
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Shell Scripting for Reconnaissance and Intrusion Detection 1

Mark	D.	Gray,	markdaltongray@gmail.com	

Shell Scripting for Reconnaissance and Incident Response

GIAC (GSEC) Gold Certification

Author: Mark Dalton Gray, markdaltongray@gmail.com
Advisor: Mark Stingley
Accepted: 01/15/2019

Abstract

It has been said that scripting is a process with three distinct phases that include: identification of a
problem and solution, implementation, and maintenance. By applying an analytical mindset, anyone
can create reusable scripts that are easily maintainable for the purpose of automating redundant and
tedious tasks of a daily workflow. This paper serves as an introduction to the common structure and the
various uses of shell scripts and methods for observing script execution, how shells operate, and how
commands are found and executed. Additionally, this paper also covers how to apply functions, and
control structure and variables to increase readability and maintainability of scripts. Best practices for
system and network reconnaissance, as well as incident response, are provided; the examples of
employment demonstrate the utilization of shell scripting as an alternative to applying similar
functionality in more intricate programming languages.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Shell Scripting for Reconnaissance and Intrusion Detection
	
2

	

Mark	D.	Gray,	markdaltongray@gmail.com	

1. Introduction
The Linux command-line interface (CLI) is one of the most powerful tools at the disposal of a

security professional and yet, to many it remains a mystery and source of intimidation. For the

uninitiated, this is reasonable due to the reliance on simple, intuitive graphical interfaces to which

many users and professionals alike are accustomed. The CLI is just a black box with white text that is

far less appealing and less forgiving. Fortuitously, learning the foundational usage of the CLI requires

minimum time and effort. Not to mention, when necessary, the CLI serves to provide an eclectic range

of versatile tools that are both powerful and inherent to the Linux operating system.

It is not uncommon for a security professional to be in a position where there is limited or no

access to commercial security tools or a situation where they are unable to install a higher-level

programming language. “No programming language is perfect. There is not even a single best

language; there are only languages well suited or perhaps poorly suited for particular purposes”

(Herbert Mayer, 1989). There are a multitude of instances where this predicament may present itself.

For example, being in an environment where there is limited ability to install third-party software,

budget constraints limit the purchasing power of commercial products, or on-site at a customer location

where tools are absent. Establishing security framework or performing tasks to harden security is

nearly impossible without proper tooling. When expensive commercials tools are not at your disposal,

one must improvise, adapt, and overcome; a process that can be catalyzed with the aid of Linux

command execution and scripting. “Shell scripting hearkens back to the classical Unix philosophy of

breaking complex projects into simpler subtasks, of chaining together components and utilities”

(Mendel Cooper, 2014).

Natively, Linux has an abundance of powerful commands that can be wielded for a spectrum of

purposes. These commands can be harnessed and automated into reusable tools that can provide an

immeasurable number of desired results. The tools are also automatable for the purpose of eliminating

redundancy in realms such as lessening security voids. Foreseeably, commercial products will continue

to reign supreme, but in situations that are constrained by the concern of organic functionality,

consistency, and usability, shell scripting is vital.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Shell Scripting for Reconnaissance and Intrusion Detection
	
3

	

Mark	D.	Gray,	markdaltongray@gmail.com	

Throughout this paper, bash will be the used and preferred shell. Please note that some of the

sample implementation of bash scripting could be applied in a more efficient manner in the event of

varying environments, user privilege, use case, etc.	

2. What is a shell?
1.1. Overview

When operating on Linux (or Unix) machines, there are four common shell types that you will

encounter: Shell Command Language(sh), Bourne Again Shell(bash), C Shell (csh), and

KornShell(ksh). Without exploring the intricates of POSIX conformant and specifications, each shell is

unique in the respect of feature sets and shell syntax. In most modern operating systems, “sh” is

symbolically linked to bash (or dash) which results in its designation of the default shell type. In the

event that a user wishes to modify that innate designation, Linux offers users the ability to install and

make default “csh” or “ksh” shells.

1.2. Shell Basics
When operating a graphical user interface (GUI), a terminal emulator must be used to interact

with the shell. There are many different emulators, and like each shell, they each offer a distinct set of

features for the user. The default terminal emulator will be used throughout the paper for sample

depictions.

2.1.1. Determining the Default Shell

Determining which shell is presented to the user upon logging into a machine via SSH or using

a terminal emulator can be accomplished in multiple ways. A simple method for determining this is to

investigate the “/etc/passwd” file; within this file each line represents a user.

The last field included in each of the lines defines which shell will be utilized as user logon actions are

performed.

Figure 1. Viewing the default shell by looking at the “/etc/passwd” file

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Shell Scripting for Reconnaissance and Intrusion Detection
	
4

	

Mark	D.	Gray,	markdaltongray@gmail.com	

The login program sets an environment variable called “SHELL” that can be queried in order to

determine the default shell. As aforementioned, the results of the previous query should yield a result

that matches the user’s entry in the “/etc/passwd” file.

