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Abstract 
Hypothesis testing is a common statistical technique applied to in the engineering 
field of quality control to determine if a statistically significant difference exists 
between two data sets.  By applying hypothesis testing as an anomaly detection 
technique to Intrusion Detection System (IDS) data, a decision can be made 
between sets of events to determine anomalous behavior.  Therefore, the system 
is enabled to alert with measured confidence. 
 
Terminology 
Anomaly detection – detecting activity that is characteristically or statistically 
different for any given user, system, or network. [8] 
 
False alarms – IDS alert triggered with no security significance or impact.  Kevin 
Timm, a Network Security Engineer at Netsolve Inc., notes that false alarms are 
generally classified in the following groups: 

“Reactionary Traffic alarms: Traffic that is caused by another 
network event, often non malicious. An example of this would be a 
NIDS device triggering an ICMP flood alarm when it is really several 
destination unreachable packets caused by equipment failure 
somewhere in the Internet cloud. 
Equipment-related alarms: Attack alerts that are triggered by odd, 
unrecognized packets generated by certain network equipment. Load 
balancers often trigger these types of alarms.  
Protocol Violations: Alerts that are caused by unrecognized network 
traffic often caused by poorly or oddly written client software  
True False Positives: Alarms that are generated by an IDS for no 
apparent reason. These are often caused by IDS software bugs  
Non Malicious alarms: Generated through some real occurrence that 
is non malicious in nature.”  [9] 

Intrusion Detection Systems (IDS) – hardware and software products that inspect 
and log network traffic that is perceived as malicious or suspicious at the host 
(HIDS) or network level (NIDS). 
 
Introduction 
With all the exposed security vulnerabilities, threats and available exploits, 
security has become a primary focus at all levels of industry.  Many enterprises 
have introduced Intrusion Detection Systems (IDS) as a layer in their “Defense in 
Depth” strategy to provide visibility and control over their networks by detecting 
attacks, policy violations, resource misuse, and faulty configurations. [5, 7] 
 
Yet, the effectiveness of IDS technologies has been in question recently. This 
skepticism has been strengthened by recent Gartner reports - "Hype cycle for 
information security, 2003" and “Intrusion Detection is dead – long live intrusion 
prevention”. [7]  The research firm has indicated that “intrusion-detection systems 
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are a market failure” due to a high rate of false alarms. [4, 7]  According to Kevin 
Timm, a Network Security Engineer at Netsolve Inc., 90% of all IDS alerts are 
false alarms or “noise”; the remaining 10% are actual pertinent security events.  
The concern with false alarms is that by generating so many unwarranted alerts 
the “value and urgency” of real security events is weakened by drowning IT 
resources in a pool of noise. [4, 9]  
 
So the problem does not seem to lie with whether IDS can detect and categorize 
traffic appropriately, “but rather its ability to suppress false alarms”. [1, 6]  Well, 
why not approach this problem as a quality control issue?  Engineers continue to 
improve the science of consistent quality delivery- why not leverage those 
techniques to the data gathered by an IDS.  A common technique used for 
quality control is hypothesis testing. 
 
Hypothesis testing is a statistical analysis technique that assists with finding 
statistically significant difference between two data sets.  By applying this method 
as an anomaly detection technique to IDS data, the system will be enabled to 
alert with measurable confidence.  Thus, any alerts generated would have a  
specific statistical meaning. 
 
Statistical Refresher 
Before getting immersed in hypothesis testing, a quick statistics refresher is in 
order. 
 
Random Variables: 
Take a six-sided die as an example.  If the die is rolled, a value of 1, 2, 3, 4, 5 or 
6 is expected.  This is a random variable )(X .  The actual rolled value – the 
outcome - is considered to be the measured random variable or an event )( nx .  
 
There are two types of random variables: discrete and continuous.  A discrete 
random variable can only take on one specific value (such as the outcome of 
rolling a die), while a continuous random variable can take on a range of values 
(for instance, the temperature outside).    
 
