
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Case Study: Securing Microsoft Outlook Web Access with a
Reverse HTTP Proxy Server

David J. Waldo
GSEC Practical Assignment v1.4b, option 2
February 25, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Abstract

This paper will present a case study of how to secure an existing Microsoft
Internet Information Server (IIS) and Outlook Web Access (OWA) interface using
a reverse HTTP proxy server. Besides the obvious need to increase the security
posture of IIS/OWA server, the final solution was also driven by other factors:
minimal impact to existing infrastructure, cost of implementation, and level of
available administrative talent to deploy and maintain the solution, which are all
factors often overlooked when trying to increase network security and maintain
secure practices.

After describing the initial configuration and requirements, this document will
consider the pros and cons of a variety of technical solutions, and describe the
reasoning that leads to the chosen solution. Details of the implementation will be
presented, including: network topology and required open ports, configuration of
host-based firewall, HTTP proxy server configuration and deployment in a chroot
jail, and required DNS name resolution. This paper will not discuss the
installation or hardening of an IIS server or OWA interface. Finally, this paper will
evaluate the deployed solution and describe which risks have been addressed
and which risks remain.

Problem Description

I work for company with fewer than 50 employees whose business is information
delivery via the Internet. Like most businesses, email services are vital to our
operations, and, like many businesses, my company provides internal corporate
email services with a Microsoft Exchange 5.5 email server. However, our
employees, either from home or while traveling, also need remote access to
corporate email services. Therefore, the company provides external Internet
access to corporate email with an Outlook Web Access 5.5 interface running on
a Microsoft IIS 4.0 web server. A Cisco PIX 515 firewall is used to partition the
corporate network into internal, DMZ, and external networks. Both the DMZ and
internal networks use private IP address space as described in RFC19181. All
three components – MS Exchange, OWA, and IIS – are installed on a single
machine running Microsoft NT 4.0 Service Pack 6, which is located on the
internal corporate network. Prior to the deployment of the solution presented
below, HTTP, not HTTPS, was used to access the OWA interface, which was
directly accessible from the Internet; therefore, port 80 was open on the firewall
from the external network to the Exchange/IIS/OWA machine. The IIS server
used NTLM authentication exclusively, not HTTP basic authentication. Our
company had an existing FTP server and an SMTP gateway server in the DMZ
network, but no HTTP server. Incoming and outgoing SMTP traffic was routed
through the existing SMTP gateway in the DMZ, so port 25 was not open from
the external network to the Exchange/IIS/OWA machine in our internal network
(See figure 1 for the existing IIS/OWA access diagram).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Figure 1

Our company’s Information Technology (IT) personnel consisted of a Microsoft
administrator, a Unix/Linux administrator, and myself, the IT manager and
system architect. The Microsoft administrator maintained the company’s MS
Exchange server and a MS file server, but was primarily involved with the
support of the company’s desktop and laptop machines, which were running
various Microsoft operating systems. He had no security training and little
security awareness. The Unix/Linux administrator had far more network
experience and security awareness. He maintained the company’s co-located
production infrastructure, which included a firewall, web load balancer, multiple
web servers, and back-end database and text indexing servers. The production
web server machines ran the Apache HTTP server on the Red Hat Linux 7.2
operating system. In addition, this administrator was responsible for the
corporate network, which included a border router, firewall, and network
switches, as well as 12 internal Linux machines, also all running Red Hat Linux
7.2. Given the nature of the company’s business – content delivery via the
Internet – security was a high priority in the production environment. Both the
Unix/Linux administrator and myself were well versed in network security
practices and were comfortable installing the Apache web server and other open-
source software from source code.

The current IIS/OWA configuration presented many vulnerabilities and risks.
Although the IIS web server had been previously hardened using the IIS
lockdown tool2 from Microsoft, IIS has a long history of being susceptible to
various types of exploits. IIS vulnerabilities rank first in the SANS Top
Vulnerabilities to Windows Systems3, which references over 40 CVE/CAN
entries. With continual announcements of new vulnerabilities, and constant

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

automated attacks threatening our IIS server, it was likely that new vulnerabilities
would be found, and that IIS would continue to be a target for compromise well
into the future. In addition, the OWA interface was transported via HTTP, so all
its traffic was available to network sniffers. Because the IIS server was
configured to use NTLMv2, our authentication data were not susceptible to
network password sniffers, but our client browser was restricted to MS Internet
Explorer, the only web browser that supported NTLM authentication over HTTP.
Since the OWA interface and IIS server reside on the same machine as our
Exchange server, a successful attack would allow the intruder direct control of
our Exchange data store, one of our greatest corporate assets. A compromise of
this machine would be disastrous for our company. In addition, since we allowed
direct HTTP access from the Internet to this machine located in our internal
network, if it were compromised, it could easily be used to compromise other
internal machines. Lastly, we depended on our junior Microsoft administrator to
maintain the Exchange, OWA, and IIS servers, and he had little security
awareness or training. With the company’s tight budget, he was unlikely to
receive training in the future. In short, I found that we needed to increase the
security posture of the MS Exchange/OWA server because of the high probability
of future unanticipated exploits, the high risk to the company if the server were
compromised, and the inability of our limited staff to respond to future IIS
vulnerabilities in a timely manner.

