
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Intrusion Detection on a Large Network

GIAC Security Essentials Certification (GSEC)
Practical Assignment

Version 1.4b, Option #1 (amended August 29, 2002)

Author: Jason Botwick

Submitted: February 23, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Table of Contents
INTRODUCTION 4

ABSTRACT 4
CONVENTIONS 4

INTRUSION DETECTION ON A LARGE NETWORK 5

PROBLEMS WITH NIDS AND LARGE NETWORKS 5
DESIGN 5
THE PIG THAT CRIED WOLF 6
“WE’VE BEEN HACKED” 6
WHAT IS INTRUSION DETECTION GOOD FOR? 7
DETECTION OF THREATS 7
EVIDENCE 7
KNOWLEDGE OF NETWORK 7

BUILDING THE SYSTEM 9

DESIGN REQUIREMENTS 9
MANAGEMENT CONSOLE 9
SENSORS 10
CHOICE OF TOOLS 11
OPERATING SYSTEM 11
DEVELOPMENT TOOLS 11
SOFTWARE 12
HARDWARE 14
BUILDING THE SYSTEM, STEP-BY-STEP 14
OPERATING SYSTEM 14
MANAGEMENT CONSOLE SOFTWARE 17
COMMUNICATIONS BETWEEN CONSOLE AND SENSORS 26
SUPPLEMENTING OPEN SOURCE TOOLS 27
MAKING SURE SYSTEM STAYS UP 27
ALERTING FOR HIGH-PRIORITY ATTACKS 30
DATA MANAGEMENT 30
SYSTEM CONTROL 31
DATA PRESENTATION 31

DEPLOYING 32

INSTALL SNORT 32
CONFIGURE SENSORS 32
SNORT.CONF CHANGES 32
PERMISSION/OWNERSHIP CHANGES 32

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

TESTING 33

TESTING 33
TEST MYSQL/SNORT/SSH CONNECTION 33
SERVICES 34
ALERT DETECTION 34

MANAGING AND MAKING USE OF THE DATA 36

PREPARING FOR THE FLOOD: ACTIVATING THE NIDS 36
THE NEVERENDING STORY: TUNING THE LARGE-NETWORK IDS 36

MAINTAINING THE SYSTEM 38

UPGRADE SENSOR SOFTWARE 38
UPGRADE SENSOR RULESET 38

SUGGESTIONS FOR FURTHER RESEARCH 39

WIRELESS 39
DIALUP GATEWAYS 39
EVENT CORRELATION 39

CONCLUSIONS 41

REFERENCES 42

APPENDICES 45

A. CODE LISTINGS 45
SENSORMON 45
MAIL_SNORT_ALERT.SH 57
CLEAN_SNORT_DB.SH 59
CLEAN_SENSORMON_LOG.SH 62
SENSORMON.PHP 63
INDEX.PHP 67
B. CONFIGURATION FILES 69
SAMPLE IDS.CONF 69
SAMPLE SENSORMON_CRON 69

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Introduction
Abstract
This paper will describe in detail the steps for setting up and managing an intrusion
detection system across a large corporate network. It will begin with a discussion of
the potential problems and benefits of the use of a NIDS on a large network. The
basics of installing, configuring and implementing the necessary software on a
hypothetical network will be covered. Additional steps to automate, fail-safe and
secure the system will be described. Finally, a brief discussion of the potential
difficulties of tuning a rule-based system such as Snort that is deployed on a large,
heterogeneous, well-secured network will be presented.

Conventions
To provide accurate instructions as to how to install and deploy a hypothetical NIDS
in a large network setting, very specific instructions will be given. Many of these
steps involve executing commands on a computer terminal and verifying the results
of this command or editing configuration files in a text editor. Such steps will be
framed as follows, following the convention of Red Hat Linux online documentation
(Red Hat, Inc.):

% here is a unix command
and here is the output of the unix command
and here is some more output

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Intrusion Detection on a Large Network
Problems with NIDS and large networks
Design
The problems of the design of a NIDS on a large network largely boil down to the
decisions that have to be made regarding the placement of the “sensors”, or the
machines on which the actual intrusion detection engines run (Packer, 2001). A
corporate network may have many different gateways to untrusted networks such as
the Internet, or even to other partially trusted networks within the corporation. These
gateways may be highly secured through use of devices such as firewalls, they may
be partially or poorly secured, such as is the case for many local wireless networks
(Borisov, Goldberg, and Wagner), or they may not be secured at all.
Decisions need to be made about where to place sensors in each of these
scenarios. For example, if a network gateway is secured by a firewall, the sensor
could be placed either outside or inside that barrier. Ideally, a sensor could be
placed both outside and inside the firewall (Roamer), but this may not be possible
due to corporate security policies or cost considerations.
Inside a firewall, or within a DMZ, an IDS is much less susceptible to attacks itself,
but being behind a properly configured firewall can reduce the utility of such a
system, since many kinds of attacks would be blocked before ever reaching the
sensor.
Outside the perimeter, a detection engine can help to analyze patterns of network
activity, providing useful information for configuration of firewalls and proxies.
However, any machine placed outside the protection of a firewall is much more
vulnerable to attack.
In many very large companies, responsibility for administering networks is divided
among departments of divisions. This results in a situation where a company is
composed of several quite large networks connected to one another through
gateways, as opposed to one huge, centrally administered network. Given the size
of the networks involved, it is frequently impossible for the security analyst to reliably
determine how well secured these sibling networks are, yet often the gateway from
one department’s network to another’s is completely unsecured. Such a gateway is
a prime candidate for an intrusion detection sensor, since the data passing through
this gateway must be considered unfiltered, and thus should be monitored.
Though there are many sensible places to insert a NIDS sensor, the design problem
is complicated by cost factors. Though some a NIDS can be installed at a very low
cost by using open-source software, in a large network setting, there are still costs
associated with purchasing, deploying and maintaining the hardware required. In a
large network setting, there is likely to be very high bandwidth usage, especially at
peak times during the workday, so a location or gateway may require several sensor
machines arranged in some kind of load-balancing configuration to efficiently

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

capture all incoming data (Desai).

The Pig That Cried Wolf
“However effective they are, there's one thing that IDSes
universally do well: generate data. Lots of it.”(Braue).

There is some debate about whether NIDS are worth the cost and effort required to
deploy and maintain. Most of this debate centers on the costs and difficulty of
analyzing the massive amount of data that such a system can generate. Of course,
this problem is proportional to the size of the network, so security analysts charged
with implementing a NIDS at large companies often find that they are quickly
overwhelmed with the sheer amount of data thrown at them. In most cases, the
majority of this data consists of false alerts, and it becomes a enormous undertaking
to sift through all this data to find patterns of network activity that represent actual
attacks against assets that are vulnerable to these attacks (indeed, the problem of
maintaining an accurate topology of a large corporate network is a difficult task in
and of itself). In fact, this problem is so daunting, that systems are often simply shut
off within weeks of being activated (Braue).

 “We’ve Been Hacked”
Many network intrusion detection systems advertise real-time detection of attacks.
Theoretically this may be true for some systems, as they must be designed with an
emphasis on performance to keep up with the large amount of data passing through
a large network.
But even immediate detection of a threat is rarely any practical value if the response
is not similarly as swift. And as attack vectors such as the recent spate of worms that
attempted to exploit RPC/DCOM vulnerabilities, even a response time on the order
of seconds or minutes may be to no avail. Realistically, any suspicious pattern of
network activity must be analyzed and its gravity verified. Even for experienced
security professionals, this takes time. Formulating and executing the appropriate
response also takes time. Thus, though an attack may be detected and logged by
intrusion detection software almost instantaneously, the time between an attack and
a response would be on the order of hours, not seconds.
This problem is exacerbated in a large network environment for at least two reasons.
As discussed above, the large amount of data generated by even a well-tuned NIDS
makes the culling of real threats from the large amount of false alarms even more
time-consuming.
Also, a large network is typically operated a large corporation. Rapid decision-
making can be difficult to achieve in large corporate settings due to issues related to
established processes and complicated or lengthy policies that must be adhered to.
Further time can be wasted after a decision is made to respond to the threat
because of these side effects of bureaucracy.
The end result is that the analyst is all too often left only with a data trail of evidence
that an attack has occurred and the unpleasant responsibility of reporting this fact to

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

superiors.

What is intrusion detection good for?
So why should a large organization spend the time and money to implement a
NIDS? Intrusion detection is not a easily implemented panacea to protect corporate
networks. But it can provide benefits:

Detection of Threats
Regardless of where sensors are placed with respect to devices such as firewalls
and proxies, they can help security analysts to detect and analyze network-based
attacks.
Inside perimeter firewalls, a pattern-based detection engine can detect backdoor or
trojan activity as it makes its way out of the network, or the rare attack that does
make it through the firewall.
Modern firewalls are highly effective at blocking attacks (Braue). However, attacks
penetrating a firewall are still possible, and a sensor placed inside the firewall would
be able to detect such attacks; and at the very least, such a system can help to
verify the effectiveness of the firewall configuration (Fink et al. 2). Even if no attacks
penetrate the corporate firewall, a sensor outside the firewall provides useful data for
observing trends in network activity or attack patterns (Yegneswaran, Barford, and
Ullrich 3). Further, IDS data can be useful to the firewall administrator in configuring
the firewall itself in preparation for attacks directed at the corporate network.
There are other logical placements for NIDS sensors, such as within a DMZ, behind
VPN gateways or at the entrance point to a subnet of particular interest, such as a
cluster of servers (Ryon, Staggs, and Harlow 6).

Evidence
If an attack is successful, a properly deployed and configured intrusion detection
system will likely have registered all of the network activity associated with the
attack. Such forensic evidence is useful for securing the network against future
attacks of this nature, and for tracing the origin of the attack. As privacy and data
security concerns continue to be crystallized into legislation, such evidence has
taken on heightened importance, since companies can be held liable for exposures
caused by network-based attacks, even if they originate from outside the company
(State of California).

Knowledge of Network
Intrusion detection engines are flexible network monitoring tools that can be
configured to look for any kind of traffic. An often-overlooked feature of these
engines is their ability to profile network usage patterns within the corporate network
setting. This ability can be useful for detecting corporate policy violations, patterns of
network activity related to illegal activity perpetrated by employees, or even simply
time profiles of peak usage patterns, that can aid the network administrator in

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

maintaining the health of the network.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Building The System
Design Requirements
To address the concerns presented above, a design is presented here is based on
the actual design and implementation of an intrusion detection system by the author.
Many of the characteristics of this actual network are duplicated on the hypothetical
network used as the subject of this pseudo-case study. However, due to non-
disclosure agreements and other company policies related to the maintenance of
network security, implementation details of the actual network may be slightly altered
or not disclosed at all.
A typical large corporate network has many points of entry that may be important to
monitor for suspicious network traffic. As discussed above, some of these are quite
well secured, but others may not be well secured, or they may not be secured at all.
Thus, it is necessary to place detection engines at these gateways. Also, a central
management console to monitor the sensors and collect data will be necessary.

Management Console
Each of the sensors could possibly generate a great deal of data. To ease
management of this volume of data as well as the sensors themselves, a central
computer will be placed inside the corporate network called the management
console. The management console will have the following characteristics and
functions:

Build and Deploy Sensor Software
The management console will be built with a full set of development tools, so that
intrusion detection software can be built and deployed to the sensors. It would be
undesirable to use the sensor machines themselves to build detection software,
since this would require that a set of development software be installed on one or
more sensors. This could be a security vulnerability, and it certainly increases the
amount of software that must be updated as new versions are released. One simple
way to maintain the security of systems is to reduce the amount of unneeded
software installed on the system so as to reduce the amount of patch management
required (Harper).