Figure 2. Viewing the default shell by querying the environment variable

2.1.2. Configuring the Shell

Shells can be configured and customized with the utilization of “startup scripts.” “Startup

scripts” are files that define aliases, and source/set variables. Each shell has a fundamental set of

“startup scripts” that it will execute. Of these “startup scripts”, there are two broad categories that are

referenced: “user” and “system” files. User files exist within a user’s home directory and only affect

shells owned/spawned by that user. The system files are typically located in the “/etc” directory and

affect the shell of every user. When bash is invoked as a login shell, the system “/etc/profile”, user

specific “~/.bash_profile”, and “~/.profile” scripts are executed. If the shell is interactive, then

subsequently, the user “~/.bashrc” file will be reviewed. Bash also comprises scripts that contain

specific configurations for log-in and log-out procedures; these reside in the “~/.bash_login” and

“~/.bash_logout” files.

1.3. Input and Output
Through the use of various commands and tools, there will be instances that necessitate the

alternation of how input is supplied to programs. A common occurrence of this is providing the output

of one program as input into another, which is often referred to a “piping” or “chaining” commands.

Other instances can include using the contents of a file as input for a program, recording commands or

saving outputs to a file.

Figure 3. Redirect input of command

Figure 4. Redirect output of command

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Shell Scripting for Reconnaissance and Intrusion Detection
	
5

	

Mark	D.	Gray,	markdaltongray@gmail.com	

2.1.3. File Descriptors

File descriptors are merely abstractions to resources on a host. On Linux systems, everything is

treated as a file, which to a user or programmer translates to the existence of a standard set of functions

that can be used to interact with resources on a host. Resources can include, but not limited to a file,

socket, or device. To view file descriptors on Linux, the command “lsof” can be used.

File Descriptor Name Default “File”

0 Standard in (STDIN) Keyboard

1 Standard out (STDOUT) Terminal display

2 Standard error (STDERR) Terminal display

Figure 5. Default file descriptor table

2.1.4. Chaining Commands

An additional form of redirection also exists within the shell known as chaining commands or

piping commands. When chaining commands the first command will execute and generate output that

is then used as input for the following command. Chaining commands are often useful when modifying

command outputs and performing tasks that are dependent on the completion and output of another.

Figure 6. Piping the output of the cat command to serve and input for the grep command

3. Keeping it Organized
1.4. Variables

Variables are an important piece of scripting because it allows the temporary storage of

information within the shell that can be referenced by other commands within the script. There are two

types of variables: environmental and user. Environmental variables are used to track system-specific

information such as the name of the user logged in, the search path used by the shell to find programs,

and the name of the system. User variables are set by the user to reference information within a script

or command. Variables can be a string of up to twenty letters, digits, or the underscore character.

Additionally, within a shell script when using functions, there are another two types of variables. These

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Shell Scripting for Reconnaissance and Intrusion Detection
	
6

	

Mark	D.	Gray,	markdaltongray@gmail.com	

are known as global and local. Global variables can be used anywhere within the script while local

variables only exist within a function. Examples of these variables will be demonstrated in another

section.	

#!/bin/env bash
#Testing variables
days=2
man=mark
echo "The $man hasn't been outside in $days."
	

	
	 Figure	7.	Environment	variable	

1.5. Aliases
Aliases are an effective method for assigning a name to a collection of commands or just a

single command. The “.bashrc” file, which is standard for the bash shell, includes some useful aliases

by default. The general purpose of aliases is to make complex tasks more straightforward by invoking a

simpler command that executes a number of complex commands.

enable color support of ls and also add handy aliases
if [-x /usr/bin/dircolors]; then
test -r ~/.dircolors && eval "$(dircolors -b ~/.dircolors)" || eval
"$(dircolors -b)"
 alias ls='ls --color=auto'
 #alias dir='dir --color=auto'
 #alias vdir='vdir --color=auto'
 alias grep='grep --color=auto'
 alias fgrep='fgrep --color=auto'
 alias egrep='egrep --color=auto'
fi
some more ls aliases
alias ll='ls -alF'

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Shell Scripting for Reconnaissance and Intrusion Detection
	
7

	

Mark	D.	Gray,	markdaltongray@gmail.com	

1.6. Control Structures
Control structures are used within a script to perform logical decisions in which a condition is

tested, and depending on the result of the test, either performs a subsequent action or exists. The bash

shell supports “if” and “switch” (case) conditional statements. Conditional statements work

conjunctively with the decision control statements in order to determine whether or not the action will

be executed.

3.1.1. IF Statement

The IF statement is one of the simplest decision statement expressions used in any scripting or

programming language, although the syntax may vary. The typical formats of the IF statement include,

if, elif, and else. This allows for multiple conditions to be tested within a single statement.

#!/bin/env bash
#set value of first argument
arg=$1
if [[$arg == 1]]; then
 echo true
elif [[$arg == 2]]; then
 echo false
else
 echo "hit the else"
fi

3.1.2. Switch (case) Statement

Switch (case) statements are much like the IF statements in the regard of logical decisions,

however, switches are more commonly used to test multiple conditions that are determined by the value

of a single variable. An example of this is the processing of command line arguments while using an IF

statement will have the same outcome, it is much cleaner using a switch statement.