Management agreed with my assessment that we needed to increase our
network security and further protect the Exchange server, but we had no budget
to upgrade the MS Exchange/OWA 5.5 sever or the MS NT 4.0 operating
system. The existing versions of the software and operating system served the
needs of our small number of employees adequately. Thus, I had to propose a
solution that would not disrupt the existing email infrastructure, cost a minimal
amount of money to implement, and not place a significant additional burden on
the existing IT staff.

Analysis

From my SANS training, I knew I had to apply a defense in depth strategy to
insulate the OWA/IIS server from direct access from the Internet. I would need to
deploy an intermediate server in the DMZ, between the Internet and the internal
IIS server, to handle HTTP requests and responses. Given this architecture, I
had two options: (A) deploy an IIS server in the DMZ, migrate the OWA interface
to this server, and use Microsoft’s mechanisms for communication between a
front-end OWA/IIS server and a back-end Exchange server, or (B) deploy a
reverse HTTP/SSL proxy server in the DMZ and use the HTTP/SSL protocol for
communication between the front-end proxy server and the back-end
OWA/IIS/Exchange server.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Regardless of which option I would choose, I decided to deploy this new service
on a single, dedicated machine in the DMZ network. A one-machine, one-
external-service posture is vital from an incident response and business
continuation perspective. A single machine with a single running service is
quicker and easier to rebuild. I require that all our machines – especially those
that are Internet facing in the DMZ – have well documented build procedures. If
the machine is compromised, it can rapidly be replaced, with minimal impact to
other machines delivering other services. A rapid response also means minimal
disruption to the service that the compromised machine was delivering.

After researching option A in a Microsoft whitepaper4, I found that deploying the
front-end IIS/OWA server on a separate machine in the DMZ would require
opening up multiple ports in the firewall, not just HTTP. We would also need to
edit the registry of the Exchange server machine to statically bind ports for the
Exchange directory and information store, which are normally dynamically
assigned.

Option B only required that the HTTP port be open between the front-end and
back-end servers. The two servers would be loosely coupled, and I was free to
deploy any proxy server on any platform. I liked the simplicity and freedom that
this solution offered. I realized that we could deploy an Apache HTTP/SSL server
on a Linux machine in the DMZ, which could be maintained by our Unix/Linux
administrator and myself, who both had considerable security experience
maintaining our company’s production environment. If I choose option A, we
would just be moving the placement of the IIS server from the internal network to
the DMZ. My concerns about our ability to maintain a secure IIS server would
remain. Option B also deployed a defense in depth strategy not only in network
zones, but also in server software and operating systems. It would be unlikely
that an exploit would work against both an Apache/Linux server and an
IIS/OWA/NT server. This solution would not only be the simplest and cheapest to
implement, it would also minimally disturb our existing infrastructure, utilize the
strengths of our existing administrative staff, and avoid platform monoculture5.

Implementation

While deploying this additional layer of security, I also wanted to remove the
restriction of using only the MS Internet Explorer as a client browser with OWA. If
we used the Secure Sockets Layer (SSL) to tunnel all our HTTP traffic, we were
no longer required to use NTLM authentication, and could instead safely use the
less secure HTTP basic authentication protocol, which is supported by all web
browsers. Therefore, we would only open port 443, not port 80, between the
external and DMZ networks, and between the DMZ and internal networks (see
figure 2).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Figure 2

Linux Server Configuration

I had our Linux/Unix administrator configure a new machine,
proxy.mycompany.com (192.168.0.1) that would be placed in the DMZ network.
We had long ago standardized on Red Hat Linux 7.2 as the common platform for
all of our Linux servers. Red Hat 7.2 is a bit dated at this point in time, but we had
previously decided that – as long as the security and performance was adequate
on a RH7.2 – it was best to keep all our Linux platforms consistent. I’ve been in
other shops that installed the latest version of an operating system with each new
machine rollout, and when a security patch was issued, the system administrator
would have to scramble to find and install the correct patch for each machine.
We planned to upgrade to a later release on all of our Linux servers on own
schedule in the future. The proxy machine would only run two services: SSL and
SSH. All other daemons would be turned off. The Linux administrator would
perform the RH7.2 installation and install and configure openssh
(http://www.openssh.org) from source code.

