
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 1

Scott Clark
Submitted February 26, 2004
Signal to Noise – Monitoring Your Infrastructure
Research Topics in Information Security
GIAC GSEC Practical Assignment version 1.4b (amended August 2002)

Abstract:
Managing a technology environment can be a tough assignment. If you only have
a handful of system in your environment, then maybe you can get away with
managing them manually, but as the number of systems, services, applications,
and users per system administrator increase, then you will need to rely on
intelligent, modular automation to help you manage the system. Under the
paradigm “You cannot manage what you cannot measure”, the first place to start
is with measurement. This implies quantifying as much as you can about your
environment, and measuring those metrics both instantaneously and historically.

This paper will discuss a framework for setting up a scalable / extensible
monitoring infrastructure using opensource tools, starting out very simple and
providing options to extend the sophistication. It will talk about the policy, the
different components, the particulars of how to design, and things to look out for
in your implementation of an environment monitoring system.

There are two strategic concepts that will be realized within this:

1. You can manage with certainty your technology environment without the
need for draconian measure. You will have the information necessary to
detect ANY changes that happen within your environment, and therefore
do not need to exert control, because you will have control.

2. Aggregating ALL the information regarding the state of your infrastructure
to be accessible by a single entity (response system) will allow to make
the best possible decisions in response to potential issues detected. You
will be able to cross-validate any reported issue for positive identification
prior to any action.

Understanding the Components of Infrastructure Monitoring:
In order to properly understand what we need in an infrastructure monitoring
solution, we must first understand the component parts. The solution can be
broken up into three layers, each providing service to the next: a data collection
layer, a data analysis layer, and a response layer.

The data collection layer is usually a collection of simple inquiries of devices,
services, or applications and the associated results. These results form the
foundation for the next layer, which is data analysis. The data analysis layer must
review the data, and based on threshold definitions, make decisions on whether
or not to initiate an event. If an event is generated, that will then stimulate the
response layer, which can range from generating a simple log entry all the way

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 2

up to taking automated responsive action, and can handle various types of
events, managing them differently.

It is best to imagine the components as a hierarchical pyramid1:

Each layer acts as a supplier to the layer above (consumer layer), supplying data
as input to the consumer layer, with the consumer layer providing data
processing, imbuing the data with value, and transforming it into information prior
to supplying that information as input to the next subsequent layer.

The final distinction is between instantaneous and historical monitoring.
Instantaneously, you will need to know the health and status of your environment
at any point in time in order to efficiently address issues that urgently need
resolution (system down, service broken, etc.). Historically, you will be interested
in tracking information over time, so you can look at trends to see if you will need
to proactively address capacity issues (at the current utilization rate, you will be
out of disk space in 1 month, network throughput to a remote site is going to hit a
wall in 3 months given the current growth rate, etc.). Another advantage to
historical trending would be to understand anomalous behavior (We had no
problems with this system until 2 weeks ago, and it has been unstable for the last
two weeks).

1 Pyramid concept and management top block taken from “Building the New Enterprise: People,
Process, and Technologies” by kern, Johnson, Galup, Horgan, Cappel (P21).

Manage
ment

Reaction

Data Analysis

Data Collection (Testing and Inquisition)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 3

Designing the solution:

The Goal of the Design:
• Gain control of your environment, so that no change can happen within

the environment that you don’t know about (because your monitors caught
those changes).

• Create a solution that is concurrently aware all the facets of your
environment with which to make decisions.

• Create a solution that is easy to setup, manage, and use.
• Create a single place to look for information regarding health and status of

your infrastructure.
• Leverage a modular approach to monitoring, creating a solution

(framework) that can accommodate existing or envisioned monitoring tools
for any monitoring you would need to manage your environment.

The goal of the design would be to create a framework that would emulate the
military command and control model. It would leverage an army of data collectors
to feed a single decision system in order to make the best possible decision with
regard to a given situation having an understanding of ALL the information that is
available, not just the single pointed stimulus that raised the issue as a potential
problem (what a point tool would yield).

The framework should be built hierarchically, with the data collection layer
reporting to the data analysis layer, that would in turn report to the response
layer, which can then make decisions based on the input of ALL the data that has
been collected. The intentional design of this solution is to give the decision point
(response system) the ability to validate the issue from many different directions,
significantly increasing the accuracy of the reported issue prior to any response
or action.