#!/bin/env bash

#set value of first argument
arg=$1
case $arg in

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Shell Scripting for Reconnaissance and Intrusion Detection
	
8

	

Mark	D.	Gray,	markdaltongray@gmail.com	

 0)
 echo false
 ;;
 1)
 echo true
 ;;
 *)
 echo unknown
 ;;
esac

3.1.3. Loops

Loops with bash are extremely useful for running a series of commands continuously until a

specific situation is reached; loops are often used for automating repetitive tasks. Bash supports

multiple looping constructs which are until, while, and for. Typically, until and while loops are used

when the amount of times the loop needs to run is unknown and for loops are used when the amount of

iterations is known.

#!/bin/env bash
#while loop
arg=no
while [$arg != "yes"]
do
 echo "are you ready to continue? yes or no"
 read arg
done
echo "Going to continue"

#!/bin/env bash
#until loop
arg=no
until [$arg == "yes"]
do
 echo "are you ready to continue? yes or no"

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Shell Scripting for Reconnaissance and Intrusion Detection
	
9

	

Mark	D.	Gray,	markdaltongray@gmail.com	

 read arg
done
echo "Going to continue"

#!/bin/env bash
#for loop
for num in {1..10};
do
 echo $num
done

1.7. Functions
Functions are a method of breaking a programming problem into smaller individual problems

which facilitate the creation of reusable blocks of code that assist in making scripts more modular. In

bash, once a function is created, it can be referred to anywhere else in the script without the need to

rewrite it.

3.1.4. Creating a Function

There are three syntaxes that can be used to create functions in bash.

function reboot_message(){
 echo "Please reboot at your earliest convenience"
 return 0
}
function reboot_message {
 echo "Please reboot at your earliest convenience"
 return 0
}
reboot_message(){
 echo "Please reboot at your earliest convenience"
 return 0}

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Shell Scripting for Reconnaissance and Intrusion Detection
	
1
0

	

Mark	D.	Gray,	markdaltongray@gmail.com	

While all three are valid, the reboot_message() {} more closely resembles how functions are defined in

other programming languages.

3.1.5. Using Functions

After a function has been created, it can be executed by simply referring to it. Important to note

that a function must be created before it is able to be called upon, bash does not read the entire script

then execute functions, scripts proceed linearly from top to bottom.

4. Reconnaissance
1.8. Network Reconnaissance

Now that the basic functionality of the bash shell has been covered, we can move on to using

the shell and CLI utilities to collect information about different networks you may encounter. Tools

used in this section include, but are not limited to, Nmap, Ndiff, Whois, and Dig. These utilities may or

may not be installed on the system depending on the distribution of Linux being used.

4.1.1. NMAP Target Enumeration

NMAP, short for Network Mapper, is a powerful utility that can be used for vulnerability

scanning and network discovery. NMAP provides a plethora of features and options that assist in

numerous activities such as scanning a network, scanning a specific host for information such as open

ports and OS type, and as mentioned vulnerability scanning. Due to the complexity of NMAP, only the

common tasks and utilization are going to be covered.

The basic syntax for NMAP is provided below; the -sn argument tells NMAP to use the ICMP

protocol to determine if hosts in the target range are reachable and it disables port scanning. The -v

argument activates the verbose output and –reason will print information as to why it has determined a

certain result about a host.

nmap -sn {OPTS} [host address | domain name | CIDR netmask | IP

Range]

nmap -sn -v –reason 172.21.0.0/24

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Shell Scripting for Reconnaissance and Intrusion Detection
	
1
1

	

Mark	D.	Gray,	markdaltongray@gmail.com	

 Common NMAP host discovery options include the following:

Discovery Option Description

-PE This tells Nmap to use ICMP

echo requests, which is the

packet that's sent when you

ping a host.

-PP This tells Nmap to use

timestamp requests. Hosts

that respond to timestamp

requests are usually

reported as findings in

penetration tests. Often,

default and weakly

configured cryptographic

libraries use system time to

generate the cryptographic

primitives.

-PM uses ICMP netmask requests;

these ICMP packets were

originally implemented so

that network engineers could

query a host for information

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Shell Scripting for Reconnaissance and Intrusion Detection
	
1
2

	

Mark	D.	Gray,	markdaltongray@gmail.com	

about its network

configuration.

-PS TCP SYN flag scan: This

option sends SYN packets to

a host and determines

whether they are actually on

the network by interpreting

the response or the lack

thereof.

-PA TCP ACK flag scan: This

option tells Nmap to send

TCP ACK flags to the target

to determine whether it is

alive and responding to

packets. Machines on a

network will often try to

strictly respect the TCP

protocol standard and

respond to packets with the

ACK flag set by sending a

packet with the REST packet.

-PO IP protocol ping: This

option enumerates the

protocols supported by a

target host, by listening

for TCP packets with the

REST flag set, since live

hosts will often respond

this way to invalid packets

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Shell Scripting for Reconnaissance and Intrusion Detection
	
1
3

	

Mark	D.	Gray,	markdaltongray@gmail.com	

with arbitrary identifiers

set for the protocol number.