Since we build most of our open-source software from source code, we have
standardized scripts to make the build process as simple as possible. The script
we have developed for openssh installations is:

#! /bin/sh

if [$# != 1]
then

 echo "usage: $0 version"
 exit

fi
VERSION=$1

ADMIN=/usr/local/admin
SOURCES=$ADMIN/build/sources
BUILD=$ADMIN/build/build

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

cd $SOURCES
if [! -f openssh-$VERSION.tar.gz]
then

 echo "openssh-$VERSION.tar.gz not found"
 exit

fi
cat openssh-$VERSION.tar.gz | (cd $BUILD; tar xvzf -)

cd $BUILD
chown -R 0.0 openssh-$VERSION
cd openssh-$VERSION
./configure --with-ssl-dir=/usr/local/ssl \

--with-md5-passwords \
--with-default-path=\

/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/usr/local/sbin
make
make install

cp contrib/redhat/sshd.pam /etc/pam.d/sshd

if [-f /usr/bin/ssh]
then

 /bin/rm /usr/bin/ssh*
 /bin/rm /usr/bin/scp
 /bin/rm /usr/bin/sftp

fi
if [-f /usr/sbin/sshd]
then

 /bin/rm /usr/sbin/sshd
fi
if [-d /usr/etc/ssh]
then

 /bin/rm -rf /usr/etc/ssh
fi

Automating the build process and making it reproducible is especially important
for a bastion host server located in the DMZ. All the build scripts, configuration
files, and needed software on proxy.mycompany.com will be archived on a
remote machine. If proxy is compromised, we replace it with a new server as
quickly as possible using the rote build processes.

Before handing the server over to me, the Linux administrator would verify what
services were running at what run-level with:

$ chkconfig –list

After a reboot of the machine, he would then verify that, at this point, only SSH
was running on the machine. First, he would check this locally by running:

$ netstat –atup

Then he would double-check this from a remote machine using:

$ nmap –p1- 192.168.0.1
Starting nmap V. 3.00 (www.insecure.org/nmap/)
Interesting ports on (192.168.0.1):
(The 65532 ports scanned but not shown below are in state: closed)
Port State Service
22/tcp open ssh

Nmap run completed -- 1 IP address (1 host up) scanned in 5 seconds

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Note, the Apache/SSL server is not yet installed, so port 443 is not yet open.
When working in teams, I find that it is important to have a written statement
about who will perform what activities, and what commands or procedures they
will use, so no mistakes or miscommunication take place during a handoff to
another person.

Name Resolution and Network Address Translation

The existing OWA server, webmail.mycompany.com, had a DNS A record in both
our internal and external DNS servers:

Server Name Internal DNS A Record External DNS A Record
webmail.mycompany.com 10.0.01 172.16.0.1

The Cisco PIX firewall performed network address translation (NAT) to bind the
external address to the internal address:

static (inside,outside) 172.16.0.1 10.0.0.1 netmask 255.255.255.255 0 0

I didn’t need to alter the internal or external DNS records, but I did need to
establish the following relationships between the IP addresses of IIS/OWA server
and the new proxy server in each of the three network zones:

Server Name Internal IP
Address

DMZ IP Address External IP
Address

IIS/OWA Server 10.0.0.1 192.168.0.101 -
Proxy Server - 192.168.0.1 172.16.0.1

The external IP address of webmail.mycompany.com (172.16.0.1) would now be
bound by the firewall to the proxy server’s DMZ IP address (192.168.0.1). The
IIS/OWA server’s DMZ IP address (192.168.0.101) would be bound by the
firewall to the internal IP address of IIS/OWA server’s internal IP address
(10.10.1.1). The PIX firewall mappings to bind these addresses would be:

static (dmz,outside) 172.16.0.1 192.168.0.1 netmask 255.255.255.255 0 0
static (inside,dmz) 192.168.0.101 10.10.1.1 netmask 255.255.255.255 0 0

The /etc/hosts file on the proxy server would resolve webmail.mycompany.com
to 192.168.0.101. The entry in the /etc/hosts file on proxy.mycompany.com would
read:

192.168.0.101 webmail webmail.mycompany.com

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Network and Host Firewall Configuration

With the network address translation configured with the directives above, I
needed to establish two conduits in the PIX firewall to allow SSL traffic from the
Internet to the proxy server in the DMZ and to allow SSL traffic from the proxy
server in the DMZ to the IIS/OWA server in the internal network:

conduit permit tcp host 172.16.0.1 eq 443 any
conduit permit tcp host 192.168.0.101 eq 443 host 192.168.0.1