Monitoring of and Communication With The Sensors
The management console will monitor the status of sensor boxes that are placed at
various locations on the network. It should have the ability to communicate securely
with the sensors, which may or may not be within the corporate network and
therefore may not be protected by firewalls, proxies, etc.

Data Repository
The management console will also serve as a database server that receives and
stores data collected by the sensor machines.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Data Analysis and Presentation
Finally, the console will contain software that will act as an interface to the data
stored in the database. This software should facilitate the viewing and analysis of
data collected by the various sensors to selected personnel within the corporation.

Intrusion Detection
The NIDS software that is chosen must meet two criteria: It must not drop packets
under network conditions where high throughput (>500 MB/s) is possible, and it must
be able to perform stateful inspection of packets, so that suspicious activity can be
tracked and analyzed.

Sensors
A large network intrusion detection system must be composed of several sensor
machines placed at various points inside and outside the gateways of the network,
since no one machine could span all these entry points. Further, it is unlikely that
any single machine or detection software could reliably process all incoming packets
without becoming overloaded.

Configuration
The sensor machines should be configured with a minimal operating system with
only the software necessary to run the detection software and to communicate
securely with the management console.

Security
Since some of these sensors will be placed outside the protection of the
corporation’s hardware-based security systems such as firewalls and proxies, it is
necessary to reduce the number of possible security vulnerabilities as much as
possible by reducing the amount of software installed. Also, each sensor machine
should be “locked down” to as great a degree as possible, by limiting the number of
open TCP and UDP ports such that only secure, encrypted communication can take
place between the sensor and any other machine.

Placement
Our hypothetical network is a simplified set of connections and machines
characteristic of many large networks. The hypothetical network under our control
would be a circumscribed list of domains, analogous to a department within a larger
company. These domains include the department network as a whole, as separated
from the public internet and the remainder of the corporate network. A server cluster
within the department contains servers that serve the department, but do not
interface with the public internet or the corporate network directly, but instead
through a router. Thus, the network consists of several gateways of interest.
The gateway between the public internet and the corporate network as a whole is
typically guarded by a firewall. At this gateway, NIDS sensors would ideally be
placed both inside and outside the firewall. A sensor placed outside the firewall

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

would serve to monitor any and all traffic directed at the corporate network.
Assuming that the firewall is adequately configured, many attacks will not ever reach
past the firewall. However, the information gathered by this outer sensor can help
network administrators and security analysts to anticipate attack trends and
configure firewalls and other security devices.
A sensor placed inside the firewall may be the most important sensor in a distributed
NIDS (Packer, Staggs and Harlow). This is the sensor that will be depended upon to
accurate detect and report attacks that do reach through the firewall. For similar
reasons, a sensor should be placed within the DMZ originating from the outer
firewall.
Assuming that the server clusters contain more important data than general-use
workstations, a NIDS sensor should be placed inside the router that switches traffic
from the rest of the corporate network to individual servers within the cluster. This
NIDS provides something of a level of redundancy, but also may report on attacks
launched against the most critical network nodes from machines within the corporate
network, attack vectors that may have slipped past a firewall, or against which
firewalls are not always helpful, such as email-based worms.
Finally, it is always desirable to place security devices such as firewalls and NIDS
sensors at the juncture between the managed network of a department and the
remainder of the corporate network; since the security level of this part of the
network is unknown, it should be treated almost as if it is part of the public internet.

Choice of Tools
Tools were chosen based on the obvious criterion of being able to accurately report
suspicious network activity patterns. Beyond that, cost was a primary factor. Given
the continuing debate over the efficacy of NIDS, especially those deployed on large
corporate networks, it makes sense to avoid spending a great deal of money on
such a system. Thus, open source software tools were used to build the system.

Operating System
The operating system chosen for each of the machines was Red Hat Linux. This
choice was made for several reasons. Firstly, there are ample internet resources
available to aid in configuring and securing the operating system itself (Red hat).
Similarly, there are also many resources available that discuss, or even enumerate
the steps necessary for building a NIDS on this distribution of Linux (Harper). Finally,
among open source operating systems, the use of Red Hat Linux in a corporate
setting has become quite widely accepted (Ge, Scott, VanderWiele).

Development Tools
Additionally, an advanced set of development tools necessary for building other
open source software and developing others is included as an optional package with
the Red Hat distribution.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Software
Although virtually all of the tools listed below are available as packages with the Red
Hat Linux distribution, it was decided to build all of the packages from scratch in
order to be able to use the most recent (and therefore presumably most well-
patched and secure) versions of these tools. Also, building the packages individually
allows rapid deployment when a new patch for any of the components is released.

Communication Between Console and Sensor
Secure Shell (ssh) is also included with most Linux distributions, and is a highly
secure, flexible and reliable method of communicating between networked
machines, since it encrypts all communications over a channel, allowing remote
login to the sensors for maintenance purposes, secure transfer of updated
executables or configuration files, and simple data transmission through tunneling
from the sensor to the management console (Atcheson).

Intrusion Detection
Snort is a well-supported, robust tool for intrusion detection. It performs exceptionally
well under load given sufficient hardware to run on (Antonatos et al.), and is highly
configurable. At this writing, the current version of Snort is 2.0.5, and this version will
be used in this hypothetical study. The latest release of Snort can be downloaded at
the following URL:
http://www.snort.org/dl

Data Repository and Management

MySQL
MySQL is a well-supported, robust database management system with excellent
performance characteristics, even when the volume of stored data becomes quite
large. Also, Snort can be compiled with a plug-in that allows it to transmit data to a
MySQL database. For this study, version 4.0.16 will be used. The most recent stable
version of MySQL can be downloaded here:
http://www.mysql.com/downloads/index.html

Data Analysis and Presentation
In order to make intrusion detection data readily available to all security personnel as
well as management, a primarily web-based system was designed, consisting of a
web server, compiled with server-side scripting ability and an interface to the data
generated by Snort.

Apache
Apache is the most widely used, stable and secure open source web server
available (FreePhile). The version of Apache used for this study is 2.0.47. The most
recent version can be downloaded here:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

http://httpd.apache.org/download.cgi

PHP
Apache can be compiled with PHP, a server-side scripting tool that allows
sophisticated, database-enabled web applications to be implemented. The version of
PHP used for this study is 4.3.2. The most recent stable version can be obtained
here:
http://www.php.net/downloads.php

ACID
ACID, or Analysis Console for Intrusion Databases, is a web-based front-end tool for
analyzing the data generated by intrusion detection systems. The version used for
this project is 0.9.6b23. The most recent version can be downloaded here:
http://acidlab.sourceforge.net/

Other Software
ACID requires two other packages in order to function. ADODB, or Active Data
Objects Database, is an abstraction layer written using PHP for database access
that ACID uses to communicate with MySQL (and many other databases). The
version of ADODB used for this project is 3.30. The most recent version can be
obtained here:
http://php.weblogs.com/ADODB
JPGraph is another PHP-based package that allows PHP applications to easily
create graphics, such as graphs and charts to be displayed in a web browser. The
version of JPGraph used for this project is 1.13. The most recent version can be
downloaded here:
http://www.aditus.nu/jpgraph/

Infrastructure and other files
The following two libraries are required to build Snort and MySQL.

zLib
zlib is a library that provides functionality for algorithmic compression of files to save
disk space. The version used in this study is 1.1.4. The most recent version is
available for download here:
http://flow.dl.sourceforge.net/sourceforge/libpng/zlib-1.1.4.tar.gz

libpcap
libpcap is a library that is required by Snort in order to process packets from a
network interface. For this project, the version used will be 0.7.2. The latest version
can be downloaded here:
http://www.tcpdump.org/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Hardware
Another advantage of using open source software is that it permits flexibility in
choosing hardware. In our case, we can use relatively pedestrian computers for both
the management console and the sensor boxes. Dell Optiplex GX270s, built with 2.4
Ghz Pentium 4 processors, 512 MB of RAM, and 40 GB hard drives. These
machines are otherwise configured with standard options, except that each sensor
box will be augmented by three network interface cards (NICs). One of these cards
is configured normally, and is connected to the corporate network behind any and all
existing network perimeter security devices, such as firewalls and proxies.
The other two of these NICs are configured for “stealth” or promiscuous mode; that
is, they are not bound to any network protocol stack, and thus have no IP address
making them extremely difficult to detect on the network. This allows us to place
sensor machines at unsecured locations inside or outside of our network and still be
very confident that our sensors can record all passing network traffic without falling
under attack themselves since they would be difficult to detect.
Note that a NIC in promiscuous mode does not mean that a sensor in this system is
invulnerable to attack. Even a system is built and patched with the latest releases of
the software suggested here, there have been cases where vulnerabilities in Snort-
based NIDS have been discovered (Roberts), so it is still necessary to secure these
systems to as a great a degree as possible.
The NICs used for the Snort sensors should be connected to the network using taps.
Taps are chosen for connections over SPAN ports or placing the sensors inline for
reasons of performance and ensuring the continuity of network operation. If an inline
NIDS sensor fails, it can disrupt the operation of the network, while NIDS sensors
connected via router SPAN ports have been known to miss packets due to hard
throughput limits and/or affect network performance negatively under high loads
(Cole et al. 758-9).
Finally, a Windows-based computer must be available to use as an interface to the
management console. This machine only needs to have a web browser to serve this
purpose, however additional rule-management software will also be installed here.

Building the System, Step-By-Step
There are many excellent guides available online that explain in detail how to build,
configure and install a unix-based NIDS. Of particular interest is Patrick Harper’s
excellent “Snort Install Manual” (Harper), on which much of the following step-by-
step material is based. However, Harper’s manual explains how to build a single-
sensor, self-contained intrusion detection system, where all the components are
installed on one machine, as opposed to a distributed NIDS, which is what is
presented here.

Operating System
Red Hat Linux version 9 will be used for the operating system. It will be installed as
simply as possible, with only the necessary packages. Again, there are numerous

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

resources that give step-by-step instructions for installing Linux, and even Red Hat
Linux. Those will not be repeated here in their entirety; however, there are important
choices that do need to be made when installing the operating system on the
management console and on the sensor machines. Those steps will be described
here.

Sensors

Basic Settings
For the beginning screens of the installer, most of the default choices should be
selected. However, there are some exceptions:

• For “Install Type”, choose “Custom”, in order to have complete control over the
packages installed.

• The network settings should not be configured with DHCP. Static IP addresses
should be assigned to the sensors, because it makes configuration of the intrusion
detection software more difficult.

• The “Firewall” settings should be set to “High”, and there should be no “trusted
devices” selected. Finally, the only ports allowed open should be for SSH.

Packages
When you choose to customize the packages installed with Linux, a screen will
eventually be presented that allows you to choose which packages will be installed.
These packages are categorized on this screen, and some of the notable categories
and important choices are shown below. In some cases, certain packages are
selected by default, and most of these need to be deselected. Again, for sensor
machines, very few packages should be installed so that patch management is as
easy as possible.

Desktops
No desktop environments should be installed.

Applications
An editor such as vi or emacs will come in handy. But no other applications in this
section should be selected.

Server Section
No packages in this section should be selected.

Development
Obviously, no development tools should be installed on the sensors.

System
No extra system tools should be installed.

Miscellaneous:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

No miscellaneous tools should be selected.

Post-Installation

User Accounts
Make sure to add a user account to use for logging into the box for general
maintenance purposes, so that it is not necessary to log in directly as the root user.

