
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Derek Schwenk OpenBSD 3.4 and PF: A Firewall Solution

SANS GSEC Practical Assignment 1 / 20

Derek Schwenk 02/18/2004

OpenBSD 3.4 and PF: A Firewall Solution

Abstract: Why an OpenBSD firewall?

Choosing the right perimeter for your network is usually determined by a budget.
The old adage “you get what you pay for” comes to mind when considering any
purchase. There is a compromise of price versus performance. Luckily for network
security there is a free open-source operating system in OpenBSD that focuses on
security to provide a solid firewall foundation.

A firewall is a means of protecting hosts and networks from illicit traffic from other
hosts and networks. Illicit traffic includes disruption of services or unauthorized access
to private data. The firewall examines network traffic packet headers and payload
against a set of rules. Based on these rules the packets are allowed or disallowed to
the intended destination.

A firewall is not the holy grail of network security. An improper rule set could
allow dangerous traffic to reach your vulnerable networks. Firewalls allowing traffic to
unpatched and vulnerable services within your network are at risk. Most administrators
protect their network from external users, but forget to watch their internal users.
Confidential data could leak out internally either deliberately(corporate espionage) or
unintentionally(virus/worm). A firewall is a great traffic cop but it can’t stop all illicit
activities.

Background: OpenBSD and IPF vs. PF

OpenBSD(http://www.openbsd.org) is a free open-source BSD-based operating
system with primary emphasis in the areas of proactive security and integrated
cryptography. For example, OpenBSD was the first to ship a working implementation of
IPSec. (1) The project is also closely tied to OpenSSH. The goals of striving to be the
most secure operating system and maintaining a high level of hardware portability
makes OpenBSD a great resource for securing small or large networks with a free
software based firewall which can run on many different hardware platforms.

Taking a glance around the Internet, you’ll notice that ipfilter(ipf) used to be part
of the OpenBSD distribution. If you install OpenBSD 3.0 or later, you’ll notice ipf is
gone and replaced by packet filter(pf). What happened?

As of OpenBSD 3.0, ipf was removed from the OpenBSD distribution. The head
developer for OpenBSD, Theo DeRaadt, decided the licensing interpretation changes
made by ipf developer Darren Reed no longer offered ipf freely available which goes
against a main OpenBSD goal of providing “source code that anyone can use for ANY
PURPOSE, with no restrictions.” (10)

Over the past few years, pf has earned a solid reputation as performance,
options, stability, and ease of configuration. This reputation is earned because of a
wide range of options, some of which aren’t offered by commercial firewall products. (1)
For the purposes of this paper, I’ll focus on the first four items in the list below. Packet
filter options include:

• Packet filtering (IPv4 and IPv6)
• stateful packet inspection(SPI)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Derek Schwenk OpenBSD 3.4 and PF: A Firewall Solution

SANS GSEC Practical Assignment 2 / 20

• network address translation(NAT)
• packet logging and analysis
• dynamic rulesets
• bandwidth shaping
• load balancing
• spam filtering
• user authentication

Getting Started: Prerequisites

The first step is to obtain OpenBSD 3.0 or later(currently 3.4). The
recommended method is the purchase the official CD-ROM set from the OpenBSD
website to support the developers. The source is also available for free download to
create your own CD-ROM set. A DOS boot disk will come in handy if you need to
configure hardware options, such as RAID, with custom utilities.

As for hardware platforms, most users will use Intel i386 or compatible(i.e. AMD)
architecture as a simple choice. OpenBSD also supports various other hardware
architectures such as Sun SPARC/UltraSPARC, Digital Alpha, and Motorola
68k/PowerPC systems. Consult http://www.openbsd.org/plat.html for a more
complete list.

The firewall must process, and optionally log, each packet that comes across the
connected networks. As you increase traffic and features(complex rules, logging,
network intrusion detection systems) on the firewall, you’ll need to upgrade the
hardware. A PC with a relatively new CPU, 128MB RAM, 20GB hard drive and two
network cards is a good starting point. The entire list of supported hardware, video and
network cards for example, can be found in the HARDWARE file of the OpenBSD
distribution’s root directory.

Installation: Quick Guide

Don’t connect your network card to the internet yet! Let’s wait until we’ve
hardened and configured OpenBSD before making the firewall publicly accessible. We
can also test the firewall without an internet connection by using a switch/hub or
crossover ethernet cable between two network cards.

Depending on the media you are using to install OpenBSD, there are two
options. The first is to boot from the official OpenBSD CD-ROM. If you are using the
free downloaded distribution, you’ll need to create a boot disk. The 34 number in the
files below denotes the OpenBSD 3.4 distribution.

To create a DOS boot disk with Windows 9x, from the OpenBSD root directory:
D:\openbsd> rawrite.exe floppy34.fs a:

To create a DOS boot disk with Windows NT/2000/XP, from the OpenBSD root
directory:

D:\openbsd> ntrw.exe floppy34.fs a:

Use floppyB34.fs for computers with SCSI, Gigabit ethernet or RAID devices.
Try floppyC34.fs for laptop computers for PCMCIA and Cardbus support.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Derek Schwenk OpenBSD 3.4 and PF: A Firewall Solution

SANS GSEC Practical Assignment 3 / 20

Follow the installation prompts to complete the basic OS installation. See
http://www.openbsd.org/faq/faq4.html#Install for more details on disk partitioning
and custom installations.