Second, I would need to configure ipchains on the proxy.mycompany.com
machine to allow only SSL and SSH traffic:

ipchains -A input -s 0.0.0.0/0.0.0.0 -d 198.168.0.1 443 -p tcp -j ACCEPT
ipchains -A input -s 0.0.0.0/0.0.0.0 -d 198.168.0.1 22 -p tcp -j ACCEPT
ipchains -A input -s 0.0.0.0/0.0.0.0 -d 0.0.0.0/0.0.0.0 -p tcp -j REJECT
ipchains -A input -s 0.0.0.0/0.0.0.0 -d 0.0.0.0/0.0.0.0 -p udp -j REJECT
service ipchains save

Apache Installation and Configuration

I wanted to keep the Apache installation as secure as possible, so I would install
a minimal number of add-on modules, and I would configure the server to run in
a chroot jail. I have used the Apache mod_rewrite module in a number of other
web servers, and was comfortable with its syntax and power, so I choose to use
it for the HTTPS proxy capability. Therefore, I would need the following source
code software distributions:

openssl: http://www.openssl.org/source/
apache: http://httpd.apache.org/download.cgi
mod_ssl: http://www.modssl.org/source/

Once downloaded, I used the following automated scripts to build each of these
modules. Each is similar to the SSH build script discussed above:

openssl

#! /bin/sh

if [$# != 1]
then

 echo "usage: $0 version"
 exit

fi
VERSION=$1

ADMIN=/usr/local/admin
SOURCES=$ADMIN/build/sources
BUILD=$ADMIN/build/build

cd $SOURCES
if [! -f openssl-$VERSION.tar.gz]
then

 echo "openssl-$VERSION.tar.gz not found"

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 exit
fi
cat openssl-$VERSION.tar.gz | (cd $BUILD; tar xvzf -)

cd $BUILD
chown -R 0.0 openssl-$VERSION
cd openssl-$VERSION
./config
make
make test
make install

apache

#! /bin/sh

if [$# != 1]
then
 echo "usage: $0 version"
 exit
fi
VERSION=$1

ADMIN=/usr/local/admin
SOURCES=$ADMIN/build/sources
BUILD=$ADMIN/build/build

cd $SOURCES
if [! -f apache_$VERSION.tar.gz]
then
 echo "apache_$VERSION.tar.gz not found"
 exit
fi
cat apache_$VERSION.tar.gz | (cd $BUILD; tar xvzf -)

cd $BUILD
chown -R 0.0 apache_$VERSION
cd apache_$VERSION
export LD_LIBRARY_PATH=/usr/local/lib
cp $SOURCES/mod_proxy_add_forward.c src/modules/extra/.
./configure \
 --enable-module=rewrite \
 --enable-module=proxy
make
make install

modssl

#! /bin/sh

if [$# != 1]
then
 echo "usage: $0 version"
 exit
fi
VERSION=$1

ADMIN=/usr/local/admin
SOURCES=$ADMIN/build/sources
BUILD=$ADMIN/build/build

cd $SOURCES
if [! -f mod_ssl-$VERSION.tar.gz]
then
 echo "mod_ssl-$VERSION.tar.gz not found"
 exit
fi
cat mod_ssl-$VERSION.tar.gz | (cd $BUILD; tar xvzf -)

cd $BUILD

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

APACHE=apache_`echo $VERSION | cut -d'-' -f2`
chown -R 0.0 mod_ssl-$VERSION
cd mod_ssl-$VERSION
./configure --with-apache=../$APACHE
cd $BUILD/$APACHE
./config.status \
 --enable-module=ssl
make
make install

Next, for maximum security, I wanted to run Apache in a chroot jail. I found
directions on the “How to chroot an Apache tree with Linux and Solaris”6 page.
The directions are straightforward but lengthy, so I won’t reproduce them here.
Following the directions, I created a new chroot tree in /chroot/apache and
populated it with the needed libraries and system files, then installed the Apache
executable and configuration files into this tree. The new Apache tree is located
in /chroot/apache/usr/local/apache. I then edited the apachectl startup script
in the bin directory of this tree and inserted the commands for chroot execution:

PIDFILE=/chroot/apache/usr/local/apache/logs/httpd.pid
HTTPD="/usr/sbin/chroot /chroot/apache /usr/local/apache/bin/httpd -DSSL"

I then altered the standard Apache startup script, located in /etc/init.d/httpd
to execute the apachectl located under the /chroot/apache directory:

#!/bin/sh
#
Startup script for the Apache Web Server
#
chkconfig: 345 85 15
description: Apache is a World Wide Web server. It is used to serve \
HTML files and CGI.

