fast around the globe. The
distribution may be very limited. One of this few exemplars has to be caught in the wild
before a antidote can be made by the analysts. This can take quite a while until an
instance of this trojan horse gets sent to a specialist. A virus which poses a threat will
distribute itself fast over the global network and the chances of an anti-virus laboratory
catching one instance of it raises with each infection. This fact makes it unlikely that an
anti-virus product will detect a relatively rare spread trojan horse on a system even if the
trojan is two years old.

There is even a second thing which makes the life of a trojan horse author easier.
Different then virus writer they do not have to care much about the size of their tro-
jan. These malicious pieces of software can easily grow to some hundreds of kilobytes
without generating much problems at distribution. Therefore it is possible to reorder the
source code, add some large junk sections and recompile the trojan. Resulting in a
different binary that presumably will not be detected by an anti-virus tool as the signa-
ture for the original binary does not match. Sure, virus writers have used this technique

[8]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

which is called polymorphism or metamorphis for years, but as we will see later in the
discussion in Section 4.8 a trojan horse author has some advantages against a virus
writer.

For completeness I should also mention that there exist a lot of tools in the Internet
which make a piece of software that is detected by an anti-virus product undetected
again. Simplest way is to use a hex-editor and change some bytes of the part which
is detected in the signature. Another method is to use an executable file compression
tool like UPX [7]. Latter will not render the binary undetected in memory as it will be
extracted into memory in the old form. But a normal file scanner can be fooled with this
tool.

This little excursion into basic polymorphism should show that an anti-virus solution
will most likely not protect against trojan horse attacks, if they are performed by a clever
attacker.

3.2 Personal Firewalls

Not yet on every end-user PC but gaining popularity we can see personal or desktop
firewalls to appear. They range from simple inbound filters like the Windows XP built
in connection firewall up to application aware stateful desktop firewalls which filter in-
and outbound traffic. Some of them have IDS or anti-trojan tools included. To simplify
matters I will handle a personal firewall as an in- and outbound application aware firewall
and ignore the special features as they will be discussed separately in the next Section.

These techniques will provide a good protection against common trojan horses. As
we have seen in Section 2.1 trojans often use TCP connections for communications. So
as soon as the trojan horse server binds itself to a listening port on the victims machine
the personal firewall will trigger an alert and block this attempt, as this unknown applica-
tion is not configured to communicate with the Internet. As every unknown application
is blocked by default, we will also block new trojans which can be unknown and maybe
undetected by the anti-virus software. This brings the advantage of monitoring every
communication attempt regardless of how well the source is hidden on the system. It
might be hidden in an alternative data stream [5] not scanned by the anti-virus software
but still the traffic will be blocked. Unfortunately there are some newer techniques tar-
geting exactly this protection, helping the trojan horse to bypass the desktop firewall.
This is what this paper is about and some of these methods will be covered in Chapter
4.

3.3 Anti-Trojan tools

As there are anti-virus tools, there exist also anti-trojan tools. One of the oldest on the
market and sophisticated ones is Trojan Defence Suite (TDS) from Diamond CS [8]. Be-
side the common features like file scanning and memory space scanning which every
anti-virus product today should provide as well, these special tools will further monitor
the auto-start methods of the protected system. This is a very vital part for a trojan
horse, as it needs to be somehow started when the system is started. The common

[9]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

way used by trojans is to set a key in the registry for example at
HKEY LOCAL MACHINE\Software\Microsoft\Windows\CurrentVersion\Run
Of course there are many ways to have an executable restarted with windows each
time it reboots. Check the freeware tool “Autostart Viewer” from Diamond CS [9] which
checks over 50 different auto-start locations. By monitoring these access points an anti-
trojan software is sure to find interesting applications that need to be analyzed closer. If
there is a common trojan installed, then it needs to use one of these methods to restart.
Therefore the anti-trojan tool can use preciser heuristics as the file is suspicious and
there are not that many files to perform a deep scan on. A scan over all files on the disk
drive can then be done in a second step. Beside this, anti-trojan tools often perform file
integrity checks on important system files. So that tampering will be detected, making it
hard for a trojan to for example install its own network driver.