Services
Any non-essential services should be disabled. In the case of a sensor machine, that
means virtually all services should be disabled. In the case of the distribution
installed for this study, the following non-essential services were among those
enabled by default and needed to be disabled with the command-line tool chkconfig:

• apmd

• cups

• netfs

• nfslock

• pcmcia

• portmap
To turn these off, use chkconfig like so:

chkconfig –level 345 apmd off

SSH
Since SSH will be used as the exclusive method of communication between the
sensor and console, it must be set up properly. This is a simple matter of modifying
the configuration file for SSH, /etc/ssh/sshd_config. Make sure the following lines
read as follows (Harper).

Protocol 2
PermitRootLogin no
PermitEmptyPasswords no

Management Console
The management console is built exactly the same as the sensors with the following
exception:

Packages

Development Tools
Select all the development tools except for those related to desktop or XWindows
environments.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Management Console Software
No additional software needs to be installed on the sensor machines—except for
Snort itself; this will be covered in a later section. However, Snort and its required
components will be built on the management console.
Note: Snort will be statically linked. This is in order to ease deployment of the of the
application from the management console to the various sensors, since only one file
needs to be deployed. Also, this provides an additional benefit in terms of security,
since there is also only one file that can be compromised outside of the core
operating system files (Hicks, Weirich, and Crary 1). Finally, in most cases statically
linked executables exhibit faster performance than those that are dynamically linked
(Levine 10).
Downloaded archive files for each tool or library should be downloaded to a central
directory, such as /usr/local/src, to simplify development. All of the following
instructions assume that the user is logged in as root or has “su’d” to root privilege,
and that the current directory is the central source directory (/usr/local/src). As an
additional note, these build instructions are adapted from Harper’s comprehensive
instructions (Harper, 2003), and also from the installation instructions included in
each package. Finally, the results of each command are not printed here for the
sake of clarity, as they can be voluminous.

Infrastructure

libpcap
export CFLAGS=-static
tar –xvzf libpcap-0.7.2.tar.gz
cd libpcap-0.7.2
./configure
make
make install
cd ..

zlib
export CFLAGS=-static
tar -xvzf zlib-1.1.4.tar.gz
cd zlib-1.1.4
./configure; make test
make install
cd ..

Apache and PHP:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Build Apache
tar -xvzf httpd-2.0.47.tar.gz
cd httpd_2.0.47
export CFLAGS=(blank)
./configure—enable-so –enable-layout=Red Hat
make
make install

Build PHP
tar -xvzf php-4.3.2.tar.gz
cd php-4.3.2
./configure --prefix=/var/www/php --with-
apxs2=/var/www/bin/apxs --with-config- filepath=/etc/php --
enable-sockets --with-mysql=/usr/local/mysql --with-
zlibdir=/usr/local --with-gd
make
make install
cp php.ini-dist /var/www/php/php.ini

Configure Apache with PHP
The following directives should be added to /etc/httpd/conf/httpd.conf:

LoadModule php4_module /usr/lib/apache/libphp4.so
AddType application/x-httpd-php .php
DirectoryIndex index.php index.html index.html.var

Configure Apache to run as a service/daemon
cp /var/www/sbin/apachectl /etc/init.d/httpd
cd /etc/rc3.d
ln -s ../init.d/httpd S85httpd
ln -s ../init.d/httpd K85httpd
cd /etc/rc5.d
ln -s ../init.d/httpd S85httpd
ln -s ../init.d/httpd K85httpd

Database

MySQL:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

MySQL user and group
Create the user and group for MySQL with the following commands:

groupadd mysql
useradd -g mysql mysql

Install and configure MySQL.
tar –xvzf mysql-4.0.16.tar.gz
cd mysql-4.0.16
export CFLAGS=”-O3 –pipe –fomit-frame-pointer”
./configure –-prefix=/usr/local/mysql --with-mysqld-user=mysql
--without-debug -–with-client-ldflags=-all-static -–with-
mysqld-ldflags=-all-static –disable-shared –-with-extra-
charsets=none –-enable-assembler
make
make install
scripts/mysql_install_db
chown -R root /usr/local/mysql
mkdir /usr/local/mysql/var
chown -R mysql /usr/local/mysql/var
chgrp -R mysql /usr/local/mysql
cp support-files/my-medium.cnf /etc/my.cnf

Configure the system link loader
These lines must be added to /etc/ld.so.conf:

/usr/local/mysql/lib/mysql
/usr/local/lib to the /etc/ld.so.conf file.
 After you add the lines, run

ldconfig –v

Configure MySQL to run as a service/daemon
cp support-files/mysql.server /etc/init.d/mysql
cd /etc/rc3.d
ln -s ../init.d/mysql S85mysql
ln -s ../init.d/mysql K85mysql
cd /etc/rc5.d
ln -s ../init.d/mysql S85mysql

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

ln -s ../init.d/mysql K85mysql
cd ../init.d
chmod 755 mysql

Setting up the snort and snort_archive databases in MySQL
Two databases should be created. The main one, which we will name “snort”, will be
the database to which the Snort instances running on sensors will log data. The
archive database, which will name “snort_archive”, will be used by ACID to save
notable or interesting cases of suspicious network activity for further analysis.

Set database privileges
/usr/local/mysql/bin/mysql
mysql> SET PASSWORD FOR
root@127.0.0.1=PASSWORD('your_complex_password’);
>Query OK, 0 rows affected (0.25 sec)
mysql> create database snort;
>Query OK, 1 row affected (0.01 sec)
mysql> create database snort_archive;
>Query OK, 1 row affected (0.01 sec)
mysql> grant INSERT,SELECT on root.* to snort@127.0.0.1;
>Query OK, 0 rows affected (0.02 sec)
mysql> SET PASSWORD FOR
snort@127.0.0.1=PASSWORD('your_complex_password’);
>Query OK, 0 rows affected (0.25 sec)
mysql> grant CREATE, INSERT, SELECT, DELETE, UPDATE on snort.*
to snort@127.0.0.1;

>Query OK, 0 rows affected (0.02 sec)
mysql> grant CREATE, INSERT, SELECT, DELETE, UPDATE on snort.*
to root;
>Query OK, 0 rows affected (0.02 sec)
mysql> grant CREATE, INSERT, SELECT, DELETE, UPDATE on
snort_archive.* to snort@127.0.0.1;
>Query OK, 0 rows affected (0.02 sec)
mysql> grant CREATE, INSERT, SELECT, DELETE, UPDATE on
snort_archive.* to root;
>Query OK, 0 rows affected (0.02 sec)
mysql> exit

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

>Bye

Create database structure
In the Snort source directory, there is a directory called “contrib” with important
scripts and tools that must be run. Navigate to that directory.

Main snort database
/usr/local/mysql/bin/mysql -u root -p < . /create_mysql snort
Enter password:
zcat snortdb-extra.gz |/usr/local/mysql/bin/mysql -p snort
Enter password:

snort_archive database
/usr/local/mysql/bin/mysql -u root -p < . /create_mysql snort
Enter password:
zcat snortdb-extra.gz |/usr/local/mysql/bin/mysql -p snort
Enter password:

phpMyAdmin
phpMyAdmin is a web-based interface to the MySQL DBMS. It will not be mentioned
again in this document. It is only mentioned here as a recommended way to view
and manage the state of the databases created for this project (phpMyAdmin).

Unpack and build
tar -xzvf phpMyAdmin-2.5.3-php.tar.gz
mv phpMyAdmin-2.5.3 /var/www/html/phpMyAdmin

Configure the Application

cd var/www/html/phpMyAdmin

Edit the file config.inc.php, changing lines:

$cfg[’PmaAbsoluteUri’] = ‘http://<ip of the console
box>/phpMyAdmin/’;
$cfg[’Servers’][$i][’controluser’] = ‘pma’;
$cfg[’Servers’][$i][’controlpass’] = ‘pmapass’;
$cfg[’Servers’][$i][’auth_type’] = ‘http’;
$cfg[’Servers’][$i][’user’] = ‘root’;
$cfg[’Servers’][$i][’password’] = “;

Database Permissions

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

From a MySQL interface, execute the following commands:

GRANT SELECT ON mysql.db TO ‘pma’@’localhost’;
GRANT SELECT ON mysql.host TO ‘pma’@’localhost’;
GRANT SELECT (Host, Db, User, Table_name, Table_priv,
Column_priv) ON mysql.tables_priv TO ‘pma’@’localhost’;

Set up the control user
GRANT SELECT (Host, User, Select_priv, Insert_priv,
Update_priv, Delete_priv, Create_priv, Drop_priv, Reload_priv,
Shutdown_priv, Process_priv, File_priv, Grant_priv,
References_priv, Index_priv, Alter_priv) ON mysql.user TO
‘pma’@’localhost’;

Test
Point a web browser to http://<ip of console>/phpMyAdmin

IDS

Snort
The sensor tools (Snort) will be built on the console box, because no development
tools or supplemental libraries will be available on the sensor machines.
Furthermore, Snort needs to be built as a static executable for the reasons
discussed above. So Snort will be built on the console box, and then securely copied
with its configuration/rules files to each sensor machine.

Setup user/group for snort
groupadd snort
useradd -g snort snort

Create necessary directories (STATIC BUILD)
mkdir /etc/snort
mkdir /var/log/snort

Build Snort
tar -xvzf snort-2.0.1.tar.gz
cd snort-2.0.1
export CFLAGS=-static
./configure—with-mysql=/usr/local/mysql
make
make install

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Note on building Snort
Under some conditions, the following line may need to be changed in the Makefile
generated by the configure command in the src directory (the first line is how it
originally appears, the second is how it must be written in order for Snort to link
statically.

LIBS = -lz -lpcap -lm -lnsl -lmysqlclient
LIBS = -lpcap -lm -lnsl -lmysqlclient -lz

Rules and configuration
The rule and configuration files are copied from the source directory to a directory on
the console that is analogous to where they will be located when copied to the
sensor machines. Note that no Snort instance will run on the management console,
and the primary reason for this step is to establish a “staging” environment of sorts
for the rule and configuration files for later deployment.

cd rules
cp * /etc/snort
cd ../etc
cp snort.conf /etc/snort
cp *.config /etc/snort
chown snort /etc/snort/*
chgrp snort /etc/snort/*

snort.conf
The main configuration file snort.conf is now in /etc/snort. This version of the file will
be used as a base configuration for all Snort instances to be run on the sensor
machines, so any changes specific to the console environment or communication
from sensor to console should be made to this copy:

var RULE_PATH /etc/snort/
output database: log, mysql, user=snort
password=your_complex_password dbname=snort host=127.0.0.1

Data Analysis Tools

JPGraph
Instructions taken from the original distribution (JPGraph):

cp jpgraph-1.13.tar.gz /var/www/html
cd /var/www/html
tar –xvzf jpgraph-1.13.tar.gz
rm –rf jpgraph-1.13.tar.gz

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

mv jpgraph-1.13 jpgraph
cd jpgraph
rm -rf README
rm -rf QPL.txt

ADODB:
Instructions taken from the original distribution (ADODB):

cp adodb370.tgz /var/www/html/
cd /var/www/html
tar -xvzf adodb370.tgz
rm –rf adodb370.tgz
mv adodb370 adodb
chmod –R 755 adodb

ACID
Instructions taken from the original distribution (ACID):

Installing
cp acid-0.9.6b23.tar.gz /var/www/html
cd /var/www/html
tar –xvzf acid-0.9.6b23.tar.gz
rm –f acid-0.9.6b23.tar.gz

Configuring the main ACID application

Edit the ACID configuration file
The configuration file is located in /var/www/html/acid and is called acid_conf.php
file. Make sure the following lines look as follows:

$DBlib_path = “/var/www/html/adodb”;
$DBtype = “mysql”;
$alert_dbname = “snort”;
$alert_host = “127.0.0.1”;
$alert_port = “”;
$alert_user = “snort”;
$alert_password = “your_complex_password”;
$archive_dbname = “snort_archive”;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

$archive_host = “127.0.0.1”;
$archive_port = “”;
$archive_user = “snort “;
$archive_password = “your_complex_password”;
$ChartLib_path = “/var/www/html/jpgraph/src”;
$chart_file_format = “png”;

Complete the building of the snort database
Navigate to the ACID home page, which should be something like http://<IP of
management console>/acid/acid_main.php.
Click on the button that says “Setup Page”, then on the resulting page, click on the
button that says “Create Acid AG”.