Hardening the OS

OpenBSD is very secure with the default installation. There has only been one
remote exploit in the default OpenBSD install in over seven years. (10) Research and
past experience show this is exponentially more secure than popular operating systems
such as Microsoft Windows and Redhat Linux. Although OpenBSD has a great track
record there are still additional steps, such as patching the operating system or
disabling non-essential services, which you can perform to be even more secure.

The default installation provides a high level of security because few services are
enabled by default. Most unnecessary services like telnet, ftp, and finger are disabled.
OpenBSD does run services as ident, daytime and time by default. Most users will not
need these services and stopping them will tighten security another notch. This can be
changed by editing the /etc/inetd.conf file as root. The file will have entries such as:

ident stream tcp nowait _identd /usr/libexec/identd
identd -el

ident stream tcp6 nowait _identd /usr/libexec/identd
identd -el

daytime dgram udp wait root internal

daytime dgram udp6 wait root internal

time dgram udp wait root internal

time dgram udp6 wait root internal

Adding a # in front of each of these lines tell inetd not to start these services.
Restart inetd by typing:

openbsd# kill -HUP ‘cat /var/run/inetd.pid‘

Staying up to date with patches is another critical part of security practices.
Experience with other operating systems has taught most users to stay vigilant.
Patching OpenBSD takes some preparation and additional hardware to keep the firewall
secure. Most OpenBSD patches are done by compiling source code. The caveat is
source code requires compilers, which are very dangerous on a firewall. The solution is
to compile binaries on a different computer behind the firewall that is running the same
version of OpenBSD running on the firewall. Never apply patches with different
OpenBSD versions. To apply patches, you’ll need to install the compiler tools in
comp34.tgz . Consult http://www.openbsd.org/errata.html for the list of patches and
http://www.openbsd.org/faq/upgrade-minfaq.html for patching details. (1)

Another hardening option to consider is encrypting the swap file. There may be
critical data written to swap that attackers could use. This isn’t critical on a firewall but
can be enabled. To change this setting immediately:

openbsd# sysctl –w vm.swapencrypt.enable=1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Derek Schwenk OpenBSD 3.4 and PF: A Firewall Solution

SANS GSEC Practical Assignment 4 / 20

To restore this setting at startup, open /etc/sysctl.conf and make sure the
following line is not commented:

vm.swapencrypt.enable=1

Packet Filtering
Packet filtering is the heart of a firewall. The language which instructs the firewall

what traffic logic to perform are called rules and a collection of these rules make up a
ruleset. These rules apply to network traffic entering and leaving network interfaces on
the firewall.

The ruleset is evaluated from top to bottom with the last matching rule taking
precedent. It is very important to note that the last matched rule is performed. If you
allow port 80 as the first rule then deny all traffic as the last rule, the port 80 traffic will
be blocked. The ordering of rules is critical as rules become more complex. Further
tuning can also be done to optimize the rule processing.

Before constructing the ruleset, I will review the basic pf rule syntax: pass and
block . Text surrounded by {} symbols signify tokens to be substituted with values. The
| symbol denotes a logical OR; e.g. pass OR block, but not both. Items in bold are
keywords. The most common rule syntax is as follows:

pass|block in|out on {interface} proto {protocol} from {source} port
{source port} to {destination} port {destination port}

pass|block Allow(pass) or deny(block) the traffic matched by this rule

in|out traffic entering or leaving the interface; direction is relative to the
firewall; packets are entering the firewall are incoming and
packets are leaving the firewall outgoing

interface the interface name

proto the layer 4 protocol: commonly TCP, UDP or ICMP; name to
protocol mappings can be found in /etc/protocols

source source address or network

source port source port(s); name to port mappings can be found in
/etc/services

destination destination address or network

destination port destination port(s); name to port mappings can be found in
/etc/services

Let’s start with a few example rules before starting with a ruleset. The first
example is to block all traffic using the all keyword. The all keyword can be used to
identify and group any interface, any source or any destination. This rule blocks
incoming traffic on all interfaces with all protocols from all sources to all destinations.

block in all

The any keyword can be used to a lesser extent to group just interfaces,
addresses or ports. If the port keyword is not included, pf will assume all ports. This
rule groups all sources to be allowed in on a specific interface(xl0) with the TCP

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Derek Schwenk OpenBSD 3.4 and PF: A Firewall Solution

SANS GSEC Practical Assignment 5 / 20

protocol(proto tcp) from any port(no port keyword) to a specific
destination($webserver) and port(80).

pass in on xl0 proto tcp from any to $webserver port 80

An important feature has just been introduced to the rule syntax: the macro. Just
like declaring a global variable when programming, the macro is declared once with the
$ symbol. The web server address is set once and the $webserver macro is used to
refer to that address. This makes the rules more readable, easier to maintain and less
prone to errors.

Without the any keyword, the rule will match against the specific interface,
destination and port. This rule allows traffic on a specific interface(xl0) with the TCP
protocol(proto tcp) from a specific source network(192.168.100.0/24) and all source
ports(no port keyword) to a specific host destination(192.168.5.5) and a specific
port(80).

pass in on xl0 proto tcp from 192.168.100.0/24 to 192.168.5.5 port 80

Simple Ruleset
There are two paradigms of constructing a ruleset. The first is to allow all traffic

by default and block specific traffic. The second is to perform the opposite and block all
traffic by default and only allow specific traffic. The latter makes sense as a more
secure solution unless outside requirements force the first paradigm.