Source function library.
. /etc/rc.d/init.d/functions

See how we were called.
case "$1" in

 start)
 echo -n "Starting httpd: "
 /chroot/apache/usr/local/apache/bin/apachectl start
 echo
 ;;
 stop)
 echo -n "Shutting down http: "
 /chroot/apache/usr/local/apache/bin/apachectl stop
 echo
 ;;
 status)
 /chroot/apache/usr/local/apache/bin/apachectl status
 ;;
 restart)
 /chroot/apache/usr/local/apache/bin/apachectl restart
 ;;
 reload)
 echo -n "Reloading httpd: "
 /chroot/apache/usr/local/apache/bin/apachectl restart
 echo
 ;;
 *)
 echo "Usage: $0 {start|stop|restart|reload|status}"
 exit 1

esac

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

exit 0

I then set the run-level of this initialization script with the command:

checkconfig –add httpd

My company had an SSL certificate from Verisign for the existing
webmail.mycompany.com domain name currently running on the IIS/OWA
platform. Searching the web, I found directions on the “IIS SSL Certificate FAQ
for IIS SSL”7 page under the heading, “How to move a certificate from IIS 4.0 to
Apache”. Unfortunately, we were never able to successfully complete this
conversion process. Instead, we eventually purchased a new SSL Certificate
from Verisign and installed it according to the directions in the mod_ssl F.A.Q.8.
We produced a RSA webmail.mycompany.com.key private key file, received the
webmain.mycompany.com.crt SSL certificate from Verisign, and placed them in
the chroot tree.

The last step was to edit the Apache httpd.conf file to configure the server and
enable the reverse proxy behavior. First, the following directives are placed in the
main configuration file so they apply to the entire server:

Port 443
Listen 443

I then created a virtual server with the directives below. Note that the name of the
server is ‘webmail.mycompany.com’, since this virtual server will be accepting
requests for that hostname. The IP address we are binding to is 192.168.0.1, the
DMZ address of the proxy server, which is also the IP address that is bound – via
the PIX firewall – to external IP address of 172.16.0.1. The DNS A record in our
external DNS server also resolves to this same external address (172.16.0.1). In
addition, I now reference the SSL certificate and key files that I created in the
step above. Note, that we installed our certificate and key files in the following
files:

/chroot/apache/usr/local/apache/conf/ssl.crt/webmail.mycompany.com.crt
/chroot/apache/usr/local/apache/conf/ssl.key/webmain.mycompany.com.key

But when these directives in the http.conf are read and parsed, the httpd process
is already executing within a chroot jail, so the /chroot/apache directory is not
appended to the front of the pathname. It is the root (or /) directory of the
process, and all references to files use this directory as a base.

NameVirtualHost 192.168.0.1

<VirtualHost 192.168.0.1:443>
ServerName webmail.mycompany.com
DocumentRoot /usr/local/apache/htdocs
CustomLog /usr/local/apache/logs/webmail.access_log combined
ErrorLog /usr/local/apache/logs/webmail.error_log
SSLEngine on
SSLCertificateFile /usr/local/apache/conf/ssl.crt/webmail.mycompany.com.crt

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SSLCertificateKeyFile /usr/local/apache/conf/ssl.key/webmail.mycompany.com.key
</VirtualHost>

Finally, I added the mod_rewrite directives to proxy HTTPS requests back to the
IIS/OWA server within this <Virtual Host> scope:

<VirtualHost 192.168.0.1:443>
ServerName webmail.mycompany.com
DocumentRoot /usr/local/apache/htdocs
CustomLog /usr/local/apache/logs/webmail.access_log combined
ErrorLog /usr/local/apache/logs/webmail.error_log
SSLEngine on
SSLCertificateFile /usr/local/apache/conf/ssl.crt/webmail.mycompany.com.crt
SSLCertificateKeyFile /usr/local/apache/conf/ssl.key/webmail.mycompany.com.key

RewriteEngine on
RewriteRule ^/(exchange|public|exchweb)/(.*) \

https://198.168.0.101/$1/$2 [NC,P]
RewriteRule ^/$ \

https://198.168.0.101/ [P]
</VirtualHost>

Mod_rewrite is a powerful tool used to perform URL manipulations. The
documentation9 and Guide10 for this complex tool deserve careful examination.
Please note that in the explanation of these directives, the backslash character
(\) is a line-continuation symbol (in the Unix tradition) and is used for ease of
presentation. The first directive:

RewriteEngine on

turns the rewrite engine on. The next directive is more complex:

RewriteRule ^/(exchange|public|exchweb)/(.*) \
 https://198.168.0.101/$1/$2 [NC,P]