The hierarchy would serve additionally to isolate the functions of data collection,
data analysis, and response, allowing each one of those layers to be focused on
that specific function. This emulates the OSI protocol standards model (3 layers,
not 7) for the same benefits that OSI has observed2:

• Easier for humans to discuss and learn
• Allows integration of partial solutions (Facilitates Modular Engineering)
• Creates better environment for interoperability
• Reduces complexity, allowing easy programming changes and faster

integration
• The layer below another layer provides a service to the higher layer.

2 These concepts were referenced from CCNA Exam Certification Guide, CCNA Exam 640-607, P75-81,
Wendal Odom

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 4

The framework would manage all communication and action, allowing you to glue
together specialized, intelligent modules to perform the tasks at each layer. You
would be able to leverage any work that you do across all monitoring tools, as
compared to having to add intelligence to each package that you are using to
monitor different aspects of your environment. Configuration of the response
system would happen infrequently, and as new monitors are installed, all that
would be needed is to define the new monitor within the existing framework, and
configure the monitor itself. There would be no additional management required.

Finally, this model would create a single point to inquire for any issue within your
environment. The response system would have knowledge of every portion of
your environment that would be under investigation or declared defective.

Set up for Extensibility
This is a modular framework that would accommodate any type of monitor that
you can think of or that has already been developed, and leverage the common
parts of the framework to create a single solution for monitoring your environment
in its entirety.

Because many of the current monitoring tools have their own methods for
communicating events, attempting to leverage these tools collectively would
create many point solutions within your environment as compared to creating a
single, extensible monitoring solution. While having fault tolerance in your
monitoring system is a good thing, having every system have its own
communication process and channel would get out of hand quickly.

Manage
ment

Reaction

Data Analysis

Data Collection (Testing and Inquisition)

Problem Management System
(Helpdesk)

Sn
or

t
C

us
to

m

SN
M

P
A

R
P

w
at

ch

A
R

P
lo

gs

nm
ap

SW

A
TC

H

sy
sl

og

Tr
ip

w
ire

N

ag
io

s

C
us

to
m

C
us

to
m

C

us
to

m

H
is

to
ric

al

Tr
en

di
ng

O

ut
 o

f b
an

d
C

us
to

m

Fi
re

w
al

l
Fi

re
w

at
ch

C
ol

le
ct

or
 M

on

A
M

Monitoring “Heirarchitecture”

O
rc

al
la

to
r

rr
dt

oo
l

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 5

A helpdesk (Problem Management System) is the unifying technology for
aggregating the monitoring of your infrastructure. This gives you ONE point of
control for notification and action, allowing you to initiate an informed and
appropriate response (properly filtered to respond according to criticality/urgency,
having verified the issue with additional input).

This way, you can have as many systems as you would like to monitor your
infrastructure, detecting potential issue, and have them interface to a single
helpdesk package. This allows the helpdesk package to handle ticket (issue)
management, status management, classification, categorization, escalation
management, action management (communication would be handled in this
step), logging, resolution tracking, knowledge base management, reporting, and
overall management of how to react once a potential issue has been identified.
Depending on the sophistication of the helpdesk package used, this allows for a
varied and granular response to any number of events, including automation of
additional inquisition for clarification of the potential issues, or even fully
automated rectification of the event based on how thorough the understanding of
the issue is. In this manner, you can focus the customization for your
environment, and the majority of the effort on the response system (helpdesk).
You can then leverage the plethora of existing opensource tools (without
modification) that are available to provide the data collection and analysis layers,
for monitoring your environment and detecting potential issue.3

Start Small:
Begin your adventures into sleepless purgatory by integrating a single monitor
into the framework. This will allow you to work out the kinks of your framework
and reduce the signal to noise ratio to something manageable for that one
monitor. Once you have control of that monitor, then select one more monitor,
and integrate that. Take it one tool at a time so that you do not inundate yourself
with false-positive issues, and deteriorating the confidence in the monitoring
solution. Once support staffs lose confidence in the solution, they tend to not pay
attention to any notifications, assuming the it will be yet another false-positive. At
that point, your monitoring solution, no matter how elegant, is useless.

You should also be ready with each monitor before you integrate it into your
framework. Have an understanding of what is a “good” state and what is a “bad”
state for what you are trying to monitor. Otherwise, you will end up, once again,
inundating your sysadmins with false-positives and they will lose faith in the
solution as a tool. All monitoring is relative to some reference data, so you should
be able to define the reference data prior to initiating monitoring. For every
monitor, there is an integration period where you are getting your infrastructure to
a “healthy” state with respect to the monitor, as well as a period of time to get the
monitor to a “stable” configuration. It is recommended to not turn on notification
until the monitor has reached a “healthy” AND “stable” state.