The probability that the die will land on 5 is denoted as 
 

6
1)5()( ==→= XPxXP n   (1) 

 
where )(XP  is the probability distribution function. 
 
Sample Mean: 
The mean is a measure of the “location” of the probability distribution function.  
For a continuous distribution this is defined as 
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∑=
x

xxP
 all

)(µ     (2)  

 
where ∑ denotes summation over all values of x . [2, pg 99]  However, in most 
cases, the probability distribution is not known beforehand; thus, it is common to 
estimate the mean using the sample mean noted as x . 

N

x
x

N

n
n∑

== 0
   (3) 

 
where N  is the total number of sampled outcomes and n  is an outcome. 

 
For example, if the die is rolled four times with the outcome of 1, 3, 4, and 6.  The 
sample mean is 3.5. 

5.3
4

6431
=

+++
=x    (4) 

 
Sample Variance: 
The variance is a measure of the width or spread of the probability distribution 
function.  Its definition is similar to equation 2, and for similar reasons the sample 
variance is commonly used to estimate the variance. [11]  
 

1

)(
0

2

2

−

−
=

∑
=

N

xx
s

N

n
n

    (5)  

 
By using the previous example of rolling a die four times with the outcome of 1, 3, 
4, and 6, the variance can be calculated by: 
 

 
2s = 

14
)5.36()5.34()5.33()5.31( 2222

−
−+−+−+−  

= 3.4
3

25.625.025.025.6
=

+++   (6) 

 
 
Sample Standard Deviation: 
The sample standard deviation is the square root of the sample variance.  It 
represents the average error from the mean.  
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1
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   (7) 

 
The standard deviation has an important meaning with regards to the normal 
distribution.  
 
Continuing with the same example of rolling a die four times with the outcome of 
1, 3, 4, and 6, the sample standard deviation can be calculated by: 
 

 

2s = 
14

)5.36()5.34()5.33()5.31( 2222

−
−+−+−+−  

= 08.2
3

25.625.025.025.6
=

+++   (6) 

 
 
Normal Distribution 
The normal distribution, also known as the Gaussian distribution, is the most 
commonly used continuous probability distribution function.  A probability 
distribution relates an outcome to its probability.  It is often associated with a bell-
shaped curve. [2, pg 65] 
 

 
Figure 1 – An example of a normal or Gaussian distribution, also known as, a bell-shaped curve.   
The x-axis is the value of the random variable in units of standard deviation.   The y-axis is the 
probability of the random event.   The further a possible event is from the mean, the less likely it is to 
occur. 
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5 

 
 
Cumulative Distribution Function 
The cumulative distribution function (cdf) is the probability that X  takes a value 
less than or equal to particular value x .  The cdf is the area below the probability 
distribution curve up to the point x .  For example, what is the probability that 
rolling a die will result in rolling a value 2≤ . [2, pg 30] 
 

3
1)2( ==≤ xXP    (8) 

 
An important variable associated with the cdf is αz .  It is the x  value with the a 
cdf probability of α−1 .  Mathematically, this is  
 

ααα −=≤ 1}{such that  zXPz .  (9) 
 

Student’s T-Distribution 
The student’s t-distribution is often used by professors when grading on a curve.  
This distribution often replaces the cdf in statistical analysis when sample sizes 
are small (<30). If T is the student’s t-distribution, then 

n
s

xT µ−
= ,    (10)  

 
and analogous to αz , the variable α,1−nt  is the x value of t-distribution with 
probability α−1 .  [12] 
 
Central Limit Theorem 
The central limit theorem states that the mean of a random variable will be 
normally distributed regardless of the distribution of X . [10] 
 
Hypothesis Testing Example 
Hypothesis testing is a technique used to make a decision whether to accept or 
reject a premise based on observations. [2, pg171]  For example, a masonry 
contractor sells cinder block for structures that requires heavy load sustainability.  
The contractor states that the cinder blocks can bear 8,000 pounds per square 
inch (psi).  It is crucial for the cinder blocks to meet these minimum requirements, 
because the structure calculations will be based on the cinder block strength.  If 
the blocks are stronger than 8,000 psi then the stability of the structure will not be 
compromised. [2, pg172] 
 