Anti-Trojan tools are a very good protection against trojan horses and can prevent
from a lot of problems. Unfortunately these kind of tools or not yet widely used and have
a shadowy existence. Today most people think that the anti-virus software they are using
will protect them from all malware. This assumption might become true somewhere in
the future but with the scanner technology of today it is wrong. To get a good overview
what tools are on the market, have a look at the anti-trojan application test on Wilders
website [10].

[10]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chapter 4

Advanced techniques

This chapter will talk about communication techniques and methods used by a few tro-
jans today and probably widely used in the near future. It will also point out defense
methods against these attacks. This is by no means a complete list, but it does cover
the most common techniques found during the research for this paper.

4.1 DLL injection

Dynamic link library (DLL) injection is the technique of having a malicious code in a DLL
which will get loaded by another program. As most personal firewalls relay on trusted
applications it is obvious that the primary target is to load a malicious DLL into a trusted
application. Once in the same memory space as the trusted application this DLL-trojan
can start to send and receive data from the network. As it will be treated by the personal
firewall as the trusted host application no traffic will be blocked. Popular target for this
attack is the Internet Explorer as it is present on all Windows operating systems and
most user grant it full rights to access the Internet. It is a perfect target for an attacker to
inject his code into it.

This method is not new and was widely discussed in diverse news groups. There
exist already prove of concept applications like Firehole [11] for demonstration purpose.
Source code snippets in various programming languages can be found on the Internet.
Even ready made tools to include in projects exist as many websites demonstrate [13].
That is why personal firewall vendors have started to not only fingerprint the trusted
application itself, but also include all the loaded DLLs for comparison tests. If one com-
ponent changes, the rule will not be allowed. Once this detection method is used in
all desktop firewalls this communication method will no longer be useful for an attacker,
but until then it will work fine. Unfortunately not all that have already implemented a
detection method for this attack, have done it properly as a Bugtraq article shows [12].

4.2 Process injection

Similar to the method of injecting a malicious DLL into another process it is also possible
to allocate process space in a remote process and start a malicious thread in there.
Often DLL injection is done this way by inserting a code segment which will then load

[11]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

the malicious DLL. As the trojan will run as a child thread in the trusted application it will
not show up as a new process in the task list. Even thought the thread itself is visible
in the process list it will be hard to spot, as the names may be chosen at random. This
method has started to gain more and more popularity among the trojan horse authors.
Especially since there are ready to use source codes available on the Internet like on
Madshi’s home page [13]. Alike DLL injection this method targets trusted applications to
misuse them later for traffic sending. Most methods used so far to protect against this
attack will monitor remote thread creation calls and block them. By the time of writing
this paper the author is not aware of a reliable method which works in a convenient way
and flawless. Especially if the execution context from which the malware is launched has
advanced privileges. This is often the case for home users. Therefore it is conceivable
that a trojan will attack this vulnerable point of the security software.

4.3 Process killing

A method already used frequently by many trojan horses in the wild is the so called
process killing. The trojan will attempt to shutdown the process of the security software.
Thus rendering the system defenseless. Sending the “Window Close Message” will nor-
mally terminate the targeted process. A security application can however be configured
to ignore this message. As always, there are many more ways to achieve a process ter-
mination. Just think of suspending all child threads leaving the targeted parent process
frozen or modify the code in memory so that it will crash or exit. Many security softwares
are not immune against all these attacks.

One side note at this point, killing a running application will hopefully make most
users suspicious. If the familiar icon in the task bar is suddenly missing some doubts
may raise. To prevent this, a trojan horse can place the original icon in a dummy pro-
cess, so that the user is not missing anything.