Below is a template for the example ruleset. (2) This is split into four sections:
macros, global options, network address translation(NAT) and filter rules. Splitting the
ruleset makes it easier to understand and maintain. Any line the starts with a # symbol
is a comment and not processed by the pf engine.

#=== Macros ===

#=== Global Options ===

#=== NAT ===

#=== Filter Rules ===

The diagram below illustrates the network that will be the basis for the example
ruleset. The illustration simulates an internal RFC1918 network behind a firewall with a
static IP address from an ISP. The LAN will include standard PC clients requiring
internet connectivity and a web server to serve customers.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Derek Schwenk OpenBSD 3.4 and PF: A Firewall Solution

SANS GSEC Practical Assignment 6 / 20

Firewall Web Server
192.168.10.100

Internet

xl0
11.22.33.44

LAN network - 192.168.10.0/24

xl1
192.168.10.1

LAN client LAN client LAN client

Following the paradigm to block all traffic by default, let’s start with the following

ruleset. This ruleset isn’t very functional as it blocks all incoming and outgoing traffic on
each interface. Since the last matching rule is used, we can add pass rules later to only
open access to services we want. All other traffic will be blocked by default. The last
two rules allow unrestricted traffic on the localhost interface since the block all rule
includes the localhost interface.

#=== Macros ===

EXT_IF=”xl0”

INT_IF=”xl1”

EXT_IP=”11.22.33.44”

INT_IP=”192.168.10.1”

INT_LAN=”192.168.10.0/24”

#=== Global Options ===

#=== NAT ===

#=== Filter Rules ===

Block everything on all interfaces

block all

Allow unrestricted traffic on localhost

pass in on lo0 all

pass out on lo0 all

The macros should be edited to fit the configuration of your network. The above
presumes two network cards: one for the external IP address and the other an internal
RFC1918 network for LAN clients. (7)
EXT_IF=”xl0” manufacturer or chipset of the network card; “xl” is the

3Com 3x9xx Etherlink XL card; “0” marks the first
3Com card

INT_IF=”xl1” “1” marks the second 3Com card

EXT_IP=”11.22.33.44” External static IP address provided by your ISP

INT_IP=”192.168.10.1” Internal static IP acting as a gateway for LAN clients

INT_LAN=”192.168.10.0/24” RFC1918 network for LAN clients

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Derek Schwenk OpenBSD 3.4 and PF: A Firewall Solution

SANS GSEC Practical Assignment 7 / 20

Stateful Packet Inspection
At this point we have a great firewall that doesn’t allow any traffic over its network

interfaces. Let’s add some pass rules to make the firewall useful. It’s not
recommended to run services on the firewall, but remote administration would be
helpful. OpenSSH is installed by default with OpenBSD. An additional bonus is
OpenSSH is primarily developed by the OpenBSD project. The next rule will allow ssh
access on the firewall. The ssh port is mapped to the 22/tcp entry in /etc/services .
To use a service on a non-standard port, the port number or related macro would be
entered.

pass in on $EXT_IF proto tcp from any to $EXT_IP port ssh keep state

The pass rule goes after the block rules because pf follows the last matched
rule. The block matches first, but the pass rule is matched at the very end and the ssh
traffic is allowed.

Lastly and most importantly, the “keep state ” keyword is used to initiate stateful
packet inspection for the ssh traffic. This allows pf to track the state of the network
connection to determine if the packet belongs to an existing connection. Since the rules
are blocking outgoing traffic, the ssh return traffic would not be allowed to leave the
firewall. With stateful packet inspection, this traffic is allowed to leave without an
additional rule. Plus the firewall will provide additional protection from spoofed traffic by
attackers. This should be used for most rules, even udp and icmp traffic, to provide the
extra security of stateful inspection.

When tracking state on TCP connections, the state table inspects the TCP
sequence numbers in the packets. Some TCP/IP stack implementations use easily
predictable initial sequence numbers making the traffic more susceptible to attackers
guessing the sequence numbers with spoofed traffic. To prevent these type of attacks,
use “modulate state ” to provide a more random initial sequence number for the related
rule. The additional benefit is make it more difficult for attackers to “fingerprint” the
server’s operating system by monitoring the behavior the TCP sequence number
generation.

When using UDP and ICMP, do not apply “modulate state ” for stateful
inspection. Use “keep state ” for non-TCP rules. The improved ssh rule would be:

pass in on $EXT_IF proto tcp from any to $EXT_IP port ssh modulate state

To further improve TCP security, the rule can also look at the TCP flags in the
TCP header. For most services, the TCP SYN flag alone initiates the connection. With
the flags keyword, pf can check which TCP flag combinations are allowed to start a
connection. This can prevent certain denial of service attacks such as a TCP SYN/FIN
attack. If the SYN and FIN flags are both set, which should not happen normally, pf will
not match the rule and the packet wil be blocked. This is done with the following syntax:

flags {check}/{mask}

The abbreviations for the TCP flags are as follows:
• F : FIN - Finish; end of session

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Derek Schwenk OpenBSD 3.4 and PF: A Firewall Solution

SANS GSEC Practical Assignment 8 / 20

• S : SYN - Synchronize; indicates request to start session
• R : RST - Reset; drop a connection
• P : PUSH - Push; packet is sent immediately
• A : ACK - Acknowledgement
• U : URG - Urgent
• E : ECE - Explicit Congestion Notification Echo
• W : CWR - Congestion Window Reduced