4.1.2. Arping for Host Discovery

Arping is a utility that facilitates the crafting of packets which include ICMP and ARP for the

intent of sending them to random hosts on a local network. This makes for a simple method for

enumerating live hosts. Below are some simple examples of arping command utilizations.

arping [IP Address]

arping -c3 172.21.0.1

 In the output above, the arping command sent three packets to the 172.21.0.1 IP address and

received three responses, which is a strong indication that this host exists and is active on the network.

However, it is important to note that there is no guarantee that this information is accurate due to the

utilization of insecure protocols.

 Other standard options for arping include the following:

Command Option Description

-c COUNT This means only send COUNT

number of requests.

-d This finds duplicate

replies. This option is

great as a monitoring tool.

It will be able to pick up

if anyone on your network is

spoofing the MAC address of

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Shell Scripting for Reconnaissance and Intrusion Detection
	
1
4

	

Mark	D.	Gray,	markdaltongray@gmail.com	

another host; attackers

often do this to initiate

man-in-the-middle attacks.

-i This is the interface. Don't

try to autonomously find the

interface; use the one

supplied

-p This turns on promiscuous

mode for the specified

interface and allows you to

specify MAC addresses other

than your own as the source,

that is, MAC spoofing.

-r This displays raw output and

means only the MAC and IP

addresses are displayed for

each reply.

4.1.3. NDIFF for Identifying Network Changes

The Ndiff utility is simply a tool that is used to compare the results of NMAP scans. The Ndiff

utility functions by reading two separate NMAP result files, compares the differences (if any), and then

output the differences to a separate file. The can be helpful in identifying hosts that have been added or

removed from the network.

#!/bin/env bash

TARGETS="172.21.0.1/24"
OPTIONS="-v -T4 -F -sV"
date=$(date +%F)

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Shell Scripting for Reconnaissance and Intrusion Detection
	
1
5

	

Mark	D.	Gray,	markdaltongray@gmail.com	

cd /opt/nmap_diff
nmap $OPTIONS $TARGETS -oA scan-$date > /dev/null
 if [-e scan-prev.xml]; then
 ndiff scan-prev.xml scan-$date.xml > diff-$date
 echo "*** NDIFF RESULTS ***"
 cat diff-$date
 echo
 fi
echo "*** NMAP RESULTS ***"
cat scan-$date.nmap

ln -sf scan-$date.xml scan-prev.xml

4.1.4. Dig for DNS Server Interrogating

DNS servers are entrusted to provide associations between IP addresses that are used by

computers and the human-readable domain names It is not uncommon for organizations to use multiple

domains and subdomains for a single IP address. So, what this means is that DNS potentially contain

valuable information about an organization’s public footprint and potentially expose an attack surface.

The Dig CLI tool is an all in one utility that can provide the essential need to know for a given

domain or domains in relation to an IP address. The dig utility emulates browser and other network

application queries when interacting with DNS servers. The command syntax for dig is similar to the

whois utility:

dig [domain name]

dig microsoft.com

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Shell Scripting for Reconnaissance and Intrusion Detection
	
1
6

	

Mark	D.	Gray,	markdaltongray@gmail.com	

This is the output for the previous command, the IP addresses in the “ANSWER SECTION” are

the IP addresses that belong to Microsoft.

The dig utility can also drill down on specific types of records, for example, dig can be used to

only find mail exchange records (MX records).

dig microsoft.com MX

Below are some common record types that the dig utility can lookup:

Record Type Description

A This is address record and

holds the IPs associated

with the queried domain.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Shell Scripting for Reconnaissance and Intrusion Detection
	
1
7

	

Mark	D.	Gray,	markdaltongray@gmail.com	

AAAA This is the IP Version 6

address record.

CNAME This is the canonical name

record, which will return

the domain names for which

the specified domain is a

canonical record. This is

like asking dig whether the

supplied domain is a

nickname for another, or

more precisely, whether the

given domain name uses the

IP address of another

domain, and dig returns

these domains.

MX This is the mail exchange

record and lists the

addresses that are

associated with the supplied

domain as message transfer

agents. You would use this

to find the mail domains for

a given domain.

PTR This is for pointer records,

which are often used in

reverse DNS lookups.

SOA This is the start of

authority/zone record, which

will return records related

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Shell Scripting for Reconnaissance and Intrusion Detection
	
1
8

	

Mark	D.	Gray,	markdaltongray@gmail.com	

to the primary domain server

“authoritative” for the

supplied domain.

AXFR This is for the authority

zone transfer, which asks a

given domain name server to

return all records related

to a given domain. Modern

DNS servers should not have

this option enabled remotely

as it presents considerable

information about disclosure

vulnerabilities, primary

internal address, and

enables denial of service

attacks.