Protection against these attacks is not trivial but can be achieved. Some personal
firewalls like ZoneAlarm [6] do this by disabling the TCP/IP stack by default while the
process is not running. Therefore making it required that the desktop firewall process
is running when we want to communicate to the network. Other vendors have imple-
mented guard processes which monitor each other and also block write access from
other applications to itself. Still there is much room to improve security software’s pro-
tection against these attacks.

4.4 Process modification

Being more reserved then simply killing the process, modification of a security applica-
tion can also make the life of a malicious trojan easier. If the attacking trojan is able to
write into the memory space of the personal firewall or anti-virus software then it might
be possible to overwrite loaded rules in memory. Thus making it possible to disable the
software or render it useless. Just think of adding an “allow all” rule at the beginning of
a firewall or excluding all files from anti-virus scanning. To protect from such attacks a

[12]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

security tool must assure that it is not possible to write into its memory space. Depend-
ing on the user context the trojan is executed in, it will not be possible to deny this write
access completely. Monitoring and filtering those write calls can help here, but only if
implemented from a lower system process. Otherwise the trojan will disable that monitor
software first before attacking the anti-virus process.

4.5 Configuration changes

Let me explain this with a little thought experiment. Every security tool must have its
configuration stored somewhere on the installed system. We will ignore enterprise ver-
sions which will download configuration files each time from the network. Think of home
users. When they boot up their system the security tools will load the customized con-
figuration. But who tells us that this is really the configuration we made ourselves and
not a configuration made by a trojan horse? Ok right, the configuration is not likely to be
in a plain text file lying around on the hard drive. One might say that they sure do protect
the configuration files by checksums and maybe even by encrypting it. That is a clever
idea, but remember the security software is able to load the configuration at startup. So
it must be able to decrypt it. If the user changes anything at the configuration a new con-
figuration file will be created and saved. So the application must also be able to encrypt
it. Thus the encryption key must be present on the system as well. Maybe a registry key
somewhere? Each version of a security software has its own secret place to hide the
key and the encryption algorithm. But it has to be somewhere on the system as we have
seen. What does hinder the trojan from encrypting its own configuration? Everything
is present on the system. The only question is how to do it, though it is clear that it is
possible. Some security tools make the work even easier as they deliver administration
tools to generate such encrypted configuration files which are system independent.

Of course these changes will not be applied immediately, but the trojan horse could
initiate a reboot to make sure of that.

The only possible way to protect against this kind of attack is to make sure that the
trojan can not modify these configuration files. Thus these files have to be held under a
single access lock by another process which is unkillable because of the reasons seen
in Section 4.3. Running the security application with higher privileges can also bring
more security for the configuration files. Just make sure that the application itself has
no vulnerabilities which in turn could be misused to gain a root shell. Bear in mind that
most home users work with an administrator account, hence having the files writable for
administrators only might not be enough protection.

Some security products generate random keys during installation so that it is not
possible to copy configuration files from one system to another. This is in contrast to
the idea of having an easy manageable security environment in a company. A system
administrator in a large company may want to be able to copy an image of the config-
uration file to all his client machines, without having to generate it separately for each
machine. If this random key is stored in an easy accessible location then of course it
is useless anyway. As the trojan will simply ready in this key and use the algorithm to
encrypt its data as seen in the discussion above.

[13]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

4.6 Protected stack bypassing

When sending packets to the network card usually the Windows own TCP/IP stack is
used to generate the correct packets. This is just because it makes it easier to create the
packets. A trojan can of course install its own network driver to generate its own commu-
nication channel to the network card. Most personal firewalls have hooked themselves
in the Windows TCP/IP stack to filter all passing communication. When a trojan is using
a different stack the desktop firewall will not be able to see the traffic and therefore also
not block the communication. For testing purposes multiple prove of concept tools are
available like Outbound [14].

To protect against this kind of attack it is best to drop all packets which are not
generated in the standard Windows stack or filter all of them. Some personal firewalls
have now started to include this feature in new releases.