The least restrictive would be to check the SYN flag looking only at the SYN and
ACK flags.

flags S/SA

The most restrictive is to check the SYN flag by looking at all the flags:
flags S/FSRPAUEW

Checking all the flags is much too restrictive for normal use. Although only the
SYN flag should be set when initiating a TCP handshake, some TCP implementations
may use other flags such as ECE. The best compromise is to check the SYN, ACK, FIN
and RST flags: (9)

flags S/SAFR

The ssh rule should now be:
pass in on $EXT_IF proto tcp from any to $EXT_IP port ssh flags S/SAFR
modulate state

But this is only half of what we need to allow ssh. This is because we are filtering
both sides of the interface with the block all rule: in and out . It is very important to
remember to add a rule for each side of the interface if you are controlling outbound
traffic in addition to inbound traffic. The above rule covers the in rule, the missing half
allowing ssh traffic is to create the out rule.

pass out on $EXT_IF proto tcp from any to $EXT_IP port ssh flags S/SAFR
modulate state

The ruleset now exists as:
#=== Macros ===

EXT_IF=”xl0”

INT_IF=”xl1”

EXT_IP=”11.22.33.44”

INT_IP=”192.168.10.1”

INT_LAN=”192.168.10.0/24”

#=== Global Options===

#=== NAT ===

#=== Filter Rules ===

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Derek Schwenk OpenBSD 3.4 and PF: A Firewall Solution

SANS GSEC Practical Assignment 9 / 20

Block everything on all interfaces
block all

Allow unrestricted traffic on localhost

pass in on lo0 all

pass out on lo0 all

Allow ssh traffic to the firewall

pass in on $EXT_IF proto tcp from any to $EXT_IP port ssh flags S/SAFR
modulate state

pass out on $EXT_IF proto tcp from any to $EXT_IP port ssh flags S/SAFR
modulate state

Network Address Translation(NAT)
Now that the firewall can be accessed from the internet, its time to setup the LAN

clients. The LAN clients are sitting in RFC1918 address space: private and non-
routable. Network address translation(NAT) allows:

• LAN clients to access the internet via the firewall’s external IP address
(i.e. nat)

• forwarding specific ports on the firewall’s external IP address to the LAN
clients (i.e. redirection)

• creating a static map of all ports on the firewall’s external IP address to a
single LAN client (i.e. binat) (1)

These three items allow the previously private network to have a presence on the
internet while being protected by the firewall. The most common use is NAT to allow
internet connectivity to LAN clients. Redirection and binat offer the functionality of
running servers(i.e. web, mail, dns) more securely behind the firewall.

The following rules will setup NAT for the LAN clients and redirection for the
internal web server. The macro is setup to assign the web server IP address.

WEBSERVER=”192.168.10.100”

The nat rule tells pf to allow traffic on the sourced from the LAN
clients($INT_LAN) to be sent out to the internet masquerading on the firewall’s external
interface($EXT_IF) as the external IP address($EXT_IP).

nat on $EXT_IF from $INT_LAN to any -> $EXT_IP

The rdr rule captures traffic from any source to the firewall’s external IP address
on port 80(www) and forwards the packets to the web server on port 80. The ports do not
have to match for redirection to work. Forwarding the external port 80 to the internal
web server port 8080 could also be done.

rdr on $EXT_IF proto tcp from any to $EXT_IP port www -> $WEBSERVER port
www

There are still some missing pieces. The rules to allow this traffic to enter must
be added. The key part to remember is that NAT happens before any filtering occurs.
Therefore the rules must pertain to the translated IP address, not the external IP
address. First, traffic to the web server traffic must be allowed:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Derek Schwenk OpenBSD 3.4 and PF: A Firewall Solution

SANS GSEC Practical Assignment 10 / 20

pass in on $EXT_IF proto tcp from any to $WEBSERVER port www flags S/SAFR
modulate state

pass out on $INT_IF proto tcp from any to $WEBSERVER port www flags S/SAFR
modulate state

Second, the LAN clients to will be allowed to access all internet TCP and UDP
services. Because we’re using NAT, the LAN clients’ internet traffic enters the firewall
on the LAN interface and exits the firewall on the external interface. We will narrow this
down later to control which services clients can access on the internet.

pass in on $LAN_IF proto tcp from $INT_LAN to any flags S/SAFR modulate
state

pass out on $EXT_IF proto tcp from $EXT_IP to any flags S/SAFR modulate
state

pass in on $LAN_IF proto udp from $INT_LAN to any keep state

pass out on $EXT_IF proto udp from $EXT_IP to any keep state

The entire ruleset now looks like:
#=== Macros ===

Interfaces

EXT_IF=”xl0”

INT_IF=”xl1”

EXT_IP=”11.22.33.44”

INT_IP=”192.168.10.1”

Networks

INT_LAN=”192.168.10.0/24”

Hosts

WEBSERVER=”192.168.10.100”

#=== Global Options ===

#=== NAT ===

nat on $EXT_IF from $INT_LAN to any -> $EXT_IP

rdr on $EXT_IF proto tcp from any to $EXT_IP port www -> $WEBSERVER port
www

#=== Filter Rules ===

Block everything on all interfaces

block all

Allow unrestricted traffic on localhost

pass in on lo0 all

pass out on lo0 all

Allow ssh traffic to the firewall

pass in on $EXT_IF proto tcp from any to $EXT_IP port ssh flags S/SAFR
modulate state

pass out on $EXT_IF proto tcp from any to $EXT_IP port ssh flags S/SAFR
modulate state