Create ACID tables for the snort databases
cd /var/www/html/acid
mysql –p snort < create_acid_tbls_mysql.sql

Configuring the archive ACID application

Edit the ACID configuration file
The configuration file is located in /var/www/html/acid_archive and is called
acid_conf.php file. Change only the following line look as follows:

$alert_dbname = “snort_archive”;

Create pages to view the snort_archive data
cp -R /var/www/html/acid /var/www/html/acid_archive

Complete the building of the databases
Navigate to the ACID home page for the snort_archive database, which should be
something like http://<IP of management console>/acid_archive/acid_main.php.

Click on the button that says “Setup Page”, then on the resulting page, click on the
button that says “Create Acid AG”.

Create ACID tables for the snort_archive databases
cd /var/www/html/acid
mysql –p snort_archive < create_acid_tbls_mysql.sql

Securing the Web Interface
mkdir /var/www/passwords

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

/var/www/bin/htpasswd -c /var/www/passwords/passwords acid
(acid will be the username you will use to get into this directory, along with the
password you choose)
It will ask you to enter the password you want for this user, this is what you will have
to type when you want to view your acid page

Edit the httpd.conf and include the following under the section that starts with

</Directory>
<Directory “/var/www/html/acid”>
AuthType Basic
AuthName “SnortIDS”
AuthUserFile /var/www/passwords/passwords
Require user acid
</Directory>
Now restart Apache:

/etc/init.d/httpd restart
Next time you go to the acid webpage you will get a prompt for a username and
password.

Rule Management Tools

IDS Policy Manager

Communications Between Console and Sensors
Since all communications between the console and sensors will be encrypted and
authenticated via SSH, these connections must be set up beforehand. The following
instructions are adapted from Guy Davis’ succinct tutorial on secure communications
between MySQL databases using SSH (Davis, 2003).

On console

As user root:
ssh-keygen –t rsa (keys only have to be generated the first
time this procedure is executed from this box.)
scp .ssh/id_rsa.pub <sensor ip>:

As user snort:
ssh-keygen –t rsa (keys only have to be generated the first
time this procedure is executed from this box.)
scp ~snort/.ssh/id_rsa.pub root@<sensor

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

ip>:~root/id_rsa.pub.snort

On sensor

As user root
cd ~
mkdir .ssh
cat id_rsa.pub >> .ssh/authorized_keys
cat id_rsa.pub.snort >> .ssh/authorized_keys
groupadd snort
useradd -g snort snort
mkdir ~snort/.ssh
cat id_rsa.pub >> ~snort/.ssh/authorized_keys
cat id_rsa.pub.snort >> ~snort/.ssh/authorized_keys
chown –R snort:snort ~snort/.ssh
chmod –R go-rwx .ssh
chmod –R go-rwx ~snort/.ssh
rm –f id_rsa.pub*
mkdir /etc/snort
mkdir /var/log/snort
chown –R snort:snort /var/log/snort

Supplementing Open Source Tools
As discussed in an earlier section, the maintenance and monitoring of NIDS tools
and data in a large networked environment are time-consuming chores; so much so
that analysts become overwhelmed and unable to keep up with alerts produced by
the system. One consequence of this might be that alerts are not attended to in a
timely fashion, or are missed altogether. Another response to this problem is that a
system may be disregarded or shut off.
One way to alleviate this problem is to produce customized tools that partially or fully
automate some of the tasks related to the maintenance of system availability,
incident alerting, data and tool management.

Making sure system stays up
The first goal of any NIDS should be that it is continuously able to detect alerts. In
the case of the system design presented in this paper, the number of components
comprising the system complicates this goal: A database, a web server, a secure
communications protocol, sensor agents, etc. One possible solution would be do

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

implement daemon processes or services that would monitor, maintain and
coordinate the various pieces. However, such processes are far from trivial to
implement, and sometimes can be tricky to operate. Thus, a simple shell script is
presented here which can be scheduled through cron or similar auto-scheduling
utility to run as frequently as is necessary to ensure the continuous operation of the
system. The transparency of a shell script allows for faster debugging of system
problems and also for easier customization as the environment changes.

Sensormon
The script is named “sensormon” and has three main functions:
1) It starts and stops the system by initiating SSH tunnels and remotely executing

Snort as a daemon process on the sensor.
2) It records the state of the system at regular intervals and stores this information

to a database. Besides allowing administrators to track the state of the system, it
also provides a simple audit trail of system readiness.

3) It sends alerts via email to administrators if an unrecoverable error is detected in
the state of the system. For example, if a sensor machine is no longer available,
and therefore cannot receive or send Snort data to the console, an alert would be
quickly communicated to an administrator so that the problem could be
investigated and remedied.

The code for a sample, working sensormon script is presented in Appendix A. The
script requires the following modifications to the snort database:

Snort database mods

Sensor.run Sensor.interface columns
DROP TABLE IF EXISTS sensor;
CREATE TABLE sensor (
sid int(10) unsigned NOT NULL auto_increment,
hostname text,
interface text,
filter text,
description varchar(50),
detail tinyint(4) default NULL,
encoding tinyint(4) default NULL,
last_cid int(10) unsigned NOT NULL default ‘0’,
conf_file varchar(60) default ‘/etc/snort/snort.conf’,
run enum(‘on’,’off’) NOT NULL default ‘on’,
PRIMARY KEY (sid)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

) TYPE=MyISAM;

Sensor_status table
CREATE TABLE sensor_status (
sid int(11) NOT NULL default ‘0’,
status enum(‘alive’,’dead’,’started’,’stopped’) NOT NULL
default ‘alive’,
timestamp timestamp(14) NOT NULL,
description
enum(‘NORMAL’,’STARTED_SSH’,’RESTARTED_SNORT’,’CANNOT_START_SS
H’,’CANNOT_START_SNORT’,’CANNOT_PING_IP’,’STARTING’,’STOPPING’
) default NULL
) TYPE=MyISAM COMMENT=’Current status of all sensors’;

Sensor_status_history table
CREATE TABLE sensor_status_history (
sid int(11) NOT NULL default ‘0’,
status enum(‘alive’,’dead’,’started’,’stopped’) NOT NULL
default ‘alive’,
timestamp timestamp(14) NOT NULL,
description
enum(‘NORMAL’,’STARTED_SSH’,’RESTARTED_SNORT’,’CANNOT_START_SS
H’,’CANNOT_START_SNORT’,’CANNOT_PING_IP’,’STARTING’,’STOPPING’
) default NULL
) TYPE=MyISAM COMMENT=’Status history of all sensors’;

User sensormon must be created
Create user sensormon@localhost, with privs to select from sensor, select/update
sensor_status and insert on sensor_status_history

Configuration files
To lessen the need to modify the sensormon script itself, it is designed to read a
configuration file, which defines variables such as database connection parameters
and file system paths.

mkdir /etc/sensormon
chgrp snort /etc/sensormon
chown snort /etc/sensormon
chmod o+rx /etc/sensormon
The file ids.conf (example in Appendix B) should go in this directory and should be

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

readable/writable by user/group snort
Also, the file sensormon_cron (see below) should go in there, which is just a crontab
script. This should also be readable/writable by user/group snort.
Finally, a directory should be created under the snort userid to store logs:

mkdir ~snort/logs

Set sensormon to run automatically
To run sensormon on a regular basis, simply use the crontab program to import the
cron script called sensormon_cron given in Appendix B as follows:

/usr/bin/crontab /etc/sensormon/sensormon_cron

Alerting for High-Priority Attacks
Since all data logged by the NIDS is stored in a MySQL database, another simple
script can be implemented to monitor this data and send alerts of a given priority via
email to a list of security analysts. The sample crontab file given in Appendix B sets
the script mail_snort_alert.sh (listing in Appendix A) to run every half hour, but
obviously this could be adjusted.

Data Management
As discussed in the early sections of this paper, a NIDS can generate a great deal of
data very quickly, especially when it is first deployed. In the system proposed here,
there are two destinations for data, the database collecting Snort data, and the log
file that tracks the state of the sensormon script. Both of these data repositories
must be “cleaned” and/or archived regularly in order to avoid overloading the
filesystem of the console and degrading MySQL database performance.

Preventing Database Overloading
Again, a simple script should be sufficient for saving the oldest data from the snort
database to a archive file and removing it from the database. In this case, the script
works by examining the size of the disk partition where MySQL writes the snort
database files on a periodic basis. When a predetermined limit is reached, the
database cleaning and archiving is commenced. Obviously, the particulars of this
method would have to be adjusted according to the layout of the target system. A
listing of the script called clean_snort_db.sh is given in Appendix A. It is set to run
every hour in the sample cron file in Appendix B.

Managing Log Files
The sensormon script prints to stdout each time it runs in order to give the
administrator a trace of the system’s state. The sample crontab script presented in
Appendix B redirects this output to a log file. A Perl script is presented here called
clean_sensormon_log.pl that manages the size of this log file, truncating data
according to its age.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

System Control
The availability of a convenient way to monitor and control the status of sensors in
the system, a simple active web page named sensormon.php is given in Appendix A
that simply queries the snort database for sensors, reports on their status and gives
the option to activate or deactivate each sensor.

Data Presentation
Given that the chosen data analysis tool (ACID), the database administration tool
(phpMyAdmin) and the sensor control panel are all web-based, it is sensible to
create a “portal” or home page of sorts to allow easy access to these components,
as well as other resources that may be of aid to the intrusion detection analyst, such
as documentation, or frequently used links. Called index.php, this script is also given
in Appendix A.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Deploying
Install Snort
Installing Snort involves installing the Snort executable itself--recall that Snort was
statically linked, so only one file must be moved to the sensor--and Snort’s
configuration and rules files. The following two commands will install both Snort and
its associated files.

scp /usr/local/bin/snort <sensor ip>:/usr/local/bin
scp /etc/snort/* <sensor ip>:/etc/snort

Configure Sensors
Though they will be running exactly the same operating system and software, each
sensor must be configured.

snort.conf changes
On each sensor, the /etc/snort/snort.conf file must be edited such that the
sensor_name parameter of the “output to mysql” line is the IP of the sensor box.
Last parameter of that line should read “sensor_name=<sensor IP>”, like so:

output database: log, mysql, user=snort password=yzerman19
dbname=snort host=localhost sensor_name=101.102.103.104
Also, the sensor is configured so that it is not writing out log files to the sensor
machine itself, so that the administrator is not responsible for cleaning them up. To
do this, make sure these lines are in the “Command Line Options” section of
snort.conf:

config alertfile: null
config disable_decode_alerts
config logdir: /dev

Permission/ownership changes
Finally, the permissions on the configuration files and executable are changed such
that user snort has administrative access for later upgrades and editing.

chown –R snort:snort /etc/snort
chown snort:snort /usr/local/bin/snort
chmod ugo+rx /etc/snort

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Testing
Testing
Before relying upon a NIDS to help protect a corporate network, a test plan should
be devised and carried out to verify that the system is functioning as expected. It is
possible to execute some simple tests to verify that the various services comprising
the system are running on the expected machines.

