
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Securing SQL Connection String
Dmitry Dessiatnikov
January 8, 2004
GIAC Security Essentials Certification Practical Assignment -- version 1.4b
Option 1

Abstract

Securing authentication information used to establish connection between two
applications is one of the most critical aspects of application security. This
paper will focus on protecting connection strings used to authenticate
communication between the web server and the back-end database. We will
discuss and evaluate the vast array of options available for storage and
protection of the connection strings. Because connection strings are
dependent on the type of data source used, we will be specifically referring to
the connection strings used to connect to the SQL Server in the Windows
environment.

Introduction

Today, a distributed computing environment is an integral part of core
business operations. Information system environments of most companies
are complex and require the integrated functionalities of a large number of
applications. Most of these applications need to communicate, pass data and
exchange functionalities in order to accomplish a number of complex
processes. In order to prevent unauthorized access or abuse of the
established connections, communication between applications is established
in the authenticated fashion. Connection strings contain authentication
information used by the applications to connect to the data source, which in
many cases is a database.

With the development and growth of the public Internet, the need to prevent
unauthorized access through the Web enabled application has grown
drastically. Most of the e-commerce websites collect or display some type of
information to the end users. This information is commonly stored in the
database that is connected to the web server. Thus a database in most cases
is the depository of critical and often sensitive in nature information. It
becomes critical to protect connection strings used to authenticate to the
database from unauthorized access.

Connection String Properties

Connection strings contain vital information about the application itself and
details about the type of connection established between the web application
and the data source. Connection strings may differ by the type of data source,
providers, or drivers used for the connection. Some of the critical properties of
the connection specified in the connection string include:

Ø Hostname or IP address of the server housing the database
Ø The type of data source

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Ø The type of technology used to communicate with the data source
Ø Name of the database containing the data
Ø Network libraries used for the connection
Ø The port number used for the connection
Ø Username and password for the account used to authenticate to the

database (Andrews, p.262).

The basic format of a connection string is a list of keywords and values, which
are separated by the semicolon. Values are assigned to the key names with
an equal sign. The connection string will change greatly depending on the
“provider” (OLE DB) or “driver” (ODBC) used because the provider/driver
identifies the type of technology used to establish the connection (Andrews,
p.262). Table 1 lists some of the common providers:

Connection Type Name/Value Pair
SQL Server using ODBC Driver={SQL Server}
Microsoft OLE DB Provider for Oracle Provider=MSDAORA
Microsoft OLE DB Provider for Jet Provider=Microsoft.Jet.OLEDB.4.0
Microsoft OLE DB Provider for IBM DB2 Provider=DB2OLEDB
Microsoft OLE DB Provider Provider=SQLOLEDB
Microsoft Excel using ODBC Driver={Microsoft Excel Driver (*.xls)}

Table 1 (Andrews, p. 263) – Sample Providers/Drivers for Use in Connection
Strings

Consider sample connection string used for the OLE DB method of
connecting to the SQL Server:

“Provider=sqloledb;Data Source=sqlservername;Uid=username;
Pwd=password;Database=databasename;”

As demonstrated, the connection string contains sufficient information to
compromise the database server and to gain unauthorized access to the data
stored in the database. Embedding the connection strings in the source code
remains to be common coding practice, regardless of the associated risks.

SQL Authentication vs. Windows Authentication

The web server can authenticate to Microsoft SQL server by using either the
Windows authentication mode or the SQL authentication mode. The Windows
authentication does not require authentication information used to connect to
SQL server to be stored in the connection string, thus making it more secure.
In case of Windows authentication, SQL server has to validate user
credentials with the Windows Domain Controller for domain level users or
Windows server itself for local level accounts. This requires trusted
connection between SQL server and the web server. However, the common
security practice is to separate the web server and SQL server with the
firewall and not to pass Windows credentials from one network to another
through the firewall. Because for security reasons connection between the
web server and SQL server is in ‘nontrusted’ context and SQL authentication

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

does not require trusted relationship, SQL authentication is more commonly
used for connection between the web server and SQL server then Windows
authentication.

There are more benefits to using Windows authentication than the fact that it
does not require the storage of username and password in the connection
string. Because Windows authentication relies on the Windows security, it
provides such security features as: password encryption, password
complexity enforcement, password expiration with account lockout threshold
and extensive auditing.