So, the contractor’s cinder blocks can only be used if it is determined that the 
blocks meet the minimum requirements.  A statistical approach would be to take 
a random sample of the cinder blocks and make a decision on the outcome 
obtained by the observed data.  Just to note, this does not mean that a wrong 
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decision can never be made.  If a bad sample is taken, the wrong conclusion can 
be inferred. [2, pg172]    
 
In this example, the null hypothesis, in statistical terms, is that the average 
strength of the cinder blocks meets the minimum requirements of 8,000 psi 
( psiH 000,8:0 =µ ).  The alternate hypothesis is any situation where the stability 
of the structure could be compromised.  In this case, the alternate hypothesis 
would be whenever the blocks have an average strength less than 8,000 psi 
( psiH A 000,8<= µ ).  The null hypothesis is “accepted” as truth unless it is 
statistically “proven” otherwise. [2, pg173] 
 
In summary, hypothesis testing is a systematic technique used to make 
decisions.  It also provided a mechanism to quantify risk – the probability that the 
wrong decision will be made. 
 
Hypothesis Testing Application 
Hypothesis testing was applied to IDS data in a similar way to conduct quality 
control.  In the IDS application of hypothesis testing, the null hypothesis was 
normal traffic or background noise.  The data used for the application was raw 
IDS summary data.  The data was inherently corrupt, because the data consists 
of both normal noise and abnormal traffic making it difficult to calculate the 
sample mean and sample standard deviation of normal traffic.  For the purpose 
of this application, the hypothesis testing technique was applied two-fold, as the 
data is corrupt (with abnormal data) and must be filtered.  For the initial 
application of hypothesis testing, the data was assumed to be Gaussian, and the 
process was comprised of three steps.   
 

1. Data was divided into moving windows. Then, the sample mean of 
each window was used to be able to invoke the central limit 
theorem.   

2. Data was removed from the data set to calculate a sample mean 
and sample standard deviation for normal traffic.  If the abnormal 
data was present, then the sample mean and sample standard 
deviation would be artificially inflated.  As the abnormal data was 
removed, the data became nearly Gaussian. 

3. Sample mean and sample standard deviation was used to calculate 
the IDS alert criteria, also known as, the decision criteria. 

 
The raw IDS summary data used in this application was obtained from a large e-
commerce company that utilizes Internet Security SystemsTM (ISS) products.  
The data was divided into three severities (1-Low, 2-Medium, and 3-High).  The 
severities are assigned by the IDS administrator based on the company’s 
environment.  The data set consisted of 6-months worth of IDS data broken down 
hourly.  Here is a snap shot of the data: 
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Month Day 
Hour 
(0-23) Events (Y) 

Hour Count 
(0 to M-1) Issue Severity 

6 1 0 249 0 3 
6 1 1 252 1 3 
6 1 2 236 2 3 
6 1 3 292 3 3 
. . . . . . 
. . . . . . 
. . . . . . 

11 30 20 2821 4150 3 
11 30 21 3401 4151 3 
11 30 22 3152 4142 3 
11 30 23 3167 4153 3 

Figure 2 – Six months of hourly raw data for all issue severity 3 events.  Hours range from 0 to 23, and the hour 
count begins at 0 to M-1.  Events (Y) are the total number of severity 3 events in that hour.  The issue severity is 
assigned by an IDS administrator. 
 

 
Figure 3 – Data distribution for severity 3 data set. Y-axis is the number of event and X-axis is hour count (0 to M-
1). 
 