Test MySQL/Snort/SSH connection
Before activating the system, it is a good idea to manually test the connectivity
between the management console and each of the sensors. If ssh, Snort or MySQL
are not properly configured according to the above directions, the system will not
operate. The following test commands can be executed from the management
console as user snort:

Test ssh connectivity

Console
First, execute the following commands:

ssh –f –q –N –R3306:127.0.0.1:3306 <root@sensor IP>
ssh -f -q <root@sensor IP> /usr/local/bin/snort -i eth1 -I -c
/etc/snort/snort.conf
ssh -f -q <root@sensor IP> /usr/local/bin/snort -i eth0 -I -c
/etc/snort/snort.conf
Then, check to see that the expected processes are running, by executing these
commands:

ps –ef | grep ssh
ps –ef | grep snort
If all goes well, a process listing should appear, indicating that one ssh process and
two snort processes are running for each sensor.

Sensors
Finally, log into each sensor, and execute:

ps –ef | grep snort
This will verify that Snort is indeed running on the sensor machine.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Services

Management Console Services
Once it is established that all of the components function when invoked manually, it
must be verified that the system will start automatically. To test this, first we reboot
the system. Once the system has rebooted, the crontab file listed in Appendix B will
invoke the various scripts to automate the system, including sensormon, which will
start the system. Once sensormon has run, the following ps commands should show
the status of the system on the console:

ps –ef | grep mysql
ps –ef | grep httpd
ps -ef | grep ssh

All of these should generate a listing of the respective processes. Though the listings
will vary depending on the system, they should look something like this:

0 359 /usr/bin/httpd
0 400 /usr/bin/ssh –f –q –N –R3306:127.0.0.1:3306
0 405 /usr/local/mysql/bin/mysql_safe

Sensor Services
Again, log into each sensor, and execute:

ps –ef | grep snort
This will verify that Snort is indeed running on the sensor machine.

Alert Detection
Once the system is fully operational, a final set of tests should be run to determine
whether the sensors are detecting traffic as they should according to a basic or
default rule set, and whether these alerts are being recorded in the database. Any
number of tools can be used to perform such a test, from the simple use of a ping
program, to portscan or vulnerability testing tools (Caswell et al. 185), to tools that
are specifically designed to light up--or even defeat--intrusion detection systems
such as Snort. For example, a simply way to verify that the system is function is to
use nmap (nmap) to do a simple TCP connect scan against a machine or machines
that are known to be “behind” a NIDS sensor running a default Snort rule set with all
rules active. For example, if a group of servers receive network traffic from a router,
and this router has a NIDS sensor connected to a SPAN port or network tap, then a
simple set of nmap scans could be executed from a workstation on the same
network but outside the server group. The end result of such a test should be that
these scans should be recorded in the Snort/ACID database installed as described
above.
A step-by-step description of how to execute a more comprehensive test of a NIDS

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

is beyond the scope of this paper; putting a NIDS through a sufficient set of tests to
verify the conditions under which it can operate is a significant task in itself. And
since the results of the such testing greatly depend on the particular attacks and
extant network background traffic (Mell et al.), a test plan must be tailored to the
network the NIDS is being tested against in order for test results to be valid. But for a
NIDS built to handle the potentially very large bandwidth of a large corporate
network, it would be negligent to depend on intrusion detection as a means of
securing or monitoring the network without ensuring that the system does not drop
an unacceptable number network packets, and that it successfully detects any traffic
that meets any criteria defined by the active rule set (Caswell et al. 185-91).

Negligible Packet Loss
In order to determine whether Snort drops packets under load, simple tests can be
carried out comparing the output of a NIDS sensor as described in this document
with that of a simple network logging tool such as tcpdump (tcpdump) installed on a
similar system connected to the network at the same access point. For example, two
network taps could be installed at the same logical location on the network, one with
an instance of Snort running, one with tcpdump. Since Snort can be configured to
run as a packet logger that generates log files in tcpdump format (Roesch and
Green), this comparison should be very straightforward. If the packet logs of Snort
are not capturing the same packets as shown in the tcpdump log, it can normally be
deduced that the installation of Snort is dropping packets.

Accurate Detection and False Alerts
To get more detailed data regarding the effectiveness of a NIDS, Mell et al. (2000)
recommend a general test methodology to assess IDS accuracy, whose data can be
distilled into a receiver operating characteristic (ROC) graph. An ROC for intrusion
detection systems typically plots accuracy of detection as a function of the
probability of false alerts. Such a graph can simplify the determination of whether a
NIDS is of practical use for a given network topography and load. That is, if a system
is detecting a high number of alerts, but the vast proportion of those are found to be
false alerts, the system is providing little in the way of security, yet much in the way
of busy work for the analyst. Normally, a steep curve indicates a NIDS that is
performing acceptably, as it indicates a high percentage of attacks detected with a
low percentage of these events being false alarms(Lippman et al.). A graph like this
can also be useful for tuning purposes, as it can provide a straightforward way to
compare the effectiveness and precision of different rule sets.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Managing and Making Use of the Data
Preparing for the Flood: Activating the NIDS
Finally, the moment of truth has arrived. The system is operational, and appears to
be operating within the design parameters set out above. But sadly, the work of
implementing a NIDS in a large network environment has only begun. Even with
properly configured firewalls, DMZs and other tools of a well-secured network in
place and operating, when real network bandwidth is directed at an operating NIDS
configured with a default rule set, there is likely to be a flood of data into the alert
database. This is why it is necessary to have tools in place prior to activation that
can manage the potentially massive influx of data, in order to avoid overloading the
system causing a failure.
But even with the help of some automated tools, the data must still be analyzed, and
decisions as to what actions to take based on the large number of alerts initially
recorded.

The Neverending Story: Tuning The Large-Network
IDS
As discussed in the Design section above, one of the great challenges of
implementing a NIDS is to reduce the amount of incoming data that needs to be
analyzed by tuning the system; in other words, reducing the amount of false alarms
reported by the system. A typical corporate network will have a very large amount of
network traffic passing across any given access point, some of which is bound to
resemble known attack signatures. A default Snort rule set is very likely to generate
a very large number of alerts, possibly on the order of thousands per minute. This
volume of alerts (whether false or not) make it difficult, if not impossible for even a
team of security analysts to be able to respond in a timely manner to serious threats.
Also, a well-tuned system is necessary for the system to perform optimally. Tuning is
also important to reduce the likelihood of the system or the analyst being
intentionally flooded with data by an attacker (Packer, Staggs and Harlow).
There are several different ways of tuning a NIDS. The first, and most obvious, is to
begin the task of wading through the alert data, investigating each incident, or
possibly groups of related incidents to determine if they are actual threats or
innocuous traffic. Often, a rule can be modified or disabled based on the result of the
analysis of a group of related incidents. For example, there are many cases of
machines running Microsoft Windows utilizing ICMP to communicate with one
another across a network. These ping signatures often resemble the signatures of
other known information-gathering attempts that may come from outside a trusted
network. Depending on the topography of the network, the location of the sensor
reporting the bogus alert and the source and destination IP addresses, this rule may
be disabled on that sensor, thereby eliminating that source of false alerts.
Similarly, an analyst may disable alerts of low interest or priority. With the possibility

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

of thousands of rules being triggered every minute, it would seem prudent to attend
to the most serious potential threats in the environment, such as signatures
designed to detect fast-spreading worms or Trojan horse activity before investigating
alerts triggered by rules written to detect corporate email policy violations. Instead of
wading through thousands of these lower priority alerts and/or compromising the
system’s reliability due to the amount of network traffic it must analyze, such rules
can be disabled, at least temporarily to allow the system and the analyst to
concentrate on incidents that are potentially more serious.
By the same token, a thorough knowledge of the network may allow the analyst to
disable rules that are irrelevant for the environment. For example, if there is a rule
signature designed to detect attacks attempting to exploit a vulnerability in Apache
web servers, yet the company operates only Microsoft IIS web servers, this rule
could safely be turned off, since even a successful penetration of this kind of attack
could not do any damage.
Another way to tune the system is to use a traffic filter such as Berekely Packet
Filters (BPF), which is built-in to Snort, to filter out traffic that we know to be
innocuous before it gets to the parsing and alerting engine (Caswell et al. 189-91).
This can result in tremendous reductions in processing time, and thus a more
efficient sensor. It would be appropriate to use this strategy when a particular false
alert or type of traffic can be reliably identified (and differentiated from other, possibly
unknown traffic) using packet header information only.
Finally, the rules themselves may be tuned. Sometimes rules that trigger many false
alerts can be modified based on an analysis of the differences between a false and
true alert for that rule. With this information, the specificity of the signature can be
heightened, resulting in fewer false alarms.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Maintaining the System
In order to maintain system security and keep the many software components of a
robust NIDS operating at peak efficiency, the software must be patched periodically.
The directions for patching the components enumerated in this document vary by
package and by patch, so those details cannot be included here. However, once
software is patched and rebuilt on the management console, a general process for
updating the executables on sensors is described in brief here.
The first step in any upgrade of sensor software is to make sure sensor is stopped
on destination box.

Upgrade sensor software
scp /etc/snort/* <sensor ip>:/etc/snort

Upgrade sensor rule set
scp /usr/local/bin/snort <sensor ip>:/usr/local/bin

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Suggestions for Further Research
Though this paper has tried to be comprehensive in its coverage of the steps
necessary to implement and the issues associated with operating a large-scale
distributed network intrusion detection system, many of the topics covered here
could be investigated more deeply. In addition, there are other related aspects of
NIDS that were not discussed in this paper.

Wireless
Large- and small-scale wireless networks are becoming more common in the
corporate workplace. By their very nature, wireless gateways and the machines
connecting to the corporate network are volatile. A “war-driving” attacker may be
able to confuse or subvert a NIDS by attacking from a series of different wireless
access points. Since the success of some attacks or information gathering attempts
require persistence on the part of the attacker, these types of attacks would be
harder to recognize if the source of the attack changed repeatedly. It would be
useful to formalize methods to correlate events originating on separate wireless
access points.

Dialup Gateways
Though the technology is much older, dialup access points to corporate networks
are sometimes among the least secured. Between network-connected fax machines,
to built-in modems that are absent-mindedly connected to live phone lines, there are
potentially many ways that an attacker could gain access to a corporate network
without encountering a firewall or a NIDS.

Event Correlation
The most important avenue of future research impacting the viability and value of
NIDS is that of event correlation. Network administrators and security analysts have
many sources of data at their disposal, including firewall logs, host intrusion detector
data, network monitoring tools and vulnerability assessment tools. In most cases,
this data is usable only within the tool that generated it. A NIDS with a customizable
design such as that presented here could be augmented so that it could be used as
a central data repository for all these data, and “meta tools” could be written to
analyze patterns of data collected with this suite of tools, correlating it by time,
relevance, extant vulnerabilities, etc. Such tools exist; for example, the Simple Event
Correlator (Dillis) and ntop (Deri and Suin), but research into best practices of use
and their effectiveness is in its nascent stages.
Still, this is the most promising avenue of research in the field of intrusion detection,
and would seem to represent the next step in the evolution of NIDS. A
comprehensive event correlation engine could negate for all practical purposes the
biggest problems in operating a NIDS by reducing the number of false alerts
reported and by accurately adjusting the priority of real alerts so that the security
analyst can attend to serious events in the most practical and timely manner

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

possible.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Conclusions
Deploying a NIDS on a corporate network is a large undertaking. The goal of this
paper is to describe the steps necessary to implement a distributed network intrusion
detection system such that it is manageable and adds value and security to a
network rather than simply occupying a small army of security analysts.
The value of intrusion detection systems was discussed, as were the potential
pitfalls and problems associated with operating these systems.
The steps necessary for implementing a distributed NIDS in a large corporate
environment were detailed. The potential problems of data management and tuning
the system in this environment were discussed and some strategies for reducing the
impact of these problems were explained.
An effective intrusion detection system can be a valuable tool for the network
administrator and the security analyst charged with the security and health of a large
network--but only if it is properly designed, tested and tuned.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

References
ACID. Version 0.9.6b23. 27 November 2003. <http://acidlab.sourceforge.net>.
ADODB. Version 3.30. 27 November 2003. <http://php.weblogs.com/ADODB>.
Antonatos, S., K. G. Anagnostakis, E. P. Markatos, M. Polychronakis. “Performance

Analysis of Content Matching Intrusion Detection Systems”. Proceedings of the
International Symposium on Applications and the Internet 2004. 17 December,
2003 <http://www.ics.forth.gr/carv/papers/2003.SAINT04.idsperf.pdf>.