Although SQL native authentication is inherently less secure than Windows
authentication, the use of Windows authentication from the development
standpoint is not very practical. SQL authentication allows for the application
to be portable and capable of being used for connection with other databases
that may not allow for integrated authentication. In addition, if Windows
credentials were compromised, in order to compromise SQL database, an
attacker would have to obtain SQL credentials. Thus, using SQL
authentication would offer an additional layer of security that an attacker
would have to bypass.

Storage of connection strings

The best way of protecting a secret is not to have one; however, secrets are a
necessary evil when it comes to accomplishing certain functionalities, in this
case establishing the communication channel between the web server and
SQL server. Once SQL authentication is selected as the preferred method of
authenticating the web server to the SQL server, protection of the connection
strings becomes a critical issue. While a full proof protection of secrets using
software is debatable, a number of techniques exist that accomplish the goal
of safeguarding the connection string content. Existing methods can be
grouped into three main techniques: hiding or security through obscurity,
access control, and encryption.
(Davis,http://msdn.microsoft.com/msdnmag/issues/03/11/Prot ectYourData/default.aspx)

Security through obscurity

Very minimal, if any security is offered by hiding the connection string on the
web server file system. Because application needs to know where to find it for
the authenticated connection to be established, it is only a matter of time until
unauthorized users will locate it as well. Security through obscurity offers a
false sense of security and simply makes bad guys work harder for getting
that crown jewel of information stored in the connection string. To that end
there is no best solution, but the one that would be the most difficult for others
to figure out. To mitigate this risk, place the connection string outside of the
web server file system, because the most prevalent web server vulnerabilities
are related to gaining unauthorized access to the file system.

The locations that are commonly used for connection strings include:
compiled source code, Windows registry, configuration file and COM+

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

catalog. The list of alternatives continues to grow and by no means is limited
to the above-mentioned options. The inherent security risks associated with
each of these locations will be discussed below.

Compiled source code

Storing connection strings in the compiled source code offers a better solution
then embedding them in a clear text in ASP pages that can be opened with
such text editors as notepad. Often these pages are stored in the INETPUB
directory on the web servers. An intruder who gained access to the file system
of a web server through a number of directory traversal vulnerabilities would
be able to read authentication information on the ASP page. In addition, web
server flaws revealed a number of vulnerabilities that allowed attackers to
view the ASP code through the browser, thus exposing connection strings in
the source code.

The issue with compiled source code is that it can be decompiled or reverse
engineered and the connection string can be read from the recreated source
code file. A number of tools capable of reverse engineering source code are
freely available for download from the Internet. One of these tools called
Anakrino available from http://www.saurik.com/net/exemplar is used to reveal
authentication information stored in the connection string in the Figure 1
below.

Figure 1 – Anakrino
(Davis,http://msdn.microsoft.com/msdnmag/issues/03/11/ProtectYourData/default.aspx)

Embedding connection strings in source code offers high performance
because application does not have to reference an external source, but at the
price of maintainability because changes in the connection string would
require the application to be recompiled.

COM+ catalog

A worthy alternative to placing business logic in the presentation layer, which
can be uncovered in a number of ways, is to create a true n-tier application. In
an n-tier application, data, presentation and business logic are placed in 3 or
more layers, thus creating more hoops for an attacker to pass through before
they get to the crown jewel of SQL server authentication information. In

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

addition to the security benefits, an n-tier application offers the benefits of
being more robust, flexible and scalable as data, presentation, and business
logic can be copied or updated independently of each other.

There are a number of ways of implementing an n-tier application to hide the
SQL connection string from prying eyes. One of them would be to hide all the
details about the connection in a COM object and to simply call this object
from the presentation layer. The COM object can even be stored on a
separate system, thus cleaning the code stored on the web server from
usernames and passwords used to connect to a SQL server. This COM object
would be placed on the business layer separate from the presentation layer
residing on the web server.

What is a COM object? From the Microsoft web site we learn: ”The
Component Object Model (COM) is a software architecture that allows
applications to be built from binary software components.” (Microsoft,
http://www.microsoft.com/com/tech/com.asp). COM+ is an extension of COM
architecture along with DCOM. COM+ catalog stores all the COM+
configuration data and during any kind of COM+ administration data is read
and written to the COM+ catalog. COM+ catalog can be accessed through the
Component Services administrative tool or through the COMAdminCatalog
class. Only a user with Administrative rights can change data on the COM+
catalog. COM+ catalog stores data hierarchically in a number of collections
such as applications and components. Connection string can be stored in the
COM+ catalog for a specific component and then retrieved when an object of
the component is activated.
(Aziz,http://www.csharphelp.com/archives3/archive482.html).