Allow http traffic to internal web server

pass in on $EXT_IF proto tcp from any to $WEBSERVER port www flags S/SAFR
modulate state

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Derek Schwenk OpenBSD 3.4 and PF: A Firewall Solution

SANS GSEC Practical Assignment 11 / 20

pass out on $INT_IF proto tcp from any to $WEBSERVER port www flags S/SAFR
modulate state
Allow LAN clients outgoing tcp/udp traffic

pass in on $LAN_IF proto tcp from $INT_LAN to any flags S/SAFR modulate
state

pass out on $EXT_IF proto tcp from $EXT_IP to any flags S/SAFR modulate
state

pass in on $LAN_IF proto udp from $INT_LAN to any keep state

pass out on $EXT_IF proto udp from $EXT_IP to any keep state

Before leaving this section on NAT, let’s reassess stateful packet inspection.
The “keep|modulate state” keywords are not required for “nat/binat/rdr” rules as the
NAT keywords automatically track state.

Optimization

At this point, we have a good example of a basic stateful firewall running ssh,
providing internet access for LAN clients and shielding an internal web server. As more
internal networks and services are added, the ruleset can become long and
cumbersome. The longer the ruleset, the more latency the firewall would add when
checking until the last matched rule. This is where the quick keyword can make the
firewall run more efficiently.

If pf encounters a matching rule with the quick keyword, pf immediately stops
processing the ruleset and uses the corresponding rule. Putting commonly used rules
at the top of the ruleset with the quick keyword will greatly improve performance. In this
example, the webserver rule and localhost will move to the top of the filter rules with
quick to optimize traffic.

#=== Filter Rules ===

Block everything on all interfaces

block all

Allow unrestricted traffic on localhost

pass in quick on lo0 all

pass out quick on lo0 all

Allow http traffic to internal web server

pass in quick on $EXT_IF proto tcp from any to $WEBSERVER port www flags
S/SAFR modulate state

pass out quick on $INT_IF proto tcp from any to $WEBSERVER port www flags
S/SAFR modulate state

Allow ssh traffic to the firewall

pass in on $EXT_IF proto tcp from any to $EXT_IP port ssh flags S/SAFR
modulate state

pass out on $EXT_IF proto tcp from any to $EXT_IP port ssh flags S/SAFR
modulate state

Allow LAN clients outgoing tcp/udp traffic

pass in on $LAN_IF proto tcp from $INT_LAN to any flags S/SAFR modulate
state

pass out on $EXT_IF proto tcp from $EXT_IP to any flags S/SAFR modulate
state

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Derek Schwenk OpenBSD 3.4 and PF: A Firewall Solution

SANS GSEC Practical Assignment 12 / 20

pass in on $LAN_IF proto udp from $INT_LAN to any keep state
pass out on $EXT_IF proto udp from $EXT_IP to any keep state

Fragmentation
Not every packet sent over a network is well formed. Incorrect TCP/IP stack

implementations may cause anomalies. Attackers can craft fragments to exploit bugs in
TCP/IP stacks or bypass firewalls and network intrusion detection systems(NIDS). (1)
The solution is to reassemble these fragmented packets into well formed packets. The
scrub keyword facilitates this action.

Since scrubbing the traffic is not a trivial CPU task, choose carefully when
scrubbing all interfaces. For now, we’ll just scrub the traffic entering the external
interface.

scrub in on $EXT_IF all

An additional benefit of scrubbing an interface is pf will drop incoming packets
with illegal TCP flag combinations, such as SYN/FIN and SYN/RST. Therefore we can
limit the flags mask on a scrubbed interface from flags S/SAFR to flags S/SA . The
scrub rule is only acting on the in portion of the external interface therefore only those
rules will have a flags change. The scrub rule will go in the beginning of the filter
section of the ruleset. The filter section now consists of:

#=== Filter Rules ===

Scrub incoming external traffic

scrub in on $EXT_IF all

Block everything on all interfaces

block all

Allow unrestricted traffic on localhost

pass in quick on lo0 all

pass out quick on lo0 all

Allow http traffic to internal web server

pass in quick on $EXT_IF proto tcp from any to $WEBSERVER port www flags
S/SA modulate state

pass out quick on $INT_IF proto tcp from any to $WEBSERVER port www flags
S/SAFR modulate state

Allow ssh traffic to the firewall

pass in on $EXT_IF proto tcp from any to $EXT_IP port ssh flags S/SA
modulate state

pass out on $EXT_IF proto tcp from any to $EXT_IP port ssh flags S/SAFR
modulate state

Allow LAN clients outgoing tcp/udp traffic

pass in on $LAN_IF proto tcp from $INT_LAN to any flags S/SA modulate
state

pass out on $EXT_IF proto tcp from $EXT_IP to any flags S/SAFR modulate
state

pass in on $LAN_IF proto udp from $INT_LAN to any keep state

pass out on $EXT_IF proto udp from $EXT_IP to any keep state

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Derek Schwenk OpenBSD 3.4 and PF: A Firewall Solution

SANS GSEC Practical Assignment 13 / 20

Stop More Spoofing
We’ve just reviewed how to stop attackers spoofing weak TCP initial sequence

numbers and fragments to bypass the network defenses. Attackers can also spoof their
source address to hide their actual source address or impersonate another address.
The attacker then has an extra layer to shield them when carrying out illicit activities.