This rule consists of three parts: a pattern, a substitution, and flags. The pattern
in this directive is a Regular Expression (more information about regular
expression can be found in the regex(3) manpage) matching URLs that begin
with a slash, followed by the string “exchange” or “public” or “exchweb” (which, if
matched, is captured in the $1 variable for later use), followed by another slash,
followed by the rest of the URL string (which, if matched, is captured in the $2
variable for later use). If this URL pattern is matched, the rewrite engine will
perform the substitution in the second part of the line. If the incoming URL was,

http://webmail.mycompany.com/exchange/document.html

the “exchange” string would match and be placed in the $1 variable. The rest of
the URL, “document.html”, would match and be placed in the $2 variable. The
resulting substitution would be:

http://198.168.0.101/exchange/document.html

The IP address 198.168.0.101 is the address of the back-end IIS/OWA server, as
it is known in the DMZ network. It will be bound to the 10.10.0.1 IP address as

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

packets flow through the PIX firewall to the internal network (see the Name
Resolution and Network Address Translation section above). Finally, the two
flags have the following meaning:

NC - Makes the Pattern case-insensitive.
P - Makes a proxy request of the resulting substitution string.

The last rewrite rule is much simpler. All page requests to the root (/) of the
virtual server will be forwarded to the root of the back-end IIS/OWA server at
198.168.0.101.

It is important to note that page requests that do not conform to one of the
specified URL patterns will not be proxied back to the IIS/OWA server. Potentially
dangerous page requests, such as:

http://webmail.mycompany.com/_vti_bin/owssvr.dll?UL=1&ACT=4&BUILD=2614…
http://webmail.mycompany.com/msadc/Samples/SELECTOR/showcode.asp?…

will be rejected by the Apache server with a “404 – document not found” HTTP
error. The Apache reverse proxy server will only forward legitimate OWA page
requests, as defined in the Regular Expressions patterns of the rewrite rule
directives.

To insure that the proxy server is ready to deploy and is only running the desired
services, I run a final nmap port scan. Only port 22/tcp and 443/tcp are open.

$ nmap –p1- 192.168.0.1
Starting nmap V. 3.00 (www.insecure.org/nmap/)
Interesting ports on (192.168.0.1):
(The 65532 ports scanned but not shown below are in state: closed)
Port State Service
22/tcp open ssh
443/tcp open https

Nmap run completed -- 1 IP address (1 host up) scanned in 5 seconds

Microsoft IIS configuration

With all the IP bindings, firewall configuration, and Apache configuration now
complete, the only item remaining was reconfiguration of the IIS/OWA sever to
accept SSL page requests, and to authenticate clients using the HTTP basic
authentication protocol. Our Microsoft administrator configured the IIS server for
SSL only traffic with the following procedure:

1. Open the Internet Service Manager
Click on Start -> Programs -> Windows NT 4.0 Option Pack ->
Microsoft Internet Information Server -> Internet Service Manager.

2. Type "443" into the "SSL Port" text box which is on the "Web Site" tab.
3. Click on the "Directory Security" tab.
4. Click the "Edit" button under "Secure Communications".
5. Select the "Require Secure Channel when accessing this resource" Checkbox to
 disable all but HTTPS.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

He then configured HTTP basic authentication with this procedure:

1. Open the Internet Service Manager
Click on Start -> Programs -> Windows NT 4.0 Option Pack ->
Microsoft Internet Information Server -> Internet Service Manager.

2. Click on the "Directory Security" tab.
3. Click the "Edit" button under "Anonymous Access and Authentication Control.

 4. Ensure that "Basic Authentication" is the only checkbox selected.

Alternate Configuration

During the implementation described above, we debated whether to use the
HTTP or SSL protocol when proxying page requests from the front-end proxy
server to the back-end IIS/OWA server. We decided to use SSL over this path to
maintain a secure channel all the way to the IIS/OWA server in order to prevent
the sniffing of insecure HTTP basic-auth authentication data in the DMZ network.
Other companies may use NTLM authentication, and so may be less concerned
about network sniffers. Or corporate-wide IT policy may forbid the tunneling (via
as SSL or SSH) of network traffic within an internal network, because tunneling
undermines network intrusion detection efforts. Such a policy would require the
use of HTTP, rather than SSL, over this channel, so I’ll briefly describe the
additional configuration needed to deliver this solution (see figure 3). I will not
present each detailed configuration step as I did in the previous implementation.
Instead, I’ll just note how any configurations differ form those already presented,
and discuss the additional steps required.