Windows Registry

Windows registry is a central hierarchical database used to store configuration
information and other settings unique to the system. Registry is constantly
referenced and updated while the system is being used. A number of
applications store authentication information in the registry, so it would seem
an appropriate placeholder for the connection string.

Storing the connection string in the registry would remove it from the file
system, which has always been the target of attacks on the web server. The
main drawbacks of using the registry as the connection string repository are
that other people can access the registry and that the performance suffers
when an application has to access the external source for authentication
information.

Configuration files

In classic ASP applications, the global.asa file contains configuration
information and it has been a common practice to place connection strings in
global.asa file using the Application object.

Consider a sample global.asa file containing connection string:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<script language="vbscript" runat="server">
sub Application_OnStart

Application("ConnectionString") = _
"Provider=SQLOLEDB.1; Data Source=sqlserver;Initial Catalog=sqldatabase;
Uid=sa;Pwd=password; "
end sub
</script>

In the above sample, Application_OnStart is an event handler that is invoked
when the ASP page is first requested. Once the user accesses the first ASP
page, Application_OnStart generates the connection string and passes it to
the ASP source code. This poses a risk due to a large number of reveal
source code vulnerabilities, which exposes the web servers’ source code to
the preying eye. Authentication information can be prevented from being
passed to the source code. Instead of placing the connection string with the
authentication information in the global.asa file as in the example above, the
connection string can be only referenced in the global.asa file in the web
server root directory by the name “strConnection”. In this case, if an attacker
gains access to the ASP code, he or she would see only reference to the
connection string and no authentication information.
(McLeavy,http://www.naspa.com/PDF/2002/0502%20PDF/T0205008.pdf).

Extract of ASP source code that does not reveal authentication information is
demonstrated below:

<%
Set Conn = Server.CreateObject(“ADODB.Connection”)
Conn.Open Application(“strConnection”)
Set RS=Conn.Execute(“Select * from Table1”)
>%
(McLeavy,http://www.naspa.com/PDF/2002/0502%20PDF/T0205008.pdf).

The actual authentication information would be located in the global.asa file
and not passed to the ASP source code.

The ASP.NET web.config file serves the purpose of repository of the
configuration settings that apply to the application as a whole. The Web.config
file is one of the common storage locations for the connection strings in
ASP.NET applications. Connection strings are places in the AppSettings
section within the Configuration section and before the System.web section.
(Smith, http://authors.aspalliance.com/stevesmith/articles/dotnetc onnectionstrings.asp).

A sample web.config file is shown below:

<configuration>
 <appSettings>
 <add key="ConnectionString"
 value="DataSource=sqlserver;InitialCatalog=sqldatabase;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Uid=sa;Pwd=password;"/>
 </appSettings>
 <system.web>
 <customErrors mode="Off"/>
 </system.web>
</configuration>

By default, web servers should not reveal the content of the global.asa and
web.config files if a web user is requesting them through the browser.
However, this layer of security can be bypassed if an attacker gains access to
the source code due to source disclosure vulnerability or if he or she obtains
read rights to the file system.

Control access to data

Solely hiding connection strings from the prying eye has proven to be
insufficient for complete security of authentication information. Even though
the number of locations used for storage of the connection strings continues
to grow, because application needs to be able to find it, so will the bad guys
only in a matter of time. What additional measures can be employed in order
to help solve the limitations offered by the security through obscurity concept?
How about controlling the data itself once its location has been identified?

Windows offers a number of ways to control access to the various locations
used for connection string storage. Starting with the NTFS permissions on the
individual files containing usernames and passwords, which would at least
stop those with unprivileged access from accessing the files at the file system
level. Registry keys can be protected with the Access Control Lists (ACLs),
which can be used to tighten security at the granular level according to the
privileges assigned.