Initially, the raw data is positioned into moving windows.  Consider a moving 
vehicle, as an analogy for moving window; the vehicle travels from point A to 
point B.  The entire route is considered the data set, so as the vehicle is in 
motion, the driver’s view changes.  The driver is observing a “moving window” of 
the total route as the vehicle is in motion.  To accomplish this for this application, 
the sample size of the moving windows must first be calculated for the desired 
critical difference.  If N is the sample size, then 
 

2
21

22

)(
)(

µµ

σ βα

−

+
=

zz
N .   (11) [2, pg178] 
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8 

 
In equation 11, σ  is the standard deviation and 21 µµ −  is the critical difference.  
The critical difference is the minimum detectable change in sample mean.  The 
variables αz  and βz  are the inverses of the standard cdf for the probability of 

α−1  or β−1 .  The variables α  and β  represent risk.  By substituting 
05.0=α , 05.0=β , )(Ystd=σ , and )(21 Ystd=− µµ , N yields an initial sample 

size of 11. 
 
Thus, the moving windows will consist of events for N  hours.  For example,  
 

=W



























−+−

−

21.

21.

110.

 ... 
.
.
.

    .. .     
     ...     

NMNN

M

M

xxx

xxx
xxx

    (12) 

 
 
where M is the number of windows and N is the sample size; this will be referred 
to as the window matrix.  Thus, each widow can be represented as the following: 
 









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



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


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1
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1

1

1

1

0

0

.

.

.
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.

.

.
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.

.

.

NM

M

M

M

NN x

x
x

x

x
x

x

x
x

www .  (13) 

These make the columns of the matrix W . 
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9 

 
Figure 4 – Histogram of w  shows the data is not normally distributed. 
 
 
If w  is the vector containing the mean of each sliding window, then mw  is an 
element of the vector that is noted as 
 

∑
−

=

−++
==

1

0

10,1 ...N

n

nn
m N

xx
N

w
W

. (14) 

 
 
Figure 5 shows the histogram of w .  It is apparent that the data is not Gaussian, 
so the first hypothesis test was used as a systematic way to filter abnormal data 
and obtain a distribution closer to being Gaussian.  Now in order to determine 
abnormal data, the sample mean was taken over all sliding windows.  If W is the 
total sample mean of w , then 
 

∑ ∑∑
−

=

−

=

−

=

==
1

0

1

0

1

0

,
M

m

M

m

N

n

nmm

MNM
w

W
W

.  (15) 

 
The sample standard deviation of w  is also calculated to identify the expected 
error from the sample mean with 
 

∑
−

= −
−

=
1

0

2

)1(
)(M

m

m
w M

WwS .  (16) 
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These values served to eliminate the abnormal data points.  These points must 
be removed such that the sample mean and sample standard deviation for the 
normal traffic are not artificially inflated due to the corrupting data.  To remove 
the abnormal data points, a decision criterion must first be calculated to 
determine what points will be thrown out.  If 1c  and 2c , are the decision 
criterions, then 
 

N
zc σ

µ α
2

1 −=    (17) 

 
and 

 

N
zc σ

µ α
2

2 += .   (18) 

 
 
Note, the t-distribution replaces the cdf when 30<N .  By substituting W=µ , 

wS=σ , and 05.0=α , then 2281 =c  and 8612 =c .  If w  was indeed normally 
distributed, then over time, there is a 5% probability that mw  would fall outside of 

1c  and 2c . 
 

 
Figure 5 – Histogram of the sliding window, 0w , after abnormal traffic removed with a normal 
distribution.  The data is starting to converge toward a normal distribution. 
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For the next step, all data points where 21 cwc m ≤≤  were removed from w ;  this 
new vector is referred to as 0w .  The remaining points are nearly Gaussian, see 
Figure 6.  The sample mean ( 0x ) and sample standard deviation ( 0s ) of the 
normal remaining data will be calculated for the basis of the null hypothesis.  If 

0x  is the mean and 0s is the standard deviation, then 
 

∑

∑

−
−

=

=

1
)(

2

2
0

0

2
0

M
xws

M
wx

m

m

   (19) 

 
for  21 cwc m ≤≤  where 2M  is the total number of data remaining after the 
abnormal data was removed. 
 