Apache. Version 2.0.47. 27 November 2003.
<http://www.mysql.com/downloads/index.html>

Apache HTTP Server Documentation Project. “Compiling and Installing Apache HTTP
Server Version 2.0”. 14 November 2003 <http://httpd.apache.org/docs-
2.0/install.html>.

Atcheson, Steve. “The Secure Shell Frequently Asked Questions”. Version 1.4. 16
February 2001. 23 October 2003 <http://www.employees.org/~satch/ssh/faq/ssh-
faq.html>.

Borisov, Nikita, Ian Goldberg and David Wagner. “The Security of the WEP Algorithm”.
Internet Security, Applications, Authentication and Cryptography. Computer
Science Division at the University of California at Berkeley. 17 October 2003
<http://www.isaac.cs.berkeley.edu/isaac/wep-faq.html>.

Braue, David. “Intrusion detection: caught in its own web?” Technology & Business
Magazine Australia. 04 September 2003. 10 November 2003
<http://www.zdnetcom.au/newstech/security/story/0,2000048600,20278214,00.ht
m>.

Caswell, Brian, Jay Beale, James C. Foster and Jeffrey Posluns. Snort 2.0 Intrusion
Detection. Rockland, MA: Syngress Publishing, Inc., 2003.

Cole, Eric, Jason fossen, Stephen Northcutt and Hal Pomeranz. SANS Security
Essentials with CISSP CBK. Volume 1, Version 2.1. SANS Press, 2003.

Danyliw, Roman. “ACID: Frequently Asked Questions”. 6 March 2003. 22 September
2003 <http://www.andrew.cmu.edu/~rdanyliw/snort/acid_faq.html>.

Danyliw, Roman. “ACID: Installation and Configuration”. 9 October 2002. 22 September
2003 <http://www.andrew.cmu.edu/~rdanyliw/snort/acid_config.html>.

Davis, Guy. “Secure Remote Database Access”. 7 October 2003
<http://www.guydavis.ca/projects/oss/docs/ssh_mysql.jsp>.

Deri, Luca and Stefano Suin. “Improving Network Security Using Ntop”. RAID 2000:
Third International Workshop on the Recent Advances in Intrusion Detection,
October 2-4, 2000. 3 February 2004. <http://www.raid-
symposium.org/raid2000/Materials/Abstracts/13/fp.13.pdf>

Desai, Neil. “Optimizing NIDS Performance”. SecurityFocus. 6 June 2002. 16 November
2003 <http://www.securityfocus.com/infocus/1589>.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Dillis, Christopher D. “IDS Event Correlation with SEC - The Simple Event Correlator”.
2003. 14 January 2004.
<http://www.giac.org/practical/GCIA/Christopher_Dillis_GCIA.pdf>

Fink, G. A., B. L. Chappell, T. G. Turner and K. F. O’Donoghue. “A Metrics-based
Approach to Intrusion Detection System Evaluation for Distributed Real-Time
Systems”. Information Transfer Technology Group, Code B35, Naval Surface
Warfare Center, Dahlgren Division. 15 April 2002. 12 December 2003
<http://csgrad.cs.vt.edu/~finkga/published/WPDRTS-paper-Jan02.pdf>

FreePhile. “More than ever, more is better.” 02 December 2002. 17 December 2003
<http://freephile.com/compare/apache.php>.

Gartner, Inc. “Gartner Information Security Hype Cycle Declares Intrusion Detection
Systems a Market Failure”. Press Release. 11 June 2003. 7 November 2003
<http://www3.gartner.com/5_about/press_releases/pr11june2003c.jsp>.

Ge, Li, Linda Scott and Mark VanderWiele. “Putting Linux reliability to the test”. The
Linux Technology Center, IBM. 17 December 2003. 27 December 2003
<http://www-106.ibm.com/developerworks/library/l-rel/?ca=dgr-lnxw01LTP>.

Green, Chris. “Snort FAQ”. Version 1.14. 25 March 2002. 12 September 2003
<http://www.snort.org/docs/faq.html>.

Harper, Patrick. “Snort Install Manual: Snort, Apache, PHP, MySQL and Acid Install on
RH9.0”. Version 4. 06 October 2003. 11 October 2003
<http://www.snort.org/docs/snort_acid_rh9.pdf>.

Hicks, Michael, Stephanie Weirich, and Karl Crary. “Safe and Flexible Dynamic Linking
of Native Code”. 21 September 2000. 29 November 2003
<http://www.cs.cornell.edu/sweirich/papers/dynlink/taldynlink.pdf>.

JPGraph. Version 1.13. 27 November 2003. <http://www.aditus.nu/jpgraph>.
Kendall, Kristopher. “A Database of Computer Attacks for the Evaluation of Intrusion

Detection Systems.” 1999. 7 January 2004.
<http://citeseer.nj.nec.com/rd/55034624%2C598202%2C1%2C0.25%2CDownloa
d/http%3AqSqqSqwww.kkendall.orgqSqfilesqSqthesisqSqkrkthesis.pdf>

Levine, John R. Linkers and Loaders. San Francisco: Morgan-Kauffman, 1999.
libpcap. Version 0.7.2. 27 November 2003. <http://www.tcpdump.org/>.
Lippman, Richard P., David J. Fried, Isaac Graf, Joshua W. Haines, Kristopher R.

Kendall, David McClung, Dan Weber, Seth E. Webster, Dan Wyschogrod, Robert
K. Cunningham, and Marc A. Zissman. “Evaluating Intrusion Detection Systems:
The 1998 DARPA Off-line Intrusioin Detection Evaluation”. 2000. 4 January
2004.
<http://citeseer.nj.nec.com/rd/34785115%2C326231%2C1%2C0.25%2CDownloa
d/http%3AqSqqSqwww.ll.mit.eduqSqISTqSqpubsqSqdiscex2000-rpl-paper.pdf>.

Mell, Peter, Vincent Hu, Richard Lippman, Josh Hines and Marc Zissman. “An Overview
of Issues in Testing Intrusion Detection Systems”. 2000. 3 December 2003.
<http://csrc.nist.gov/publications/nistir/nistir-7007.pdf>.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

MySQL. Version 4.0.16. 27 November 2003.
<http://www.mysql.com/downloads/index.html>.

nmap. Version 3.50. 27 November 2003. <http://www.insecure.org/nmap/>
Packer, Ryon. “Maximizing the Value of Network Intrusion Detection.” Intrusion.com.

2001. 28 November 2003.
<http://www.intrusion.com/products/download/MaximizingValueIDS.pdf>

Northcutt, Stephen and Judy Novak. Network Intrusion Detection. 3rd ed. Indianapolis:
Que Publishing, Inc., 2003.

Packer, Ryon, Michael J. Staggs and Darren Harlow. “Deploying and Tuning Network
Intrusion Detection Systems”. Intrusion.com. 2001. 28 November 2003
<http://www.intrusion.com/products/download/Deploying_and_Tuning_NIDS.pdf>
.

PHP. Version 4.3.2. 27 September 2003. <http://www.php.net/downloads.php>.
phpMyAdmin. Version 2.5.3. 27 November 2003.

<http://www.phpmyadmin.net/home_page/>.
Red Hat, Inc. “Red Hat Linux Customization Guide”. 2002. 15 November 20003

<http://www.redhat.com/docs/manuals/linux/RHL-9-Manual/custom-guide/>.
Red Hat, Inc. “Red Hat Linux Security Guide”. 2002. 16 November 20003

<http://www.redhat.com/docs/manuals/linux/RHL-9-Manual/security-guide/>.
Roamer. “Network IDS Sensor Placement”. 25 January 2001. 13 November 2003

<http://www.securityhorizon.com/whitepapers/technical/IDSplace.html>
Roberts, Paul. “ISS Reports Snort Vulnerability”. InfoWorld. 4 March 2003. 14 Nov 2003

<http://www.infoworld.com/article/03/03/04/HNsnort_1.html>.
Roesch, Martin and Chris Green. “Snort Users Manual”, Version 2.0.0. 9 September

2003 <http://www.snort.org/docs/writing_rules/>.
Snort. Ver. 2.0.5. 19 Nov 2003. <http://www.snort.org/dl>.
State of California. “Notice of Security Breach - Civil Code Sections 1798.29 and

1798.82 - 1798.84”. California Department of Consumer Affairs. 24 June 2003.
17 December 2003 <http://www.privacy.ca.gov/code/cc1798.291798.82.htm>.

tcpdump. Version 3.8. 27 November 2003. <http://www.tcpdump.org/>.
Yegneswaran, Vinod, Paul Barford and Johannes Ullrich. “Internet Intrusions: Global

Characteristics and Prevalence”. SIGMETRICS’03, June 10-14, 2003. 9
December 2003 <http://www.cs.wisc.edu/~pb/dshield_paper.pdf>.

zLib. Version 1.1.4. 27 November 2003.
<http://flow.dl.sourceforge.net/sourceforge/libpng/zlib-1.1.4.tar.gz>.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendices
A. Code Listings
sensormon
#!/bin/bash

usage="usage: sensormon [-dv] [start|stop|restart]"

ACCEPTABLE_DOWNTIME=15
cronfile=/etc/sensormon/sensormon_cron

Get configuration
. /etc/sensormon/ids.conf

Process command line options
while getopts ":dv" opt
do
 case $opt in
 d)
 DEBUG=TRUE;;
 v)
 VERBOSE=TRUE;;
 \?)
 echo "$usage"
 return 1;;
 esac
done
shift $(($OPTIND -1))

Assume start if no action specified
action=${1:-start}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

if [[$action = "restart"]]
then
 ./sensormon ${DEBUG:+-d} ${VERBOSE:+-v} stop
fi

Find out our IP
#OUR_IP=$(/sbin/ifconfig | sed -n -e "s/^.*addr://g" -n -e "s/
Bcast.//p")
OUR_IP=3.97.104.114
echo
"**"
echo "SENSORMON: $(date) epoch_seconds:$(date +%s)"
echo
"**"

If MySQL is down, send alert mail, disable cron
if ! $mysql -u $username --password=$password $db -h $host -s
<<-EOF
 SELECT user();
 exit
 EOF
then
 if [[-n $DEBUG]]; then
 echo "MySQL is down"
 sleep 5
 fi

 mail $RECIPIENTS -s "IDS Console MySQL is down" < /dev/null
 if [[-x $cronfile]]
 then
 mv -f $cronfile ${cronfile}.bak
 fi
 crontab -l > $cronfile
 crontab -r