4.7 Tunneling

All methods discussed above had one big disadvantage for the attacker. They allowed
the trojan to bypass local security measures but not security devices on the way back to
the attacker, like a network firewall. Therefore new approaches where searched, which
could be combined with one of the other methods making it more concealed.

4.7.1 Simple tunneling

There are plenty of websites to this topic on the Internet [15]. A tunnel encapsulates a
protocol inside another to transport other packets in its payload, for example HTTP. Tun-
neling is a general concept which can be used to carry a protocol across any network. It
is not a new or secret method. In Virtual Private Networks (VPN) for example it is used
for years to join two isolated networks with a secured link.

Any protocol can be misused for tunneling. The only requirement is, that the protocol
should be permitted by the firewalls which will be passed on its way, as this is the general
idea behind tunneling. Protocols like SMTP, DNS, ICMP and HTTP generally satisfy this
requirement. This method will work against all packet filter in between. If special crafted
packets are used they can even pretend to belong to an already established connection
and might be ignored and unlogged by the intermediate firewall.

4.7.2 Advanced tunneling

Going one step further an attacker can even make the communication more sophisti-
cated by disguising the payload. So the communication will really look like a normal
HTTP, DNS, ICMP or what ever communication. An example therefor would be the DNS
tunneling, where the trojan sends a request for
secretdata.passwords.attackersdomain.com so the attacker gets the secret data, which
of course can be encrypted. The response packet 192.168.42.23 would have new
commands encoded into the IP address numbers. In our example the number 42 could

[14]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

stand for start attack and the number 23 could indicate the target. This will be very hard
to spot even for an IDS. If the implementation is clever made it will be impossible to dis-
tinguish this communication from normal traffic. Using a protocol tunnel communication
will allow an attacker to bypass a firewall even if it uses an application proxy.

Another advantage of this feature for the attacker is, that the trojan makes a reverse
connection. The communication will be initiated from the trojan “server” to outbound into
the Internet back to the attacker. This method, sometimes also called insideout trojans,
will eliminate the problem of network address translation (NAT) environments. Nowa-
days home users often have DSL modems with a NAT device in between. Therefore it
makes little sense for a trojan to open a listening port on the target system and wait for
incoming connections. The attacker will never be able to establish a connection from
the Internet into this LAN segment. A simple way to accomplish a reverse connection is
to hard-code a domain name from a dynamic DNS in the server application. (There are
also some trojans with hard-coded IP addresses but this is obviously not really clever
for an attacker).

A second method especially interesting if HTTP tunneling is uses, is to use a free
webspace hoster like Tripod [17] to host a control site. The trojan server will, once hav-
ing detected an active Internet connection, send a HTTP GET request to the attackers
free website. There a special programmed script, for example a PHP site, will accept
the data sent by the trojan server. This data may contain the current logged in user
name, the local IP address, the hostname and any other information that the attacker
thinks of being useful to him. The attacker can then send a predefined default command
back in the HTTP response to the trojan horse server, disguised as a web page. Or
depending on the data received decide to send something else back. Let’s assume it
is programmed to send back the command to start keylogging on the infected machine.
The command is encrypted in the HTML file or in an image file that is send back to
the trojan horse server. Which in turn, sends back a HTTP POST request with a huge
encrypted keylog result file of all logged passwords. There goes the privacy right under
the eyes of firewall and IDS. As this traffic looks exactly like a normal HTTP session, if
not to say it is a normal HTTP session, no intermediate filtering device will block it.

One may point out that this kind of communication will not be suitable for real time
screen capturing. This might be true, but why would someone want to have live video
streaming from a victims machine anyway? This would give away an attack as it will
produce a fair amount of traffic. If the attacker is not a script kiddie he will not need a
screenshot of the machine in order to take it over. Some commands will be enough to
install any tool and start a distributed denial of service attack from the infected PC to
somewhere else.

A thing to remark on this scenario is, that even if we are able to detect the trojan
and trace the communication back, we will end up at the attackers website of the free
webhoster. There is never a direct connection from the victims machine to the attacker.
This makes it quite hard to track down the attackers real origin. We would need the
access log files from the webhoster.