Another functionality of dig is the option to only return important data, this is accomplished by

using the +short option. This will only return data that is important to the supplied request (such as IPs

when querying a domain).

dig microsoft.com +short

When using this method, dig can be used with pipes and for loops to elevate the need to filter or

parse out irrelevant information.

for ip in $(dig microsoft.com +short); do whois $ip; done

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Shell Scripting for Reconnaissance and Intrusion Detection
	
1
9

	

Mark	D.	Gray,	markdaltongray@gmail.com	

4.1.5. Whois Servers

Whois servers contain information about IP addresses, domain names, and other network

addressing relevant information that certain organizations are responsible for or are strictly associated

with. When querying a Whois server, a request for information is sent to the server using an application

call Whois. Interrogating Whois servers from the CLI is executed by utilizing the whois command. The

whois command offers numerous options that can be specified when using the tool. The basic

functionality of Whois includes the return of a set of attributes associated with an IP address, the

collection of attributes is called a “whois record”. Looking up a record using an IP address is done with

the following syntax:

whois [IP address]

An example of retrieving the Whois record for an OpenDNS server address:

whois 208.67.222.222

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Shell Scripting for Reconnaissance and Intrusion Detection
	
2
0

	

Mark	D.	Gray,	markdaltongray@gmail.com	

This is the output of the whois command; it is an object consisting of multiple associated attributes that
are in key-value pairs.
As previously mentioned, the whois tool offers numerous options. Aside from looking up information

associated with an IP address, whois can be given other attribute parameters to lookup information

associated with an organization, an email address, or the maintainer. This action is referred to as a

reverse lookup. The following command is an example of this action:

 whois -i [attribute name] [value]

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Shell Scripting for Reconnaissance and Intrusion Detection
	
2
1

	

Mark	D.	Gray,	markdaltongray@gmail.com	

 whois -i mnt-by YAHOO-MNT

Additional attributes that can be used for inverse queries include the following:

Attribute Description
admin-c NIC-handle or person
person NIC-handle or person
nsserver Domain or address prefix or

range or a simple address
sub-dom Domain
upd-to Email
local-as Autonomous system number

Other usage includes looking up domain names, and by taking advantage of chaining commands only

the useful information from the whois, object can be returned.

 whois [domain name]

 whois microsoft.com | grep “Name Server” | cut -d: -f2

The command above queries the Whois server for the domain name “microsoft.com” then feed the

output to grep which looks for lines that match “Name Server”, finally the output of grep is passed to

the cut command that looks for “:” as a field delimiter that prints the second field, which in this case

are the nameservers used for the domain “microsoft.com”.

5. Linux Incident Response
Intrusion detection is a reactive measure that seeks to identify and mitigate ongoing attacks,

while an incident response is an organized approach to addressing and managing a security breach or

incident. The purpose of the next section is to break down what is known as “live forensic” actions.

Using bash, common CLI tools are going to be used to collect user, system, and network information

that could be used in an investigation.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Shell Scripting for Reconnaissance and Intrusion Detection
	
2
2

	

Mark	D.	Gray,	markdaltongray@gmail.com	

1.9. User artifacts
User artifacts in this scenario consist of: logged in users, remote user logins, failed logins, local

user accounts, local groups, sudo access, account UIDs, open files by user, orphan files, and potentially

duplicated user IDs.

5.1.1. User Artifact Investigation

Viewing logged in users:

Command Description

w This command shows who is

logged on and what they are

doing.

lastlog Reports the most recent

login of all users or of a

given user

cat /etc/passwd The passwd file is used to

keep track of every

registered user that has

access to the system.

cat /etc/shadow The shadow file is a system

file that stores user

encrypted passwords.

cat /etc/group The group file stores group

information and defines user

groups.

cat /etc/sudoers The sudoers file contains

information about user and

group privileges.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Shell Scripting for Reconnaissance and Intrusion Detection
	
2
3

	

Mark	D.	Gray,	markdaltongray@gmail.com	

egrep “:0+” /etc/passwd Using regular expression

grep to find account with a

UID of zero in the

/etc/passwd file.

lsof -u List files opened by a user.

cat /root/.bash_history View the bash history of the

root user.

5.1.2. Scripting User Artifact Collection

The commands above can easily be placed in a script that can be used in lieu of running each

command individually. Now, a decision needs to be made on how the output should be formatted,

should each command be in its own file? Should all outputs be in a single file, and if so, is there an

efficient way to organize it?

For a single output file, a header can be created prior to adding additional command output. For

example, the function below can be placed in a script and called to run prior to running a user artifact

collection command.

header_split(){
 echo "---" >>
$OUTPUT
 echo "$@" >> $OUTPUT
 echo "---" >>
$OUTPUT
 }

In a script the “header_split” function would be executed as seen below (it is part of a larger

function):

header_split “Logged in Users”

$W >> $OUTPUT

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Shell Scripting for Reconnaissance and Intrusion Detection
	
2
4

	

Mark	D.	Gray,	markdaltongray@gmail.com	

The output would be similar to the above, the write_header function creates the “Logged in

User” header and below the $W(variable for the w command) is ran beneath.

The entirety of the user artifact collection script can be found in appendix B.

1.10. Operating System artifacts
Operating system artifacts includes, but is not limited to filesystem information, scheduled jobs,

determine system logging, uptime, disk usage and running processes.