After the sample mean and sample standard deviation of normal traffic is 
calculated, the IDS alert criteria can then be calculated using equations 17 and 
18.  This is where the second round of the hypothesis testing application 
appears.  Since a new sample standard deviation was determined, a new sample 
size must be calculated.  The sample size of the moving window was re-
calculated using equation 11 where 001.0=α , 001.0=β , 0s=σ , and 021 3s=− µµ .   
The values of α  and β , again, represents risk.  The equation yields 4=N .  The 
window matrix W was then re-populated with events of sample size N , and 

 ,w W  and wS  were re-calculated as well.  By making the proper substitutions, 
equations 17 and 18 yield 501 =c  and 6572 =c .   Since w  is nearly Gaussian, 
and then over time, there is a 0.1% probability that mw  would fall outside of 1c  
and 2c .  As there was no concern with events that underperformed, 1c  was not 
applied; the only concern was the upper bound, critical value, of 2c .  That is not 
to say 1c  is unimportant, not seeing the usual amount of traffic could indicate 
something is wrong such as the IDS or network is down or IDS has been 
compromised among other countless possibilities.  There may be other 
mechanism already in place to detect such circumstances, so in this application, 

1c  was ignored.  Consequently, any events above the critical value “disprove” the 
null hypothesis – an IDS alert would ensue.  The null and alternate hypothesis 
can be noted as 
 

events 657
events 6570

>=
≤=

µ
µ

AH
H

.  (20) 
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12 

 
Figure 6 – Mean data, w , for severity 3 data set with decision criteria used for null hypothesis and 
sample mean.  The y-axis is the event count in log scale.  Any value above Decision Criteria for 
Alerting  would “disprove” the null hypothesis.  Thus, an IDS alert would be generated. 
 
 
The calculated alerting criteria can be used over time until the quality of alerts 
begins to degrade due to change in network activity, since “normal and attack 
traffic evolve over time”. [3, pg 19]  Network traffic is not static; thus, the normal 
and attack traffic evolves over time.  If the quality begins to degrade, the data 
requires a re-calculation of the alerting criteria, and the entire process discussed 
in this paper will have to be implemented.  Yet, since this process can be easily 
automated, there is no required manual process.      
 
The hypothesis testing process discussed throughout this paper was applied to 
the other data sets (severity 2 and 1) as well; the results are shown below.  
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13 

 
Figure 7 - Mean data, w , for severity 2 data set with decision criteria used for null hypothesis and 
sample mean.  The y-axis is the event count in log scale.  Any value above Decision Criteria for 
Alerting  would “disprove” the null hypothesis.  Thus, an IDS alert would be generated. 
 
 
 

 
Figure 8 - Mean data, w , for severity 1 data set with decision criteria used for null hypothesis and 
sample mean.  The y-axis is the event count in log scale.  Any value above Decision Criteria for 
Alerting  would “disprove” the null hypothesis.  Thus, an IDS alert would be generated. 
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Conclusion 
Hypothesis testing was applied to IDS summary data to determine alert criteria.  
The hypothesis testing procedure was used twice.  Hypothesis testing was 
initially used to eliminate data from the IDS summary data set to gauge normal 
traffic.  The hypothesis testing was performed using the mean of a moving 
window, in order, to be able to invoke the central limit theorem.  Once the normal 
traffic statistics were estimated, a hypothesis test was used again to determine 
an alerting criterion.  The alert criterion was then calculated for the null 
hypothesis.  The purpose of this procedure was to detect changes in the sample 
mean through inherent noise in the measurements.  However, there is always a 
chance that a sample mean will be misleading - this is the risk or the total 
probability of making a wrong decision.  The risk can be calculated using 
conditional probability by multiplying the risk of the first hypothesis test 
application (5%) to the second 0.05% (since 2c  was only used) resulting in 
0.025% risk or 99.975% confidence. 
 