Figure 3

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The basic problem with having an SSL front-end server proxy to a back-end
HTTP IIS/OWA server is the OWA embeds full URLs in the HTML pages it
delivers to web browsers. For example, a client browser issues a page request
for https://webmail.mycompany.com/, which the proxy server would forward to
the back-end IIS/OWA as a page request for http://webmail.mycompany.com/.
The OWA interface would return an HTML referencing other pages with full URLs
such as http://webmail.mycompany.com/exchange/page.html. When the client
browser attempts to follow this hyperlink, it will issue an HTTP (not SSL) page
request to the front-end proxy server. However, the front-end proxy server isn’t
configured to respond to HTTP requests on port 80. It only responds to SSL
requests on port 443. We need to direct the back-end IIS/OWA server to embed
‘https’ URLs in the pages it returns, not ‘http’ URLs. The solution to this problem
is presented in a Microsoft Exchange 2000 Server Front-End and Back-End
Topology White Paper11, which states, “If the SSL decryption is done on the
front-end server, the front-end server knows SSL was used, and it notifies the
back-end server of this by passing an HTTP header that says, “Front-End-Https:
on” in all requests to the back-end server.” In our front-end Apache proxy server,
additional HTTP headers can be added to forwarded traffic with the optional
Apache mod_proxy_add_forward12 module.

Network and Host Firewall Configuration

In order to allow HTTP rather than SSL traffic from the front-end proxy server in
the DMZ to the back-end IIS/OWA server in the internal network, we will replace
the original PIX firewall directive of

conduit permit tcp host 192.168.0.101 eq 443 host 192.168.0.1

with

conduit permit tcp host 192.168.0.101 eq 80 host 192.168.0.1

Apache Installation and Configuration

We will still download and install openssl, mod_ssl, and Apache. In addition, we
will download the mod_proxy_add_forward module, install it in the proper Apache
source code directory, edit it to include only the ‘front-end-https: on’ header, and
add the compilation of this module to our Apache build file. After downloading the
source file of mod_proxy_add_forward.c from the URL listed in the references, I
placed it in the /src/modules/extra directory of the Apache source code tree. I
then edited the add_forward_header() function in the C source file, removed all
the original C code that inserted the “X-Forwarded-For”, “X-Host”, and “X-
Server-Hostname” HTTP headers into proxied requests, and replaced them with
C code to add the “front-end-https” HTTP header set to “on”. The resulting code
is much simpler than the original:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

static int add_forward_header(request_rec *r)
{
 if (r->proxyreq) {
 ap_table_set(r->headers_in, "front-end-https", "on");
 return OK;
 }
 return DECLINED;
}

I saved the file and added this new module to the Apache build process with an
additional line in our Apache build script. Note the addition of the line:
‘-- activate-module’:

#! /bin/sh

if [$# != 1]
then
 echo "usage: $0 version"
 exit
fi
VERSION=$1

ADMIN=/usr/local/admin
SOURCES=$ADMIN/build/sources
BUILD=$ADMIN/build/build

cd $SOURCES
if [! -f apache_$VERSION.tar.gz]
then
 echo "apache_$VERSION.tar.gz not found"
 exit
fi
cat apache_$VERSION.tar.gz | (cd $BUILD; tar xvzf -)

cd $BUILD
chown -R 0.0 apache_$VERSION
cd apache_$VERSION
export LD_LIBRARY_PATH=/usr/local/lib
cp $SOURCES/mod_proxy_add_forward.c src/modules/extra/.
./configure \
 --enable-module=rewrite \
 --activate-module=src/modules/extra/mod_proxy_add_forward.c \

--enable-module=proxy_add_forward \
 --enable-module=proxy
make
make install

Next, I altered the mod_rewrite rules in the httpd.conf file to proxy the OWA page
requests to an ‘http’ URL, rather than the original ‘https’ URL:

<VirtualHost 192.168.0.1:443>
ServerName webmail.mycompany.com
DocumentRoot /usr/local/apache/htdocs
CustomLog /usr/local/apache/logs/webmail.access_log combined
ErrorLog /usr/local/apache/logs/webmail.error_log
SSLEngine on
SSLCertificateFile /usr/local/apache/conf/ssl.crt/webmail.mycompany.com.crt
SSLCertificateKeyFile /usr/local/apache/conf/ssl.key/webmail.mycompany.com.key

RewriteEngine on
RewriteRule ^/(exchange|public|exchweb)/(.*) \

http://198.168.0.101/$1/$2 [NC,P]
RewriteRule ^/$ \

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

http://198.168.0.101/ [P]
</VirtualHost>

Microsoft IIS configuration

With the alternate firewall and apache configurations complete, we now only
needed to reconfigure the IIS/OWA sever to accept HTTP page requests:

1. Open the Internet Service Manager
Click on Start -> Programs -> Windows NT 4.0 Option Pack ->
Microsoft Internet Information Server -> Internet Service Manager.

2. Click on the “Directory Security” tab.
3. Click the “Edit” button under “Secure Communications”.
4. Unselect the "Require Secure Channel when accessing this resource" Checkbox to

disable HTTPS and click OK.
5. Click OK in the “Directory Security” tab window.
6. Enter “80” in the “TCP Port” text box and click OK.