Access can be restricted based on something the user requesting access
knows or is. In other words, a legitimate user can be accepted on the basis of
a verified caller’s identity or on the basis of the knowledge of a common
secret. Restricting access based on these criteria can be an effective
measure in securing data if applied effectively, but it is not without its
limitations. In the case of using knowledge of a common secret as a criterion
for valid authentication, the issue of storing the common secret in a secure
location raises a number of known security issues. Identitybased access
control is not flawless neither. It will not be effective with such applications as
ASP.NET, which run under the identity of an anonymous user, nor will it work
for the application running under the multiple users, because they could
access each other’s data and data would not be set and retrieved by the
same user. (Davis,
http://msdn.microsoft.com/msdnmag/issues/03/11/ProtectYourData/default.aspx).

Encrypting data

From the above discussion, a conclusion can be drawn that both hiding the
connection string and restricting access to it through identity based and

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

knowledge based access controls is less than secure. The final option is to
store sensitive information in such a form that it would be meaningless to an
unauthorized user. This way an attacker would not benefit from locating the
placeholder for the connection string and bypassing access controls used to
restrict access to the authentication information. Encrypting data offers the
final obstacle, which can be an effective measure if it is implemented
correctly.

The issue with using encryption to protect the connection string is that now
the focus is passed from securing the connection string to securing the key
used to decrypt the connection string. The concern with placing the encryption
key in a secure location and then restricting access to that key still applies
The question is who is responsible for storing the encryption key and how
effective are the security measures surrounding the storage of that key.

A common method of encrypting and decrypting data is to use Microsoft Data
Protection Application-Programming Interface (DPAPI) introduced with
Windows 2000. DPAPI is a password-based data protection service on the
Operating System (OS) level with no additional libraries required. Because
DPAPI interfaces are implemented in crypt32.dll as part of Microsoft
Cryptography Application-Programming Interface (CryptoAPI), most of the
Windows systems have this functionality available to them. Every application
on the system can take advantage of this encryption service without needing
to handle any specific cryptographic code other than making function calls to
DPAPI. The weakness of DPAPI lies in the fact that DPAPI encryption is
based on the provided password. This, however is offset by the use of the
Triple DES algorithm and strong encryption keys. (NAI Labs,
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnsecure/html/windataprotection-dpapi.asp).

DPAPI generates either user- or machine-specific encryption keys. The use of
these keys is mutually exclusive, which means that only one type of
encryption key can be used in one DPAPI call. When the user-specific key is
used, only the user that encrypted the data can decrypt it. This requires the
application to be running under the profile of a local or domain user and the
DPAPI calls can be made on the system where the profile was created. User-
specific keys cannot be used with the built-in system accounts used by such
applications as ASP.NETbecause these accounts do not login interactively.
With the machine-specific encryption keys, any application running on the
same system can encrypt and decrypt the data. This capability can be further
restricted to a particular caller by specifying an additional secret value called
entropy. This way only applications with entropy can encrypt and decrypt
particular data. An Additional secret can be used with both the user- and
machine-specific encryption keys.
(Obviex,http://www.obviex.com/samples/dpapi.aspx).

The pros of using DPAPI include the fact that it is part of the operating system
and thus freely available on most Windows systems. Overall it provides a
relatively simple method for protecting the confidentiality of data and does not
pass the responsibility of key handling to the end user. The disadvantages

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

include the inability to reuse the encryption key on the system other than the
system, where the connection string was originally encrypted. The immobility
of code ties back down to the fact that DPAPI is a password- and a OS-based
cryptographic service.

Additional measures

None of the above measures are 100 percent fullproof. However, each of
these measures, when implemented effectively reduces the risk of
unauthorized access to the sensitive information stored in the database. In
addition to hiding the connection string, restricting access to its content and
encrypting it, a number of additional measures may be implemented to
improve the security of an application and SQL server connected to it.

The principle of least privilege states that minimum access rights should be
given to a user profile to accomplish its required functions. This principle
should be applied to the account used for the connection between the web
server and SQL server. If connection string were compromised, an attacker
would have the SQL database rights that apply to that account. If the
application does nothing but returns values from the database and SQL
authentication is used for the connection, it must be ensured that this account
has only read rights on the database. To achieve higher granularity in
restricting access, this account should be assigned read only rights on the
specific tables in that database. This granularity can be achieved in the
MSSQL 2000 server through the Enterprise Manager.