For the severity 1 data set (see figure 9), the data seems to need further 
refinement and analysis.  It appears that the normal traffic should be more 
confined and that the decision criterion is high; this is because the abnormal data 
deviates significantly.  The null hypothesis must be refined to eliminate more 
abnormal data by adjusting risk and/or critical difference terms or introducing 
more data.  
 
Hypothesis testing provides a scientific way of determining traditional thresholds.  
Many implementation of security monitoring products require the user to provide 
a threshold value such that the system can alert if a threshold is exceeded; yet, 
how are those values determined?  Well, administrators mostly just eye-ball the 
value which is not based on anything of value.  Hypothesis testing provides 
statistical meaning to this value. 
  
In real-world use, the hypothesis testing application discussed in this paper could 
be applied to a more granular view of the data such as per intruder or IDS 
signature not necessary merely severity level. 
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Appendix A – Tool used for computations and plotting 
GNU Octave was used to calculate and plot all steps in this paper.  GNU Octave 
is free software that can be obtained at http://www.octave.org/. 
 
The following script was used: 
 
N = samplesize(.05, .05, std(Y), std(Y)); %Est. initial sample size 
N = round(N);      
U = window(Y,N,N,M-N);    %Raw data into moving windows 
 
mu = mean(U);     %Take mean of each window 
sigma = std(U);     %Std. of each window 
 
mu0 = mean(mu);     %Mean of mean of all windows 
sigma0 = std(mu);     %STD of mean of all windows 
 
XX = [mu0-3*sigma0:mu0+3*sigma0];  %Possible Event count 
YY = normal_pdf(XX,mu0,sigma0^2);  %Probability of event count 
 
[C1,C2] = singlemean_c(mu0,0.05,sigma0,N);%1st critical values used 
 
idx = find((mu>C1)&(mu<C2));  %remove abnormal data 
 
%%ALERTING CRITERIA STARTS HERE!! 
mu0_1 = mean(mu(idx)); %Take mean of moving windows 

of data without abnormal data 
 
sigma0_1 = std(mu(idx)); %Take std of moving windows 

of data without abnormal data 
 
N = samplesize(.001, .001, 3*sigma0_1, sigma0_1); %sample size for 

null hypothesis 
moving windows 
used to determine 
null hypothesis 
critical values 
or alerting 
criteria 

N = round(N); 
U = window(Y,N,N,M-N); %Data in moving windows with 

new sample size 
 
mu = mean(U); 
sigma = std(U); 
 
[c1,c2] = singlemean_c(mu0_1,0.001,sigma0_1,N); %null hypothesis 

critical values 
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ii 

 
function sN = samplesize (alpha, beta, cDiff, sigma) 
% sN = samplesize (alpha, beta, cDiff, sigma) 
 
z_alpha = normal_inv(1 - alpha); 
z_beta = normal_inv(1-beta); 
 
sN = ((sigma^2) * ((z_alpha + z_beta)^2))/(cDiff^2); 
endfunction 
 
 
function [c1, c2] = singlemean_c (u, alpha, sigma, n) 
% [c1, c2] = singlemean_c (u, alpha, sigma, n) 
% Decision Criteria 
%% if n (sample size) is too small (i.e. less than 30) 
%% Then use t distribution is used 
if(n > 30) 

z_alpha = normal_inv(1 - alpha); 
else 

z_alpha = t_inv(1 - alpha, n-1); 
end 
 
c1 = u - (z_alpha/2) * (sigma/sqrt(n)); 
c2 = u + (z_alpha/2) * (sigma/sqrt(n)); 
endfunction 
 
function U = window(u,I,M,N) 
% Creates a set of vectors from input u 
% U = [u(I-M),...,u(I+N-M)] 
%     [...             ...] 
%     [u(I),...    ,u(I+N)] 
 
U = zeros(M,N); 
for i = 1:N 
    if (i+I-1) <= M 
        U(M-(i+I-2):M,i) = u(max(1,I-M):i+I-1); 
    else 
        U(:,i)   = u(i+I-M:i+I-1); 
    end 
end 