Conclusion

The implemented solution has significantly reduced the risks inherent with
running an IIS/OWA server. The remaining vulnerabilities can be partitioned into
three sets: (a) attacks against the Apache reverse proxy server, (b) attacks
against the IIS server outside of the OWA namespace, and (c) attacks against
the IIS server within the OWA interface namespace.

Though infrequent, new vulnerabilities occasionally are found in the components
of our proxy server: Apache, mod_ssl (CVE-2002-008213), and openssl.
However, our implementation and build process have kept the risk of an attack
against the proxy server low. Even if an intrusion were to occur, the httpd
process is running in a chroot jail, so access to the system would be limited and
damage would be minimal. In addition, because we only offer one service on this
machine, and the machine build process is well documented, the service can
quickly be restored on another machine.

The vulnerability and risk of attacks against the IIS server outside the OWA
namespace has been eliminated. The Apache proxy server catches all HTTPS
page requests outside the OWA namespace and never forwards them on to the
IIS server.

The vulnerability to attack against the IIS server within the OWA namespace
remains, but the number of these type of vulnerabilities is small in comparison to
the total number of IIS vulnerabilities. Our only response to this risk is to continue
to monitor vulnerability announcements for the OWA interface and the IIS server,
and respond to them in a timely manner.

I judged the overall solution a success because – in addition to greatly enhancing
the security posture of our webmail service – it did not disrupt the existing email
infrastructure. It cost very little to implement, and it didn’t add a significant

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

additional burden on our IT staff. The only disruption to our webmail service was
requiring users to use a ‘https’ URL prefix instead of the original ‘http’ URL prefix.
Because we used a surplus machine for the Linux proxy server and all the
software was open-source and free, the only hard cost involved with the project
was a few hundred dollars for the purchase of an additional SSL certificate.
Finally, from an IT staffing perspective, we utilized our strengths. The production
IT staff is best qualified to maintain an Internet facing server. They are already
sensitive to security issues, comfortable with open-source software, and can
easily maintain one more Linux machine without additional cost to our company.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

References

1 Rekhter, et al. “Address Allocation for Private Internets.” RFC 1918. February 1996. URL:
http://rfc.net/rfc1918.html (18 February 2004).

2 Microsoft Corporation. “IIS Lockdown Tool.” Microsoft TechNet. 2004. URL:
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/tools/locktool.asp
(18 February 2004).

3 SysAdmin, Audit, Network, Security Institute. “Top Vulnerabilities to Windows Systems - W1
Internet Information Services.” SANS Top 20 Vulnerabilities. Version 4.0. 8 October 2003. URL:
http://www.sans.org/top20/#w1 (18 February 2004).

4 Microsoft Corporation. “Planning and Deploying Outlook Web Access.” 1999: 8-9. URL:
http://support.microsoft.com/support/exchange/content/whitepapers/owaguide.doc (10 February
2004).

5 Greer, Dan et al. “CyberInsecurity: The Cost of Monopoly.” 24 September 2003. URL:
http://www.ccianet.org/papers/cyberinsecurity.pdf (9 February 2004).

6 Deatrich, Denice. “How to ‘chroot’ an Apache tree with Linux and Solaris.” 26 February
2001. URL: http://penguin.epfl.ch/chroot.html (16 February 2004).

7 InstantSSL Corporation. “IIS SSL Certificate FAQ for IIS SSL.” URL:
http://www.instantssl.com/ssl-certificate-support/server_faq/ssl-server-certificate-iis4.html (17
February 2004).

8 Engelschall, Ralf. “mod_ssl 2.8, User Manual, F.A.Q. List.” The Apache Interface to OpenSSL.
2001. URL: http://www.modssl.org/docs/2.8/ssl_faq.html#cert-real (17 February 2004).

9 Engelschall, Ralf. “Apache module mod_rewrite.” Apache HTTP Server Version 1.3
Documentation. July 1977. URL: http://httpd.apache.org/docs/mod/mod_rewrite.html (18
February 2004).

10 Engelschall, Ralf. “Apache 1.3 URL Rewriting Guide.” Apache HTTP Server Version 1.3
Documentation. December 1977. URL: http://httpd.apache.org/docs/misc/rewriteguide.html (18
February 2004).

11 Microsoft Corporation. “Microsoft Exchange 2000 Server Front-End and Back-End Topology.”
2001: 17. URL: http://www.somorita.com/Exchange2000/E2KFrontendBackEndTopology.doc (19
February 2004).

12 Hansen, Ask. “mod_proxy_add_forward.” Apache Module Registry. 28 February 2001. URL:
http://modules.apache.org/search?id=124 (25 February 2004).

13 The MITRE Corporation. “CVE-2002-0082.” Common Vulnerabilities and Exposures. 6 June
2002. URL: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-0082 (23 February 2004)