[15]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

4.8 Polymorphic code

A method nearly not used today in trojans is polymorphism or methamorphism. The
technique of changing the appearance but leaving the functions unchanged. This is
somehow surprising as virus writers use polymorphism since a long time and they even
had to implement it using assembler code.

One huge advantage for trojan horse writers is, that they can generate polymorphic
trojan generators which can generate thousands of different looking trojans. The big dif-
ference to polymorphic viruses is that the polymorphic engine does not have to be built
into the trojan server. It can remain in the trojan generator and therefore the size limita-
tion is not an issue and no protection from reverse engineering has to be done. If once
an instance is caught in the wild and analyzed not all variants will be detected as they
have different binary patterns but the same functionality. Metamorphic viruses provide
no good ways to detect them. The same applies to metamorphic trojans. Heuristics
and code simulation would probably be the best way to approach this threat. But as
illustrated it would be quite difficult, as the trojan itself once generated would not be
metamorphic anymore as it does not replicate itself. Of course this could also be imple-
mented but is not needed. As the metamorphic engine will never be caught in the wild it
will always be a guess how siblings of a trojan generation can look like. Making it nearly
impossible to detect them on signature base. Therefore a signature for each instance
has to be created, which is not feasible. Heuristics are needed to catch the trojan by its
features and functions.

[16]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chapter 5

Future scenario

In my judgment a scary but possible scenario in the near future will look like this. Let’s
assume hypothetically there will be a generation of remote access trojans which uses
some of the discussed techniques. Most likely is a combination of these methods. My
prediction is that they will use process injection techniques to bypass the local firewall.
If no connection can be established process killing and modification methods are used
to terminate the firewall process as fallback methods. The target process is the Inter-
net browser. The final communication is made using HTTP tunneling to a script server
somewhere in the Internet. All information is encrypted and disguised as normal HTML
pages and image files. Thus rendering IDSs and network firewalls ineffective. There
is no chance to distinguish this traffic from ordinary web traffic. Only the URL of the
remote script can indicate the attack. Therefore multiple domain names with encoding
are used for the same web page to confuse statistic analyzers and make it harder to filter.

To remain undetected on the infected system the trojan uses basic polymorphism
techniques. This will generate a completely different looking binary for each installation.
At a later stage modification of system tools will be used to stay undetected. Like UNIX
rootkits, remote access trojans will hook themselves into API calls to filter any evidence
of their presence. Making it hard for system administrators to find traces from them on
infected systems. To avoid analyzing tools, anti debug techniques from virus writers are
adapted. Rarely checked methods are used for startup. In some cases often used bina-
ries are replaced completely by the trojan or infected like a virus. Every time this special
application gets started the trojan will load itself into memory.

To stay competitive with security tools, the trojan can download updates from the
master website. This makes it possible for the trojan author to develop an anti patch for
his trojan. If the remote access trojan is updated before the security software gets the
chance to apply its new patch, the antidote will be useless.

When used as a member in a distributed denial of service attack the source address
of the flooded packets are spoofed to make it harder to find the infected machine in the
network. No reasonable trace back is possible. Depending on the purpose of use, some
worm features are added for wider distribution. Fast infection stays in contradiction to the
guideline of attracting as least attention as possible. This behavior would be reasonable
under certain conditions, like the mentioned distributed denial of service attack scenario.

[17]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chapter 6

Conclusions

Today trojan horses are not taken as a big threat. Security experts often say that remote
access trojans on Windows operating systems are baublery of script kiddies. More so-
phisticated attackers will implant kernel rootkits. It might be true that older trojans like
SubSeven or Netbus were no big threat, but even for their limited stealth techniques they
where amazingly successful in penetrating systems. Not to think of how successful they
would be, when they get more sophisticated. As the scenario in Section 5 demonstrates
trojan horses of the “future” will be very difficult to detect on a system. Therefore the
protection tools have to evolve and adapt to this new raising threat or trojans will be-
come widely used without a good cure against them. In the wild we already see the use
increasing.