3 Concepts for using a helpdesk as an aggregation point came from a discussion with the original designers
of OpenARGUS http://openargus.sourceforge.net

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 6

Gain Control / Retain Control:
As you bring online more monitors, you will eventually reach a state where you
are monitoring all (or almost all) aspects of your environment. In the context that
we are using the term, “control” revolves around configuration management, and
the monitors associated with that facet of the solution. You will be monitoring all
your systems for changes to key files (hostbased intrusion detection – tripwire4,
nmap5 queries for new hostbased services/applications), monitoring your network
for changes in configuration (arp table queries of network gear, nmap scans for
new IP’s, nmap queries for new network services, tripwire6 on the running
configurations for all network devices), monitoring firewall logs for intrusion
attempts (firewatch7), monitoring incoming traffic for suspect traffic patterns
(SNORT8), etc. Now, any change that your monitors detect is an indication that
something is different. You will know from your monitors EXACTLY what is
running on your network, and by tracking changes, you will gain an upper hand in
the battle to “manage” your environment.

This leads us to a very important paradigm in security: “What you cannot monitor,
prevent, and what you cannot prevent, monitor”9. Knowing precisely when
someone adds a system or service to your network, and being able to tell where,
when, and what changed (MAC address, port number, office/cube, what system
is now running a Napster service, etc.) is critical to you being able to retain
control of your environment once you have gained it.

The revelation we should take away from this is that we can now manage our
environment by leveraging information and technology, and not through
draconian measures, as is common in our industry.

4 Tripwire – http://www.tripwire.com/products/servers or alternately, http://www.tripwire.org for the
opensource version of Tripwire
5 NMAP – http://www.insecure.org/nmap
6 Tripwire – http://www.tripwire.com/products/network_devices
7 Firewatch – http://www.bellcore.com/SECURITY/firewatch.html
8 SNORT – http://www.snort.org
9 This paradigm taken from many SANS, USENIX, and LISA conferences. Credit to the security
community at large.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 7

A few words about requirements and tool selection:
In defining the requirements of the monitoring system, there is no simple
checklist that you can follow to determine the “right” solution or tell you what
package to pick. Some things to consider when evaluating this would be:

• What is the budget for the monitoring solution? This will drive your primary
decision point. The commercial tools have an initial cost factor that the
opensource tools would not. There will be associated cost to configuration,
support, maintenance, and customizations for both commercial and
opensource solutions that will depend on the skillsets you have available
to you.

• What is it you need to monitor? There is a large variety of tools available.10
• How sophisticated does the tool need to be? - Do you need to be

monitoring memory utilizations for Oracle database servers, or is it
sufficient to be able to ping the systems to know that they are connected
to the network and have power to them? What targets do you have that
require sophistication and how many targets require sophistication?

• How many total nodes are you monitoring? – This might drive the number
of data collection systems you might need, or the location of the data
collection systems.

• How many sites are to be monitored? – This would probably drive the
distribution of your data collection systems, depending on the size of the
site.

• Do you have access to the facilities at any remote sites that need to be
monitored? – Would it be possible to install a data collection system onsite
or do you have to monitor them remotely?

• Do you have access to the systems to be monitored? – Can you install
client software or do you need to query the systems from the outside only?

• How many support personnel do you have that will be using the
monitoring tool? – What type of interface do you need to put on the
monitoring system?

• How sophisticated are the users of the tool? Are the support personnel
capable of managing complex solutions, or do you need to make it
intuitive and fully automated? Are the support resources capable of
making customizations to the tool, or are do you need out-of-the-box
solutions?

• What type of support do you need for the overall monitoring solution?
Does your company need 7X24 access to commercial support hotlines for
the monitoring solution, or can you get away with the opensource model.