Command Description

lspci List all PCI devices connected to

system.

lsb_release Print distribution specific

information.

uptime Tell how long the system has been

running.

df -h Report file system disk space usage.

du -sh Estimate file space usage.

cat /proc/cpuinfo File that contains information about

the CPUs on a system.

cat /proc/meminfo File that contains information about

the RAM on a system.

cat /proc/mounts List of filesystems mounted to a

system

cat /etc/fstab System configuration file that

contains information about major

filesystem on the system.

dpkg -l List Debian packages installed on

system.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Shell Scripting for Reconnaissance and Intrusion Detection
	
2
5

	

Mark	D.	Gray,	markdaltongray@gmail.com	

pstree -a Display a tree of processes.

1.11. Network Activity
Network activity collection is vital to identifying the overall picture of a system and its health.

The following commands will collect the essential network activity information necessary for

subsequent analysis.

Command Description

iptables -L -n Administrative tool for IPv4 packet

filtering and NAT.

ip6tables -L -n Administrative tool for IPv6 packet

filtering and NAT.

route -n Show the IP routing table.

netstat -naovp Print network connections, routing

tables, interface statistics,

masquerade connections, and

multicast memberships

arp -a Show system ARP cache.

ifconfig -a Show all network interfaces on

system.

netstat -nap Show listening ports.

lsof -i List processes listening on ports.

lsof -nPi | cut -f1 -d ‘’ |

uniq | tail -n +2

List of open files, using the

network.

1.12. Finding Files
The following commands can be helpful in identifying when files were modified, who owns

files, and files of interest.

Command Description

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Shell Scripting for Reconnaissance and Intrusion Detection
	
2
6

	

Mark	D.	Gray,	markdaltongray@gmail.com	

find / -mtime -2 -ls Find files modified

in the last two days.

find . -type -f -atime +30 -print Find files older than

30 days.

cp -R /var/log/* /media/logs Copy system logs to

another medium.

lsattr -R / | grep “\-i-“ Look for immutable

files.

find / -xdev -type d \(-perm -0002 -a ! -

perm -1000 \) -print

Look for world

writable files.

find / -newermt 2018-12-17q Look for files newer

than specific date.

find . -type f -size +100M -exec ls -lh {}

\;

Find files over 100M

and see what they

are.

	

6. Conclusion
While the information covered in this paper hardly scratches the surface of the capabilities of

bash, it should be an adequate start for creating Linux scripts that can assist in daily activates and

provide some level of automation. Linux scripting, even basic scripts, can be used to create tools with

ease and with the ubiquity of bash on Linux hosts, they are highly mobile. As previously stated, there

are more advanced scripting languages available that can perform many of the same tasks and with

better efficiency. The main takeaway from this paper is by leveraging shell scripting; simple tools can

coalesce with other tools to create powerful scripts that can automate practically any task on a system

that has bash.

 	

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Shell Scripting for Reconnaissance and Intrusion Detection
	
2
7

	

Mark	D.	Gray,	markdaltongray@gmail.com	

References
	
Kim, P. (2018). The Hacker Playbook 3: Practical guide to penetration testing: Red Team edition.

Arlington (Virginia): Createspace.

Murdoch, D. (2016). Blue team handbook: Incident response edition: A condensed field guide for the

cyber security incident responder. United States: CreateSpace Independent Publishing.

White, A., & Clark, B. (2017). BTFM: Blue team field manual. Columbia, SC: CreateSpace.

Blum, R. H., & Bresnahan, C. (2015). Linux Command Line and Shell Scripting Bible. Somerset:

Wiley.

Taylor, D. (2017). Wicked cool shell scripts. San Francisco: No Starch Press.

Clark, B. (2013). RTFM: Red team field manual. S.l.: S.n.

Burtch, K. O. (2004). Linux shell scripting with Bash. Indianapolis, IN: Sams.

Winterbottom, D. (n.d.). David Winterbottom. Retrieved from https://codeinthehole.com/

Bash (Unix shell). (2018, December 23). Retrieved from

https://en.wikipedia.org/wiki/Bash_(Unix_shell)

2005, P. D., & Publication date: 17 Oct 2005 — ripe database. (n.d.). RIPE Whois Database Query

Reference Manual. Retrieved from https://www.ripe.net/publications/docs/ripe-358#a1

Mayer, H. G. (1989). Advanced C programming on the IBM PC. Blue Ridge Summit, PA: Windcrest.

Sanders, C., Smith, J., & Bianco, D. J. (2014). Applied network security monitoring: Collection,

detection, and analysis. Waltham, MA: Syngress.

Shell Script For Collecting Information on the Linux Network Configuration. (n.d.). Retrieved from

https://bash.cyberciti.biz/networking/shell-script-to-find-linux-network-configurations/

7. Appendix A – Environment Used for this Paper
1.13. Operating System

Ubuntu 64-bit 18.04.1 (Desktop ISO)
Hypervisor: VMware Fusion 11.0.2

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Shell Scripting for Reconnaissance and Intrusion Detection
	
2
8

	

Mark	D.	Gray,	markdaltongray@gmail.com	

Hostname: Athena
User: mgray	

1.14. Packages Removed from System
Aisleriot Solitaire
Amazon
Cheese
GNOME majo
GNOME Mines
GNOME Sudoku
Rhythmbox
Shotwell
Simple Scan
Videos