The antispoof keyword provides protection from spoofing in two ways. The first
is to block traffic that enters externally from an address on the same network. For
example, the firewall’s LAN interface should never see an address entering externally
from the network block it is sitting on. The LAN clients can communicate to each other
on the same network block without needing to access the firewall. The LAN clients are
sitting on the 192.168.10.0/24 network. If the LAN interface receives an external packet
from 192.168.10.13, which is part of the network 192.168.10.0/24, then the packet is
spoofed.

The second method antispoof adds extra protection is blocking external packets
with the same address as the interface. The firewall’s LAN interface, 192.168.10.1,
should never receive external packets with the same source address and should be
considered illegitimate. To offer extra protection from spoofing on an interface, use the
following rule:

antispoof quick for $EXT_IF inet

antispoof quick for $INT_IF inet

The caveat is not to use antispoof on the loopback interface. Since the host
sends traffic to itself on the loopback interface, the rule would block traffic on localhost.

#=== Filter Rules ===

Scrub incoming external traffic

scrub in on $EXT_IF all

Block everything on all interfaces

block all

Allow unrestricted traffic on localhost

pass quick in on lo0 all

pass quick out on lo0 all

Anti-spoof protection

antispoof quick for $EXT_IF inet

antispoof quick for $INT_IF inet

Allow http traffic to internal web server

pass in quick on $EXT_IF proto tcp from any to $WEBSERVER port www flags
S/SA modulate state

pass out quick on $INT_IF proto tcp from any to $WEBSERVER port www flags
S/SAFR modulate state

Allow ssh traffic to the firewall

pass in on $EXT_IF proto tcp from any to $EXT_IP port ssh flags S/SA
modulate state

pass out on $EXT_IF proto tcp from any to $EXT_IP port ssh flags S/SAFR
modulate state

Allow LAN clients outgoing tcp/udp traffic

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Derek Schwenk OpenBSD 3.4 and PF: A Firewall Solution

SANS GSEC Practical Assignment 14 / 20

pass in on $LAN_IF proto tcp from $INT_LAN to any flags S/SA modulate
state
pass out on $EXT_IF proto tcp from $EXT_IP to any flags S/SAFR modulate
state

pass in on $LAN_IF proto udp from $INT_LAN to any keep state

pass out on $EXT_IF proto udp from $EXT_IP to any keep state

Outgoing LAN Traffic and Lists
It’s time to revisit narrowing down the rules allowing LAN clients to access only a

certain set of external services. The main benefit is to prevent users from accessing
dangerous external services generated from worms, malware or trojaned software. This
isn’t meant as a cure all but it will hopefully slow down an outbreak within your network
and the internet as a whole. Another application is to enforce a company security policy
preventing users from accessing unauthorized services.

This will rule will also introduce the concept of grouping variables together, called
lists, to consolidate rules. The set of services the LAN clients will be able to access
externally will include: smtp, pop3, www, https, and ssh. Additional services can be
found by name in the /etc/services file.

The rule below is an example of how lists work in pf . When these values are
surrounded by {} in a rule, pf processes the rule looking at each item in the set. The
first rule below is the same as the following five rules.

Rule grouped with all 5 services

pass out on $EXT_IF proto tcp from $EXT_IP to any port {smtp, pop3, www,
http, ssh} flags S/SAFR modulate state

Five rules combined in the rule above

pass out on $EXT_IF proto tcp from $EXT_IP to any port smtp flags S/SAFR
modulate state

pass out on $EXT_IF proto tcp from $EXT_IP to any port pop3 flags S/SAFR
modulate state

pass out on $EXT_IF proto tcp from $EXT_IP to any port www flags S/SAFR
modulate state

pass out on $EXT_IF proto tcp from $EXT_IP to any port https flags S/SAFR
modulate state

pass out on $EXT_IF proto tcp from $EXT_IP to any port ssh flags S/SAFR
modulate state

The TCP rules for the LAN clients will appear as:
pass in on $LAN_IF proto tcp from $INT_LAN to any port {smtp, pop3, www,
https, ssh} flags S/SAFR modulate state

pass out on $EXT_IF proto tcp from $EXT_IP to any port {smtp, pop3, www,
https, ssh} flags S/SAFR modulate state

The LAN clients should only require UDP traffic for DNS lookups.
pass in on $LAN_IF proto udp from $INT_LAN to any port domain keep state

pass out on $EXT_IF proto udp from $EXT_IP to any port domain keep state

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Derek Schwenk OpenBSD 3.4 and PF: A Firewall Solution

SANS GSEC Practical Assignment 15 / 20

The filter rules with the modified outgoing LAN traffic is now:
#=== Filter Rules ===

Scrub incoming external traffic

scrub in on $EXT_IF all

Block everything on all interfaces

block all

Allow unrestricted traffic on localhost

pass quick in on lo0 all

pass quick out on lo0 all

Anti-spoof protection

antispoof quick for $EXT_IF inet

antispoof quick for $INT_IF inet

Allow http traffic to internal web server

pass in quick on $EXT_IF proto tcp from any to $WEBSERVER port www flags
S/SA modulate state

pass out quick on $INT_IF proto tcp from any to $WEBSERVER port www flags
S/SAFR modulate state

Allow ssh traffic to the firewall

pass in on $EXT_IF proto tcp from any to $EXT_IP port ssh flags S/SA
modulate state

pass out on $EXT_IF proto tcp from any to $EXT_IP port ssh flags S/SAFR
modulate state