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 exit
fi

if [[-n $DEBUG]]; then
 echo "action: $action"
 echo "OUR_IP: $OUR_IP"
fi

{
 $mysql -u $username --password=$password $db -h $host -s <<-
EOF
 SELECT sid, hostname, conf_file, interface, run
 FROM sensor
 ORDER BY sid, hostname, interface;
 exit
 EOF
} | while read id ip config_file interface should_be_running
do
 if [[-n $DEBUG]]; then
 echo
"***
*******************"
 echo "***************** Checking sensor #$id IP: $ip
*************************"
 echo
"***
*******************"
 fi
 # If snort is running on this box don't treat it as a sensor
 if [[$OUR_IP != $ip]]
 then
 # Set our command strings
 port_fwd_cmd="ssh -f -q -N -R3306:$host:3306 root@$ip"
 get_port_fwd_pid="ps -ew -o pid,etime,command | grep -e
\"$port_fwd_cmd\" | grep -v 'grep' | tr -s ' ' | sed -e 's/^

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

//' | cut -f1 -d' '"
 kill_port_fwd_cmd='kill $port_fwd_pid'
 snort_cmd="/usr/local/bin/snort -i $interface -I -c
$config_file"
 start_snort_cmd="ssh -f -q root@$ip $snort_cmd"
 if [[-z $VERBOSE]];then
 start_snort_cmd="$start_snort_cmd >/dev/null 2>&1"
 fi
 get_snort_pid="ssh -f root@$ip ps -ew -o
pid,etime,command | grep -e \"$snort_cmd\" | grep -v 'grep' |
tr -s ' ' | sed -e 's/^ //' | cut -f1 -d' '"
 get_any_snort_pid="ssh -f root@$ip ps -ew -o
pid,etime,command | grep -e /usr/local/bin/snort | grep -v
'grep' | tr -s ' ' | sed -e 's/^ //' | cut -f1 -d' '"
 kill_snort_cmd='ssh -f root@$ip kill -9 $snort_pid'

 # Reset error flag for each sensor
 errFlag="NORMAL"
 status="alive"

 if [[-n $DEBUG]]; then
 echo "port_fwd_cmd: $port_fwd_cmd"
 echo "start_snort_cmd: $start_snort_cmd"
 echo "get_port_fwd_pid: $get_port_fwd_pid"
 echo "get_snort_pid: $get_snort_pid"
 fi

 if [[($action = "start" || $action = "restart") &&
$should_be_running = "on"]]
 then
 touch /var/lock/subsys/sensormon
 echo "sensormon: Starting sensor $ip"
 # Make sure sensor box is up
 #if ping -q -c 2 -w 2 $ip
 if ! /usr/bin/nmap -sT -P0 -p 22 --host_timeout 1000

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

$ip | grep timeout >/dev/null
 then
 if [[-n $DEBUG]]; then
 echo "Able to ping sensor $ip"
 fi

 # Check for existing ssh port forward to this
machine
 port_fwd_pid=$(eval $get_port_fwd_pid)
 if [[! -n $port_fwd_pid]]
 then
 if [[-n $DEBUG]]; then
 echo "Did not find existing SSH
connection to sensor $ip"
 echo "Attempting to start with -
$port_fwd_cmd . . ."
 fi

 # If it's not there, try to start it
 $port_fwd_cmd

 # Now check it
 port_fwd_pid=$(eval $get_port_fwd_pid)
 if [[! -n $port_fwd_pid]]
 then
 if [[-n $DEBUG]]; then
 echo "Could not start port forwarding
for sensor $ip"
 fi
 # If it's not there, after attempting
restart, update log
 errFlag="CANNOT_START_SSH"
 status="dead"
 else

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 if [[-n $DEBUG]]; then
 echo "Started port forwarding for
sensor $ip"
 fi
 errFlag="STARTED_SSH"
 fi
 else
 if [[-n $DEBUG]]; then
 echo "Port forwarding for sensor $ip has
already been established"
 fi
 fi

 # If port forwarding is up, start snort
 if [[-n $port_fwd_pid]]
 then
 snort_pid=$(eval $get_snort_pid)
 if [[! -n $snort_pid || $errFlag =
"STARTED_SSH"]]
 then

 if [[$errFlag = "STARTED_SSH" && -n
$snort_pid]]
 then
 if [[-n $DEBUG]]; then
 echo "Found existing snort
process on sensor $ip: $snort_pid"
 echo "But needs to be restarted
since SSH was"
 echo "Attempting to kill with
$kill_snort_cmd . . ."
 eval $kill_snort_cmd
 echo "Attempting to start with -
$start_snort_cmd . . ."
 errFlag="RESTARTED_SNORT"

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 fi
 else
 if [[-n $DEBUG]]; then
 echo "Did not find existing snort
process on sensor $ip"
 echo "Attempting to start with -
$start_snort_cmd . . ."
 errFlag="NORMAL"
 fi
 fi

 # If it's not running there, try to start
it
 $start_snort_cmd

 # Now check it
 snort_pid=$(eval $get_snort_pid)
 if [[! -n $snort_pid]]
 then
 if [[-n $DEBUG]]; then
 echo "Could not start snort on
sensor $ip"
 fi
 # If it's not there, after attempting
restart, update log
 errFlag="CANNOT_START_SNORT"
 status="dead"
 # Make sure to kill the port
forwarding
 eval $kill_port_fwd_cmd
 else
 if [[-n $DEBUG]]; then
 echo "Started snort on sensor
$ip"
 fi

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 status="started"
 fi
 else
 if [[-n $DEBUG]]; then
 echo "Snort on sensor $ip is already
running"
 fi
 fi
 else
 if [[-n $DEBUG]]; then
 echo "Did not try to start snort, because
port forwarding failed"
 fi
 fi
 else
 # update that the box is not up
 if [[-n $DEBUG]]; then
 echo "Sensor $ip is unreachable via ICMP"
 fi

 errFlag="CANNOT_PING_IP"
 status="dead"

 # make sure to tear down any ssh connection to
that box
 port_fwd_pid=$(eval $get_port_fwd_pid)
 if [[-n $port_fwd_pid]]
 then
 eval $kill_port_fwd_cmd
 fi
 fi
 elif [[$action = "stop" || $should_be_running = "off"]]
 then
 echo "sensormon: Stopping sensor #$id IP $ip"

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 rm -f /var/lock/subsys/sensormon

 #if ping -q -c 2 -w 2 $ip
 if ! /usr/bin/nmap -sT -P0 -p 22 --host_timeout 1000
$ip | grep timeout >/dev/null
 then
 snort_pid=$(eval $get_snort_pid)
 if [[-n $snort_pid]]; then
 if [[-n $DEBUG]]; then
 echo "Killing snort PID $snort_pid"
 fi
 eval $kill_snort_cmd
 status="stopped"
 else
 if [[-n $DEBUG]]; then
 echo "No snort instance running on $ip"
 fi
 status="dead"
 fi
 else
 if [[-n $DEBUG]]; then
 echo "Sensor $ip is unreachable via ICMP"
 fi

 errFlag="CANNOT_PING_IP"
 fi

 # Always check port forwarding
 port_fwd_pid=$(eval $get_port_fwd_pid)
 any_snort_running_pid=$(eval $get_any_snort_pid)

 if [[-n $port_fwd_pid]]; then
 if [[$action = "stop" || $should_be_running =

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

"off" && -z $any_snort_running_pid]]; then
 if [[-n $DEBUG]]; then
 echo "Killing port forwarding PID
$port_fwd_pid "
 fi
 eval $kill_port_fwd_cmd
 status="stopped"
 else
 if [[-n $DEBUG]]; then
 echo "Not killing port forwarding PID
$port_fwd_pid -- found snort running on $ip with PID
$any_snort_running_pid"
 fi
 fi
 else
 if [[-n $DEBUG]]; then
 echo "No port forwarding running for $ip"
 fi
 status="dead"
 fi

 # Turn it off if we're stopping
 #if [[$should_be_running = "on"]]
 #then
 # $mysql -u $username --password=$password $db -h
$host -s <<-EOF
 # UPDATE sensor
 # SET run = 'off'
 # WHERE sid = $id;
 # exit
 # EOF
 #fi
 else
 if [[-n $DEBUG]]; then

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 echo "Unknown action specified: $action"
 echo "$usage"
 fi
 fi

 # Log to the snort database
 if [[-n $DEBUG]]; then
 echo "LOG: $id, $ip, $status, $errFlag"
 fi

 $mysql -u $username --password=$password $db -h $host -s
<<-EOF
 INSERT INTO sensor_status_history
 (SELECT * FROM sensor_status WHERE sid=$id);
 DELETE FROM sensor_status WHERE sid=$id;
 INSERT INTO sensor_status
 (sid, status, description)
 VALUES
 ($id, '$status', '$errFlag');
 exit
 EOF

 {
 $mysql -u $username --password=$password $db -h $host
-s <<-EOF
 SELECT COUNT(*)
 FROM sensor s, sensor_status ss,
 sensor_status_history ssh
 WHERE ssh.status = 'dead'
 AND DATE_FORMAT(ssh.timestamp, '%Y%m%d%H%i') >=
 DATE_FORMAT(DATE_SUB(NOW(), INTERVAL
$ACCEPTABLE_DOWNTIME MINUTE), '%Y%m%d%H%i')
 AND ssh.sid = ss.sid

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 AND ss.status = 'dead'
 AND ss.description != 'STARTING'
 AND ssh.sid = s.sid
 AND s.run = 'on' ;
 exit
 EOF
 } | while read count
 do
 if (($count >= $ACCEPTABLE_DOWNTIME))
 then
 if [[-n $DEBUG]]; then
 echo "Sensor $id has been dead for $count
minutes"
 fi
 mail $RECIPIENTS -s "NIDS Sensor #$id($ip) dead
for $count minutes" < /dev/null

 # Update run to off, so inboxes aren't flooded
 $mysql -u $username --password=$password $db -h
$host -s <<-EOF
 UPDATE sensor
 SET run = 'off'
 WHERE sid = $id;
 exit
 EOF

 errFlag="ERROR_SHUTDOWN"
 fi

 done
 else
 if [[-n $DEBUG]]; then
 echo "IP found is console box; do not process as
sensor"

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 fi
 fi

done

mail_snort_alert.sh
#!/bin/bash

mail_snort_alert.sh

Send alert mails based on new entries in the database
deleting old event data (after backing it up)

exec 1>~/logs/mail_alerts 2>&1

Get configuration
. /etc/sensormon/ids.conf

Set some variables
lowest_priority=1
today=$(date)
cid_file=~/logs/mail_alerts_last_cid

Find out the last cid that we looked at
max_cid=`echo "select max(cid) from event;" | $mysql -h $host
-u $username --password=$password $db -s`
last_cid=`cat $cid_file 2>/dev/null`
echo $last_cid
echo $max_cid
echo $max_cid >$cid_file

In case we've never run before
if [[-z $last_cid]]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

then
 exit 0
fi

This is the query that will retrieve recent alerts of a
given severity
alert_query="
SELECT e.sid, e.cid,
 DATE_FORMAT(timestamp, '%Y%m%d_%H:%i:%s'),
 REPLACE(s.sig_name, ' ', '_'),
 i.ip_src, i.ip_dst
FROM signature s, event e
JOIN iphdr i
USING (sid, cid)
WHERE e.cid > $last_cid
AND e.cid <= $max_cid
AND e.signature = s.sig_id
AND s.sig_priority <= $lowest_priority
"