Based on the requirements definition, select the tools that best reflect the
situation for your environment. There might not be a single tool that
encompasses all the facets that you will want to monitor, so your implementation

10 An overview of many of the available tools and what they do is available at
http://www.slac.stanford.edu/xorg/nmtf/nmtf-tools.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 8

probably will be a hybrid of solutions, gluing many tools together to create a
single aggregate monitoring “solution”. There are commercial monitoring
platforms that have aggregate monitoring frameworks for monitoring many
different things within the same solution. Tools like HP/Openview11, and
IBM/Tivoli12 are two such solutions that have been around for many years, and
are fairly mature in their development. Opensource tools offer a cost effective
alternative for environments that have the resources capable of executing the
integration and customizations required. Two tools that apply for a good portion
of our monitoring needs are SNIPS13 and Nagios14, with Tripwire and NMAP
filling other significant holes.

Data Collection System
The first thing that needs to be addressed is to understand what is it that you
want to monitor (and therefore what data needs to be collected). Some potential
options are15:

• Fault Management
o Monitor system availability (ping test and round trip time – SNIPS or

Nagios)
o Monitor application availability (port response test – custom)
o Monitor for application integrity (functional test - custom)
o Monitor network availability (ping test and round trip time – SNIPS

or Nagios)
• Security Management

o Monitor log files (syslog collection, firewall log collection, application
log collection)

o Monitor Network Traffic (SNORT, Arpwatch16, custom)
• Configuration Management

o Monitor system configuration (tripwire evaluation)
o Monitor system configuration (nmap port scan of system for

services running, SATAN17)
o Monitor network configuration (tripwire evaluation on network

device’s running config)
o Monitor network configuration (nmap address space evaluation)
o Monitor network configuration (network device arp table query)

• Performance Management
o Monitor capacity points (client utility query – SNIPS, Nagios,

SNMP18, or custom)

11 HP/Openview - http://www.openview.hp.com/
12 IBM/Tivoli - http://www.tivoli.com
13 SNIPS - formerly NOCOL - http://www.netplex-tech.com/snips/
14 Nagios - formerly NetSaint – http://www.nagios.org/
15 Categorizations taken from Network Monitoring Explained: Design and Application By: Dah Ming Chiu
(p29-34)
16 ArpWatch - http://www.securityfocus.com/tools/142
17 SATAN - http://ciac.llnl.gov/ciac/ToolsUnixNetSec.html#Satan
18 SNMP - http://sourceforge.net/projects/net-snmp

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 9

o Monitor for capacity points (performance validation test – SNIPS,
Nagios, Orcallator19, or custom)

• Capacity Management
o Monitor for predictive capacity limits (historical logs of data

collections)

Once you have you have an understanding of what data is to be collected, there
are several implications that need to be addressed:

• Providing instantaneous and historical data collection
• Placement of data collection system

o Network latency created by data collector placement
o Effective DoS created by overloading any one data collector system

or network segment
o Dependencies created within monitoring system by placement of

data collector system
• Check for availability of the data collector from another point
• Data comparison integrity and security
• Data collection client software can impact client performance
• How to keep data collectors up to date with respect to what data to collect

Your data collection system needs to be collecting data for the here-and-now, so
that you will know the status of your network and any given time. But you will also
need to track those results over time, so that you can go back and review
historical information regarding your infrastructure, and assemble availability
statistics (looking at all dependencies when you are doing your calculations),
trending analysis (when will you need to increase capacity?), and reliability
assessments (when did we start seeing trouble with the component in
question?).

 The placement of the data collection system also needs to be reviewed. If you
have multiple subnets or multiple sites that you are monitoring, then you should
consider placing a data collection system local to the subnet or site to minimize
traffic across the routers and WAN. In considering this, look at how many
systems it is that you will be monitoring across the link, the frequency needed of
the monitor, the link speed, the link latency, and the type of monitors that will be
used across subnets to help you determine if you will need to allocate a system
for monitoring that would be local to the subnet. The issue you would be most
concerned about with monitor location would be link loading – understanding how
much traffic you will be putting across an interface collectively, and what that will
do to that link.

If you have multiple data collection systems, another important point to
remember is to have each of those data collection systems to be monitored by
another system for availability. This is to make sure that you don’t have an

19 Orcallator – http://www.orcaware.com

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 10

outage in the devices that are supposed to tell you that other devices are not
operating properly – no news is not good news in this case.

Each level of the solution has to monitor the previous level and all related
dependencies for availability and function in order to properly manage
notification. For example, if the network is down to the data collection system,
you would only want the response system to inform you that the network is down,
not inform you that every system on your network is down (data storm).