Allow LAN clients limited outgoing tcp traffic

pass in on $LAN_IF proto tcp from $INT_LAN to any port {smtp, pop3, www,
https, ssh} flags S/SAFR modulate state

pass out on $EXT_IF proto tcp from $EXT_IP to any port {smtp, pop3, www,
https, ssh} flags S/SAFR modulate state

Allow LAN clients limited outgoing udp traffic

pass in on $LAN_IF proto udp from $INT_LAN to any port domain keep state

pass out on $EXT_IF proto udp from $EXT_IP to any port domain keep state

Global Options
The global options section of the ruleset is still blank. This section is used to set

options which affect how pf acts. The set options I’ll cover are loginterface , block-

policy , and limit .
The set loginterface option is a very useful to log the traffic statistics on an

interface. This setting tracks information such as number of packets and bytes passed
on the interface, state table information and other counters. This can only be set on a
single interface at one time. The external interface is the preferable interface for usage
statistics. The setting to enable logging the interface is:

set loginterface $EXT_IF

To view the interface statistics, use the following command:
openbsd# pfctl –s info

Status: Enabled for 0 days 12:07:14 Debug: None

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Derek Schwenk OpenBSD 3.4 and PF: A Firewall Solution

SANS GSEC Practical Assignment 16 / 20

State Table Total Rate
current entries 5

searches 101318 1.3/s

inserts 580 0.0/s

removals 575 0.0/s

Counters

match 3854 0.1/s

bad-offset 0 0.0/s

fragment 0 0.0/s

short 0 0.0/s

normalize 0 0.0/s

memory 0 0.0/s

The set block-policy option is used to as a default for rules that don’t explicitly
set how to handle the block rules. The block-policy options are drop and return . The
default behavior for a block rule is drop . This is recommended to conserve resources
and “silent” firewalls are more difficult to scan and fingerprint.
drop blocked packets are silently dropped

return TCP RST packets are sent for blocked TCP traffic; ICMP
Unreachable packets are sent for all other blocked traffic

We’ll setup the firewall to drop packets for rules that aren’t specifically matched.
This is redundant with the block rules I have used so far, but for example I’ll use:

set block-policy block

The set limit option helps fine-tune the resources on the firewall. This controls
the number of fragments and states kept in memory. The frags option sets the number
of entries kept in memory when using scrub rules. The default is 5000 entries. The
states option sets the amount of entries in the state table when using ”keep|modulate

state.” The default is 10000 entries. If there was a firewall with additional processing
power to hold more entries, the following rules could be used:

set limit frags 7500

set limit states 15000

The global options section now contains:
#=== Global Options ===

set loginterface $EXT_IF

set block-policy block

set limit frags 7500

set limit states 15000

Packet Logging and Analysis
Once the ruleset is in place, its helpful to have some logs of what pf is doing

whether it is for troubleshooting, monitoring or forensics. Packet logging is always

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Derek Schwenk OpenBSD 3.4 and PF: A Firewall Solution

SANS GSEC Practical Assignment 17 / 20

enabled, but pf will only log packets when a rule contains the log or log-all keyword.
Any rule can be logged. This allows you to fine tune the logs to fit your requirements.

To log when the antispoof rule is matched, the rules become:
antispoof log quick for $EXT_IF inet

antispoof log quick for $INT_IF inet

The pf logs are stored in binary format so you can’t view them with a text editor.
A tool such as tcpdump can facilitate this. Normal tcpdump flags can be used to filter
the log. The packets marked to be logged appear in /var/log/pflog. To view with
tcpdump:

/usr/sbin/tcpdump –r /var/log/pflog

Older logs may have been archived into gzip format to save disk space. The
archived files will appear as /var/log/pflog{1-3}.gz . Unarchive the .gz files with
gunzip before using tcpdump.

Viewing the log file with tcpdump will not provide real-time data. To troubleshoot
pf in real-time, tcpdump should be used on the pflog0 interface. The pflog0 interface
copies all the packets pf is configured to log.

/usr/sbin/tcpdump –i pflog0

Starting PF
Now that we have a complete ruleset we’re ready to start pf . The ruleset above

resides in the /etc/pf.conf file; the default configuration file for pf . Before starting pf
manually, let’s ensure it launches at startup after a reboot. Open /etc/rc.conf and
check the two following lines exist:

pf=YES

pf_rules=/etc/pf.conf

The pf variable should be set to YES instead of NO. If you are going to use a
different rules file, enter if after the pf_rules variable. Make sure the new rules file is
owned by root and belongs to the wheel group. Only the root user should have
read/write privileges.

-rw------- 1 root wheel 5091 Jan 31 20:10 /etc/pf.conf

To control pf via the command line, the pfctl command is used. Starting and
loading the /etc/pf.conf ruleset is done by:

openbsd# pfctl –f /etc/pf.conf

To load only the filter rules in the configuration file:
openbsd# pfctl –Rf /etc/pf.conf

To load only the NAT rules in the configuration file:
openbsd# pfctl –Nf /etc/pf.conf

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Derek Schwenk OpenBSD 3.4 and PF: A Firewall Solution

SANS GSEC Practical Assignment 18 / 20

To view only the current filter rules pf has loaded:

openbsd# pfctl –s rules

To view only the current NAT rules pf has loaded:
openbsd# pfctl –s nat

To view everything pftcl can display:
openbsd# pfctl –s all

Testing
After loading the final ruleset with pfctl the firewall is ready to be tested. The

external interface can be connected to your internet connection or connected privately
via a switch or hub for internal testing. The latter is the best solution to make sure the
ruleset is safe before exposing the firewall to the public. If this is your first time working
with a firewall, you may be amazed at the number of network scans.
 Tools such as nmap(www.insecure.org/nmap) and hping(www.hping.org) are
great to automate the testing of the firewall. Always double check if any authorization is
required before doing a port scan on a firewall. Better safe than sorry.