In addition to restricting access to the data stored on the database, it must be
ensured that an account used to connect to the database from a web server
has execute rights only on the stored procedures that are required for it to
accomplish its tasks. SQL server comes with many useful features available
through the use of system and extended stored procedures. These stored
procedures were originally designed to allow for extended support of such
tools shipped with MSSQL server as Enterprise Manager and Query Analyzer.
Misconfigured SQL server allows for these procedures to be executed by non-
privileged accounts, thus exposing SQL server to unnecessary risks. If the
connection string is compromised, an attacker may be able to login into the
SQL server with the account stored in the connection string using such tools
as SQL Analyzer. If this account has execute rights to such stored procedures
as xp_cmdshell and xp_regread, an attacker may be able to execute
commands on the operating system with the privileges of SQL service
account and read the registry.

Avoid using an sa account when establishing connection between a web
server and the database because of the high level of privileges that are
assigned to that account. Since this is the superuser account in SQL
database, by default it has complete control over the database, including the
dangerous, stored procedures.

By default, MSSQL server is installed as a LocalSystem level account, which
is a member of Local Administrators group on a Windows system and has

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

complete control over the system resources. In the scenario above, due to a
number of SQL server misconfigurations, an attacker may be able to execute
commands at the operating system level with the rights of SQL Service
account. If this account has Administrative rights, so will the attacker. That is
why SQL server service account should only have minimal rights and should
help contain an attack to the server in case of a compromise. This account is
required to run with the service rights only. A local user account is best for
non-replicated servers and a domain user account is best for the servers that
require replication or connections to remote servers.

To improve overall security, restrict access to the SQL server to the IP
address of the web server. This way, if an attacker compromises the
connection string, he or she would not be able to login from any other system
but the web server.

Conclusion

Benjamin Franklin once said, “The three can keep the secret, if two are dead”.
In this paper we discussed and critiqued from the security standpoint the vast
array of options available for storage and protection of the SQL connection
strings. There is no solution that would offer the complete protection of
authentication information stored in the connection strings, however, the mix
of the above mentioned measures would make compromise of sensitive
information difficult. We pointed out that all the measures focusing on
protection of connection strings can be grouped into three main areas: hiding
connection strings, restricting access to them, and encrypting them. (Davis,
http://msdn.microsoft.com/msdnmag/issues/03/11/ProtectYourData/default.aspx). Since
there is no best solution, the least worst solution should be selected based on
the application requirements and established security policy.

The need for securing applications is becoming more apparent as the tools
and knowledge used to compromise them is becoming freely available on the
Internet. The increasing rise of the automated tools lowers the technical
expertise required for attack execution, thus causing the growth of people
capable of exploiting unprotected applications.

References

1. Andrews, Chip; Litchfield, David and Grindlay, Bill. SQL Server
Security. New York: McGraw-Hill/Osborne, 2003.

2. Davis, Alek. “Safeguard Database Connection Strings and Other
Sensitive Settings in Your Code” MSDN Magazine. November 2003.
URL:
http://msdn.microsoft.com/msdnmag/issues/03/11/ProtectYourData/def
ault.aspx (Jan 6, 2004)

3. McLeavy, Justin. “Using Global.asa to tighten ASP/SQL Security”
Coding corner. May 2002.
URL:http://www.naspa.com/PDF/2002/0502%20PDF/T0205008.pdf
(Jan 7, 2004)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

4. Smith, Steven. “ASP.NET: Connection Strings” ASPAllience.com.
8/11/2001.
URL:http://authors.aspalliance.com/stevesmith/articles/dotnetconnectio nstrings.asp.
(Jan 7, 2004)

5. Microsoft. Microsoft.com technologies. 3/30/99
URL:http://www.microsoft.com/com/tech/com.asp (Jan 7, 2004)

6. Aziz, Asad. “COM+ Automation using .NET C#”
URL:http://www.csharphelp.com/archives3/archive482.html (Jan 8,
2004)

7. NAI Labs. “Windows Data Protection”. Network Associates, Inc. MSDN
Library. October 2001. URL:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnsecure/html/windataprotection-dpapi.asp (Jan 8, 2004)

8. Obviex “How To: Use DPAPI to Encrypt and Decrypt Data (C#)”
9/13/2003. URL:http://www.obviex.com/samples/dpapi.aspx (Jan 8,
2004)