1.15. Additional packages installed on System
Most recent Ubuntu updates
VMWare Tools
preload
curl
gnome-tweak-tool
nmap
vim
sublime-text
git
wireshark
tshark

8. Appendix B – User Report Script
#!/bin/env bash
LSPCI=/usr/bin/lspci

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Shell Scripting for Reconnaissance and Intrusion Detection
	
2
9

	

Mark	D.	Gray,	markdaltongray@gmail.com	

LSB=/usr/bin/lsb_release
W=/usr/bin/w
LASTLOG=/usr/bin/lastlog
CAT=/bin/cat
EGREP=/bin/egrep
LSOF=/usr/bin/lsof
DATE=/bin/date
HOSTNAME=/bin/hostname
UNAME=/bin/uname
FAILLOG=/usr/bin/faillog
files ##
PASSWD="/etc/passwd"
SUDOERS="/etc/sudoers"
SHADOW="/etc/shadow"
GROUP="/etc/group"
ROOTHIST="/root/.bash_history"
Output file ##
OUTPUT="user.$(date +'%m-%d-%y').info.txt"

root_check(){
 local meid=$(id -u)
 if [$meid -ne 0]; then
 echo "You must run this tool as root or sudo."
 exit 1
 fi
}

header_split(){
 echo "---" >>
$OUTPUT
 echo "$@" >> $OUTPUT
 echo "---" >>
$OUTPUT
 }

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Shell Scripting for Reconnaissance and Intrusion Detection
	
3
0

	

Mark	D.	Gray,	markdaltongray@gmail.com	

user_info(){
 echo "* Hostname: $(hostname)" >$OUTPUT
 echo "* Run date and time: $(date)" >>$OUTPUT

 header_split "Linux Distro"
 echo "Linux kernel: $(uname -mrs)" >>$OUTPUT
 $LSB -a >> $OUTPUT

 header_split "Logged in Users"
 $W >> $OUTPUT

 header_split "Remote User Logins"
 $LASTLOG >> $OUTPUT

 header_split "Failed Logins"
 $FAILLOG -a >> $OUTPUT

 header_split "Local User Accounts"
 $CAT $PASSWD >> $OUTPUT
 $CAT $SHADOW >> $OUTPUT

 header_split "Local Groups"
 $CAT $GROUP >> $OUTPUT

 header_split "Root Bash History"
 $CAT $ROOTHIST >> $OUTPUT

 echo "The User Report Info Written To $OUTPUT."
 }
root_check
user_info

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Shell Scripting for Reconnaissance and Intrusion Detection
	
3
1

	

Mark	D.	Gray,	markdaltongray@gmail.com	

9. Appendix C – Operating System Report Script
	
#!/bin/env bash

LSPCI=/usr/bin/lspci
LSB=/usr/bin/lsb_release
UPTIME=/usr/bin/uptime
DISK_USAGE=/bin/df
HOME_SPACE=/usr/bin/du
files ##
CPU="/proc/cpuinfo"
MEMORY="/proc/meminfo"
MOUNTS="/proc/mounts"
FSTAB="/etc/fstab"
Output file ##
OUTPUT="system.$(date +'%m-%d-%y').info.txt"
root_check(){
 local meid=$(id -u)
 if [$meid -ne 0]; then
 echo "You must run this tool as root or sudo."
 exit 1
 fi
}

header_split(){
 echo "---" >>
$OUTPUT
 echo "$@" >> $OUTPUT
 echo "---" >>
$OUTPUT
 }

system_info(){
 echo "* Hostname: $(hostname)" >$OUTPUT

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Shell Scripting for Reconnaissance and Intrusion Detection
	
3
2

	

Mark	D.	Gray,	markdaltongray@gmail.com	

 echo "* Run date and time: $(date)" >>$OUTPUT

 header_split "Linux Distro"
 echo "Linux kernel: $(uname -mrs)" >>$OUTPUT
 $LSB -a >> $OUTPUT

 header_split "PCI Devices"
 ${LSPCI} -v >> $OUTPUT

 header_split "Disk Space Output"
 ${DISK_USAGE} -h >> $OUTPUT

 header_split "Home Space Output"
 ${HOME_SPACE} -sh /home/* >> $OUTPUT

 header_split "Host Uptime"
 $UPTIME >> $OUTPUT

 header_split "CPU Info"
 cat $CPU >> $OUTPUT

 header_split "Memory Info"
 cat $MEMORY >> $OUTPUT

 header_split "Mounts"
 cat $MOUNTS >> $OUTPUT

 header_split "FSTAB"
 cat $FSTAB >> $OUTPUT

 header_split "Installed Packages"
 dpkg -l >> $OUTPUT
 echo "The System Report Info Written To $OUTPUT."
 }

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Shell Scripting for Reconnaissance and Intrusion Detection
	
3
3

	