From my point of view desktop firewalls have to get a wider acceptance rate. Even
thought that they on their own do not protect against sophisticated attacks, they still pro-
vide protection. If desktop firewall vendors address some of the open issues discussed
in this paper, these tools will be able to add an extra level of protection to the systems.
To raise consumer acceptance anti-virus vendors could bundled desktop firewalls with
their products, as some already do.

Anti-Trojan tools which are needed to detect trojan horses have not yet the attention
they would need to be taken seriously. Maybe some of their features will get imple-
mented in future anti-virus tools. Because without specialized tools or at least a different
approach than signature scanning, it will be very difficult to stop modern trojan horses
from infiltrating networks. This is even true when not taking metamorphic code into con-
sideration. Therefore specialized anti-trojan tools have to be developed and used by the
users. To achieve this, the awareness of the trojan threat has to be increased.

We see that there is still some room for improvement for security tools, if they want
to be able to counter sophisticated trojan horse attacks. If the marked realizes the threat
and acknowledges that there has to be done something against it, good chances for a
reasonable protection can be expected.

[18]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Bibliography

[1] Summers, Rita C. Secure Computing Threats and Safeguards, McGraw Hill, 1997.

[2] Brumley, David. “Rootkits - How Intruders Hide”
URL: http://ouah.kernsh.org/Drootkits.html (2.1.2004)

[3] Von Braun, Joakim. “Ports used by trojans”, 9.12.2003
URL: http://www.simovits.com/sve/nyhetsarkiv/1999/nyheter9902.html
(21.12.2003)

[4] Symantec, “Symantec PCAnywhere”
URL:
http://enterprisesecurity.symantec.com/products/products.cfm?ProductID=2

(20.12.2003)

[5] Carvey, H. “The Dark Side of NTFS (Microsofts Scarlet Letter)”
URL: http://patriot.net/~carvdawg/docs/dark_side.html (11.11.2003)

[6] ZoneLabs, “ZoneAlarm Pro 4”
URL:
http://www.zonelabs.com/store/content/catalog/products/zap/zap_details.jsp

(5.1.2004)

[7] Oberhumer, Markus F.X.J. “UPX: the Ultimate Packer for eXecutables”, 7.11.2002
URL: http://upx.sourceforge.net (19.12.2003)

[8] Diamond CS, “Trojan Defence Suite”
URL: http://tds.diamondcs.com.au/ (27.12.2003)

[9] Diamond CS, “Freeware Autostart Viewing and Control Tool for Windows”
URL: http://www.diamondcs.com.au/index.php?page=asviewer (28.12.2003)

[10] Wilders, “Anti-Trojan tools”, 23.12.2003
URL: http://www.wilders.org/anti_trojans.htm (20.12.2003)

[11] Keir, Robin. “How to bypass your personal firewall outbound detection”, 25.3.2002
URL: http://keir.net/firehole.html (5.1.2004)

[12] Security Focus, “Sygate Personal Firewall DLL Authentication Bypass
Vulnerability”, 29.12.2003
URL: http://www.securityfocus.com/bid/9312 (3.1.2004)

[13] Rauen, Mathias. “Madshi’s source code examples”
URL: http://www.madshi.net/ (8.1.2004)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

[14] Hackbusters, “Outbound, personal firewall leak test”
URL: http://www.hackbusters.net/ob.html (22.12.2003)

[15] Rudis, Bob. “The Enemy Within: Firewalls and Backdoors”, 9.6.2003
URL: http://www.securityfocus.com/infocus/1701 (21.12.2003)

[16] Brinkhoff, Lars. ”HTTP tunnel service”, 10.1.2003
URL: http://www.nocrew.org/software/httptunnel.html (29.12.2003)

[17] Lycos, “Free website hoster Tripod”
URL: http://www.tripod.lycos.com (2.1.2004)

[20]