Conclusion

Anyone connected to the internet without firewall functionality is opening the door
for trouble. Certain services and data on your network are not meant to be used by
people outside your organization for confidential and/or security reasons. Those
services you do provide to the public should be protected from malicious intent. A
firewall isn’t going to cure every vulnerability or attack vector within your network, but a
strong perimeter will provide a barrier from the majority of attacks.

 Using a firewall can provide extra security, but a poorly configured firewall is the
same as not having a firewall in the first place. Using a proper configuration with
stateful packet inspection and network address translation, it is possible to have a
functional network while shielding the majority of illicit traffic from the internet and within
your private network.

Best of all, the foundation for the firewall is OpenBSD: a free open-source
product proactively focused on security with a long track record. Whenever budgets are
involved, not much sounds better than the word “free”. Even $40 to support the
developers shouldn’t add much to the bottom line.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Derek Schwenk OpenBSD 3.4 and PF: A Firewall Solution

SANS GSEC Practical Assignment 19 / 20

Appendix: Final Ruleset
#=== Macros ===

Interfaces

EXT_IF=”xl0”

INT_IF=”xl1”

EXT_IP=”11.22.33.44”

INT_IP=”192.168.10.1”

Networks

INT_LAN=”192.168.10.0/24”

Hosts

WEBSERVER=”192.168.10.100”

#=== Global Options ===

set loginterface $EXT_IF

set block-policy block

set limit frags 7500

set limit states 15000

#=== NAT ===

nat on $EXT_IF from $INT_LAN to any -> $EXT_IP

rdr on $EXT_IF proto tcp from any to $EXT_IP port $HTTP -> $WEBSERVER port
www

#=== Filter Rules ===

Scrub incoming external traffic

scrub in on $EXT_IF all

Block everything on all interfaces

block all

Allow unrestricted traffic on localhost

pass quick in on lo0 all

pass quick out on lo0 all

Anti-spoof protection

antispoof quick log for $EXT_IF inet

antispoof quick log for $INT_IF inet

Allow http traffic to internal web server

pass in quick on $EXT_IF proto tcp from any to $WEBSERVER port www flags
S/SA modulate state

pass out quick on $INT_IF proto tcp from any to $WEBSERVER port www flags
S/SAFR modulate state

Allow ssh traffic to the firewall

pass in on $EXT_IF proto tcp from any to $EXT_IP port ssh flags S/SA
modulate state

pass out on $EXT_IF proto tcp from any to $EXT_IP port ssh flags S/SAFR
modulate state

Allow LAN clients limited outgoing tcp traffic

pass in on $LAN_IF proto tcp from $INT_LAN to any port {smtp, pop3, www,
https, ssh} flags S/SAFR modulate state

pass out on $EXT_IF proto tcp from $EXT_IP to any port {smtp, pop3, www,
https, ssh} flags S/SAFR modulate state

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Derek Schwenk OpenBSD 3.4 and PF: A Firewall Solution

SANS GSEC Practical Assignment 20 / 20

Allow LAN clients limited outgoing udp traffic
pass in on $LAN_IF proto udp from $INT_LAN to any port domain keep state

pass out on $EXT_IF proto udp from $EXT_IP to any port domain keep state

References

1. Artymiak, Jacek. “Building Firewalls with OpenBSD and PF”; Second Ed.
devGuide.net. Poland, 2003. p322

2. Bullen, Eric. “A Newbie's Guide to Setting up PF on OpenBSD 3.x “ URL:
http://www.thedeepsky.com/howto/newbie_pf_guide.php (09/17/2003)

3. Fnordia.org web site. “An OpenBSD 3.3 pf firewall” URL:
http://www.fnordia.org/docs/pf.php (06/02/2003)

4. Hartmeier, Daniel. “OpenBSD Packet Filter” URL:
http://www.benzedrine.cx/pf.html (01/31/2004)

5. King, Andrew. “Andrew’s Guide to OpenBSD/i386” URL:
http://www.andrewsworld.org/docs/openbsd.htm (01/31/2004)

6. Matulkis, Peter. “Understand Packet Filter” URL:
http://www.aei.ca/~pmatulis/pub/obsd_pf.html (2004)

7. Network Working Group. “Address Allocation for Private Networks” URL:
http://www.faqs.org/rfcs/rfc1918.html (Feb 1996)

8. OpenBSD web site. “Manual Pages pf.conf” URL: http://www.openbsd.org/cgi-
bin/man.cgi?query=pf.conf&sektion=5&arch=&apropos=0&manpath=OpenBSD+
3.4 (11/19/2002)

9. OpenBSD web site. “PF: The OpenBSD Packet Filter” URL:
http://www.openbsd.org/faq/pf/ (01/01/2004)

10. OpenBSD web site. “Project Goals” URL: http://www.openbsd.org/goals.html
(08/04/2003)