Mark	D.	Gray,	markdaltongray@gmail.com	

root_check
system_info

10. Appendix D – Network Activity Report Script

#!/bin/env bash

IP4FW=/sbin/iptables
IP6FW=/sbin/ip6tables
LSPCI=/usr/bin/lspci
ROUTE=/sbin/route
NETSTAT=/bin/netstat
LSB=/usr/bin/lsb_release
IFCFG=/sbin/ifconfig
ARP=/usr/sbin/arp

files ##
DNSCLIENT="/etc/resolv.conf"
DRVCONF="/etc/modprobe.conf"
NETALIASCFC="/etc/sysconfig/network-scripts/ifcfg-eth?-range?"
NETCFC="/etc/sysconfig/network-scripts/ifcfg-eth?"
NETSTATICROUTECFC="/etc/sysconfig/network-scripts/route-eth?"
SYSCTL="/etc/sysctl.conf"

Output file ##
OUTPUT="network.$(date +'%m-%d-%y').info.txt"

root_check(){
 local meid=$(id -u)
 if [$meid -ne 0];
 then
 echo "You must be root user to run this tool"
 exit 1
 fi

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Shell Scripting for Reconnaissance and Intrusion Detection
	
3
4

	

Mark	D.	Gray,	markdaltongray@gmail.com	

 }

header_split(){
 echo "---" >>
$OUTPUT
 echo "$@" >> $OUTPUT
 echo "---" >>
$OUTPUT
 }

network_info(){
 echo "* Hostname: $(hostname)" >$OUTPUT
 echo "* Run date and time: $(date)" >>$OUTPUT

 header_split "Linux Distro"
 echo "Linux kernel: $(uname -mrs)" >>$OUTPUT
 $LSB -a >> $OUTPUT

 header_split "IFCONFIG Output"
 ${IFCFG} -a >> $OUTPUT

 header_split "Kernel Routing Table"
 ${ROUTE} -n >> $OUTPUT

 header_split "DNS Client $DNSCLIENT Configuration"
 [-f $DNSCLIENT] && cat $DNSCLIENT >> $OUTPUT || echo "Error
$DNSCLIENT file not found." >> $OUTPUT

 header_split "IP4 Firewall Configuration"
 $IP4FW -L -n >> $OUTPUT

 header_split "IP6 Firewall Configuration"
 $IP6FW -L -n >> $OUTPUT

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Shell Scripting for Reconnaissance and Intrusion Detection
	
3
5

	

Mark	D.	Gray,	markdaltongray@gmail.com	

 header_split "Network Stats"
 $NETSTAT -s >> $OUTPUT

 header_split "ARP Cache"
 $ARP -a >> $OUTPUT

 header_split "Network Tweaks via $SYSCTL"
 [-f $SYSCTL] && cat $SYSCTL >> $OUTPUT || echo "Error $SYSCTL
not found." >>$OUTPUT

 echo "The Network Configuration Info Written To $OUTPUT."
 }

root_check
network_info

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Shell Scripting for Reconnaissance and Intrusion Detection
	
3
6

	

Mark	D.	Gray,	markdaltongray@gmail.com	

11. Appendix E - DNS Scripts
	
NMAP	Reverse	DNS	lookup	
#!/bin/env bash
#NMAP reverse DNS lookup
nmap -R -sL -Pn -dns-servers 172.21.0.82 172.21.0.0/24 | awk
'{if(($1" "$2" "$3)=="Nmap scan report")print$5" "$6}'
| sed 's/(//g' | sed 's/)//g' > nmap_rdns.txt
	
Bash	domain	name	resolution	
#!/bin/env bash
echo "Enter class C Range: 172.21.0"
read range
for ip in {1..254..1};do
 host $range.$ip | grep "name pointer" | cut -d" " -f5
done
	
DNS	Reverse	Lookup	
#!/bin/env bash

for ip in {1..254..1}; do dig -x 172.21.0.$ip | grep $ip >> dns.txt;
done;
	
Bulk	DNS	lookup	
#!/bin/env bash
domains="microsoft.com
sans.org
google.com
gmail.com
bing.com
facebook.com

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Shell Scripting for Reconnaissance and Intrusion Detection
	
3
7

	

Mark	D.	Gray,	markdaltongray@gmail.com	

hotmail.com"
for domain in $domains
do
 ipv4=$(dig +short -t a @8.8.8.8 $domain)
 echo $domain has ip = $ipv4
done

12. Appendix F – Network Analysis Scripts
	
Find	live	hosts	with	NMAP	
#!/bin/env bash
nmap -sP -n -oX out.xml 172.21.0.0/24 | grep "Nmap" | grep -v "https"
| grep -v "addresses"
| cut -d" " -f5 > live_hosts && rm out.xml
	
Ping	sweep	with	bash
#!/bin/env bash
read -p "Enter the first 24bits of the IP range e.g. 172.21.0 : "
subnet

alive_ping()
{
 ping -c 1 $1 > /dev/null
 [$? -eq 0] && echo "Host with IP: $i is up."
}
for i in $subnet.{1..254..1}
do
 alive_ping $i >> live_hosts & disown
done
	
Identify	top	talkers	after	set	number	of	packets.	
	
#!/bin/env bash

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Shell Scripting for Reconnaissance and Intrusion Detection
	
3
8

	

Mark	D.	Gray,	markdaltongray@gmail.com	

sudo tcpdump -nn -c 350 | awk '{print $3}' | cut -d. -f1-4 | sort -n
| uniq -c | sort -nr > talker_out
	