First count to see if there are any
count=`$mysql -h $host -u $username --password=$password $db -
s <<-EOF
 SELECT COUNT(*)
 FROM signature s, event e
 JOIN iphdr i
 USING (sid, cid)
 WHERE e.cid > $last_cid
 AND e.cid <= $max_cid
 AND e.signature = s.sig_id
 AND s.sig_priority <= $lowest_priority
 ORDER BY e.timestamp DESC;
 exit

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 EOF`

echo "C: $count"

If there are, send out an email
if [[$count > 0]]
then
(
 $mysql -h $host -u $username --password=$password $db -s <<-
EOF
 $alert_query;
 exit
 EOF

) | while read sid cid timestamp signature src_raw dst_raw
tag_close
do
 src=$(perl -e "use Socket;print
inet_ntoa(pack(\"N\",$src_raw));")
 dst=$(perl -e "use Socket;print
inet_ntoa(pack(\"N\",$dst_raw));")
 echo "($timestamp)$signature src=$src dst=$dst"
 echo
"http://3.97.104.114/acid/acid_qry_alert.php?submit=%230-
%28$sid-$cid%29"
done | mail $RECIPIENTS -s "Snort Alert $today"
fi

clean_snort_db.sh
#!/bin/bash

clean_snort_db.sh

perform maintenance on MySQL db "snort" by
deleting old event data (after backing it up)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

usage="$(basename $0) [-f]"

Process command line options
while getopts ":df" opt
do
 case $opt in
 d)
 DEBUG=TRUE;;
 f)
 FORCE=TRUE;;
 \?)
 echo "$usage"
 return 1;;
 esac
done
shift $(($OPTIND -1))

If the filesystem isn't that full, no need to delete
percentFull=`df | grep sda2 | perl -ne '/(\d+)%/;print $1;'`
if (($percentFull < 85)) && [[-z $FORCE]]
then
 exit 0
fi

Get configuration
. /etc/sensormon/ids.conf

backupdir=~snort/archive/mysql_snort
timestamp=`date +'%Y%m%d%H%M%S'`
backupfile=$backupdir/snort_$timestamp

Just in case, for first time runs

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

if [[! -d $backupdir]]
then
 mkdir $backupdir
fi

First, do backup
tables="data event icmphdr iphdr opt tcphdr udphdr signature
sig_class sig_reference reference reference_system acid_event
acid_ip_cache"
$mysqldump $db -u $username -h $host --password=$password
$tables > $backupfile
gzip $backupfile

Now do the big D
$mysql -h $host -u $username --password=$password $db <<-EOF
DELETE
FROM sensor_status_history
WHERE timestamp < DATE_SUB(NOW() , INTERVAL 7 DAY) ;
DELETE FROM data;
DELETE FROM event;
DELETE FROM icmphdr;
DELETE FROM iphdr;
DELETE FROM opt;
DELETE FROM tcphdr;
DELETE FROM udphdr;
DELETE FROM signature;
DELETE FROM sig_class;
DELETE FROM sig_reference;
DELETE FROM reference;
DELETE FROM reference_system;
DELETE FROM acid_event;
DELETE FROM acid_ip_cache;
EOF

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

$mysql -u root --password=$rootpassword <<-EOF
RESET MASTER;
EOF

mail $RECIPIENTS -s "Cleaned Snort database at $(date)"
</dev/null

clean_sensormon_log.sh
#!/usr/bin/perl -i

clean_sensormon_log.pl

Cleans the logs generated by sensormon,
removing all log entries before a given date

$now = `date +%s`;
$ok = 0;
$keep_days = 3;

while (<>)
{
 # This searches for the first date in the logfile
 # that is as old as we want to keep, and sets a flag
 if (/epoch_seconds:(\d+)/ && ! $ok)
 {
 $diff_days = ($now - $1)/(60 * 60 * 24);

 if ($diff_days <= $keep_days)
 {
 $ok = 1;
 }
 }

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 # If the flag is true, print the line
 print if ($ok);
}

sensormon.php
<?php
//
 $title = "IDS Sensor Monitor";

 // This DB link will be persistent and is used later in the
script
 $dbLink = mysql_connect("localhost", "sensormon",
"sensormon");
 mysql_select_db("snort", $dbLink);

 // First update sensor table in case user chose to turn
on/off a sensor
 $sql = "SELECT sid, run FROM sensor";
 $dbResult = mysql_query($sql, $dbLink);

 while($row = mysql_fetch_array($dbResult, MYSQL_ASSOC))
 {
 if ($_POST[$row["sid"]] == "Stop" || $_POST[$row["sid"]]
== "Start")
 {
 $_POST[$row["sid"]] == "Stop" ? $desc = 'STOPPING' :
$desc = 'STARTING';
 $_POST[$row["sid"]] == "Stop" ? $runVal = 'off' :
$runVal = 'on';

 $updSQL = "UPDATE sensor SET run = '" . $runVal . "'
WHERE sid = " . $row['sid'];
 $insHistorySQL = " INSERT INTO sensor_status_history
" .
 "(SELECT * FROM sensor_status WHERE
sid=" . $row['sid'] . ") ";

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 $updStatusSQL = "UPDATE sensor_status " .
 "SET description = '" . $desc . "', " .
 "timestamp = NOW() " .
 "WHERE sid=" . $row['sid'];

 $dbResultOfUpdate = mysql_query($updSQL, $dbLink);
 $dbResultOfInsHistory = mysql_query($insHistorySQL,
$dbLink);
 $dbResultOfupdStatus = mysql_query($updStatusSQL,
$dbLink);

 // This is necessary to avoid the "duplicate post"
problem
 header("Location: " . $_SERVER["PHP_SELF"]);
 }
 }

?>
<HTML>
<HEAD>
<LINK HREF="/common/real.css" REL="stylesheet"
TYPE="text/css">
<TITLE><?=$title?></TITLE>
<META HTTP-EQUIV="Refresh" CONTENT="30;URL=<?php
$_SERVER["PHP_SELF"] ?>">
</HEAD>
<BODY>
<CENTER>
<H2> sensormon </H2>
<?php
 print "<FORM NAME=turn_on_off ACTION=" . $_SERVER["PHP_SELF"]
. " METHOD=POST>";

 // Now retrieve the status of the sensors
 $sql = "SELECT s.run action, s.sid id, s.description, " .

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 "CONCAT(s.hostname, '(', s.interface, ')') sensor_ip, " .
 "ss.status, DATE_FORMAT(ss.timestamp, '%m/%d %I:%i %p')
updated, " .
 "ss.description reason " .
 "FROM sensor s " .
 "LEFT JOIN sensor_status ss ON ss.sid = s.sid ";

 $dbResult = mysql_query($sql, $dbLink);
 print "<TABLE BORDER=0 CELLSPACING=0 CELLPADDING=3>";
 print "<TR BGCOLOR=#770000>";
 for($i = 0; $i < mysql_num_fields($dbResult); $i++)
 {
 if (mysql_field_name($dbResult, $i) == "action")
 {
 print ("<TD> </TD>");
 }
 else
 {
 print ("<TH>" .
mysql_field_name($dbResult, $i) . "</TH>");
 }
 }
 print "</TR>";
 while($row = mysql_fetch_array($dbResult, MYSQL_ASSOC))
 {
 if ($row["status"] == "alive" && $row["reason"] ==
"NORMAL")
 {
 $count++ % 2 == 1 ? $bcolor = "#DCFFDC" : $bcolor =
"#CDFFCD";
 }
 else if ($row["status"] == "dead" && $row["reason"] ==
"NORMAL")
 {

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 $count++ % 2 == 1 ? $bcolor = "#FFDCDC" : $bcolor =
"#FFCDCD";
 }
 else
 {
 $count++ % 2 == 1 ? $bcolor = "#FFFFCC" : $bcolor =
"#FFFFBB";
 }
 print "<TR BGCOLOR=$bcolor>";
 for($i = 0; $i < mysql_num_fields($dbResult); $i++)
 {
 if (mysql_field_name($dbResult, $i) == "action")
 {
 $buttonVal = $row["action"] == "on" ? "Stop" :
"Start";
 print ("<TD><INPUT TYPE=SUBMIT NAME=" .
$row["id"]);
 print(" VALUE=\"" . $buttonVal .
"\"> </TD>");
 }
 else
 {
 print ("<TD>" .
$row[mysql_field_name($dbResult, $i)] . " </TD>");
 }
 }

 print "</TR>";
 }
 print "</TABLE>";
?>
</FORM>
</CENTER>
</BODY>
</HTML>

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

index.php
<?php
//
$title = "Intrusion Detection Console";
?>
<head>
<link href="/common/real.css" rel="stylesheet"
type="text/css">
<title><?=$title?></title>
<script type="text/javascript">
function changeSrc(obj)
{
 document.getElementById("target").src=obj.href;
}
</script>
</head>
<body>
<DIV ID="head">
<H1> Intrusion Detection Console </H1>
</DIV>

<DIV ID="menu">
Applications

<A HREF=acid onClick="changeSrc(this);return
false;">ACID
<A HREF=acid_archive onClick="changeSrc(this);return
false;">ACID Archive
<A HREF=phpMyAdmin onClick="changeSrc(this);return
false;">phpMyAdmin
<A HREF=main/info.php onClick="changeSrc(this);return
false;">phpInfo()
<A HREF=main/networkquery.php
onClick="changeSrc(this);return false;">Network Query
<A HREF=http://www.infobear.com/nslookup.shtml

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

onClick="changeSrc(this);return false;">nslookup
<A HREF=main/sensormon.php onClick="changeSrc(this);return
false;">Sensormon

Docs

<A TARGET=new
HREF=http://www.andrew.cmu.edu/~rdanyliw/snort/snortacid.html>
ACID
<A HREF=/manual onClick="changeSrc(this);return
false;">Apache Manual
<A HREF=jpgraph/docs onClick="changeSrc(this);return
false;">JPGraph Docs
<A HREF="http://www.mysql.com/doc/en/index.html"
onClick="changeSrc(this);return false;">MySQL
<A HREF="http://www.php.net/manual/en/"
onClick="changeSrc(this);return false;">PHP
<A HREF="http://www.redhat.com/docs/manuals/linux/RHL-9-
Manual/" onClick="changeSrc(this);return false;">RedHat
Linux
<A HREF="http://www.snort.org/docs/writing_rules/"
onClick="changeSrc(this);return false;">Snort

Security Links

CERT
<A TARGET=new
HREF=http://www.securitypronews.com>SecurityPro
Security
Focus
<A TARGET=new
HREF=http://www.whitehats.com>Whitehats

<CENTER></CENTER>
</DIV>
<iframe id=target src=main/sensormon.php></iframe>

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

</body>
</html>

B. Configuration Files
Sample ids.conf
mysql_home=/usr/local/mysql
username=snort
password=snort_password
host=127.0.0.1
db=snort
mysql="$mysql_home/bin/mysql"
mysqldump="$mysql_home/bin/mysqldump"
RECIPIENTS="Security@company.com"
rootpassword=mysql_db_root_password

Sample sensormon_cron
DO NOT EDIT THIS FILE - edit the master and reinstall.
(Cron version -- $Id: crontab.c,v 2.13 1994/01/17 03:20:37
vixie Exp $)
* * * * * ~snort/bin/sensormon -dv >> ~snort/logs/sensormon
2>&1
18,48 * * * * ~snort/bin/mail_snort_alert.sh >>
~snort/logs/mail_snort_alert 2>&1
00 06 * * * ~snort/bin/clean_sensormon_log.pl ~/logs/sensormon
05 * * * * ~snort/bin/clean_snort_db.sh
>>~/logs/clean_snort_db 2>&1
07 12 * * 1 ~snort/bin/backup.sh 1>/dev/null 2>&1