It is important to make the each facet of the monitoring systems as standalone as
possible so that outages (what you are monitoring for) do not impact the
monitoring function. Have small, localized monitoring systems that monitor the
supplier service (as we talked about in layers) for availability. If the supplier is not
available, raise the alarms indicating that the service provider (previous layer) is
unavailable…

For data collection functions that need to share data with other applications, it is
important to build resiliency into how the data collectors access the centralized
data space. In the UNIX world, this would mean using NFS hard mounts with the
INTR option set so that the systems can function in the event that the file server
has a failure (it is understood that monitors dependant on the data space in
question would not function in this case). One important reason to have data
located in a central location would be for extensibility purposes. In the event that
you need to use multiple data collectors for the same data type (number of
systems being tested drives multiple monitors for throughput, or to avoiding a
router hop, etc.), having the data centralized would allow you to collect data
using multiple sensors, and still do the analysis with a single machine.

But Who Will Watch The Watchers?

Manage
ment

Reaction

Data Analysis

Data Collection (Testing and Inquisition)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 11

Another facet to understand is the access privileges that are required for each
data collection system. This is especially important in the case of configuration
management / data integrity assessment. When doing data integrity
assessments, the reference data (data that is being compared against) would
need to be mounted read-only, as well as the executables that are doing the
comparison. This will ensure that your integrity check is accurate. You will also
need to figure out a method of being able to commit changes to your reference
files, given that you have a read-only mount to those files. The majority of these
monitors will be security related, and therefore has more sensitivity.

Sometimes it will be better to only collect data from the outside of a system, this
being on systems where performance is critical and close to a capacity point. The
act of monitoring on the system itself might steal resources that need to be used
for the function of the system, and we do not want the act of monitoring to directly
impact the performance of the system (a very bad twist on the Heisenberg
Principle).20 This is left to your discretion for when to have client code and when
to not have client code, but CPU intensive systems are probably better monitored
from afar…

Another troublesome aspect is how to keep the configuration files for your
monitors up-to-date. With your network and infrastructure changing regularly,
how is it possible to keep the monitors watching for ALL the systems,
applications, and services that you are running. The simple answer is “by
monitoring” of course. Set up monitors to continuously scan your environment for
new systems, applications, and services being introduced, and have the
monitoring system flag new entrants. If they are legitimate, then you can have an
option to add them to the monitoring configuration (and any other tracking system
that you have). A good additional feature to a helpdesk system is to have an
asset database attached. This is a good point to pull the initial information for
your configuration files, and have your automation update both (the asset
database and your configuration files) as you go forward. You can also use your
monitoring system to validate other types of configuration files. You can verify
NIS tables, DNS entries, LDAP tables (maybe your asset management system
consists of LDAP tables), Active Directory tables, etc. You can monitor anything
you can think of (an probably should!).

Definitions for Data Collectors

Data Collection Type Description
Service / Application Availability A request to the service or application to

determine if the application or service is
running. A good example of this would be a
sample SQL call to verify that an Oracle

20 The Heisenburg Uncertainty Principle, Werner Heisenberg

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 12

database is running. Another example would
be a named query to a BIND server to verify
that DNS was responding.

System Availability A request to the system to determine if the
system is responding. A good example of this
is ping.

Client Query A request against a client process running on
the system that is running specifically for data
collection purposes. An example of this would
be SNMP

Performance Query A request to a system, application, or service
to determine the performance of that
system/service/application. Good examples of
this would be round trip time (determining
latency) or throughput tests.

Integrity Query An inquiry of a dataset to determine if the
dataset has been altered. A good example of
this is an MD5 hash of a file set. This would be
compared against a known good hash, and
any difference would indicate a change in the
files contained within the dataset. This is the
premise that Tripwire has been built upon.

Data Collection The collection of data for later analysis. Good
examples of this are application log files,
syslog service collection, network based IDS
(SNORT, TCPDump, etc.).

Data Collection Schedule Description
Continuous This schedule corresponds to data collections

that should be run continuously within the
bounds of physical constraints and congestion
avoidance. Always do the math on the
connection that you are

Scheduled This could be hourly, daily, weekly, monthly, or
any other scheduled event.

On Demand On-the-fly data collection for validation
purposes, instantaneous assessment, etc.

Data Analysis System
As with the data collectors, making the analysis systems as standalone as
possible is just as important (and will continue to be a theme throughout this
design). So making any NFS mounts be interruptible is just as important here, so
that the function of the system (data analysis) can continue in the event that the
file server is the point of failure. Also, as with the data collection systems, the
analysis systems benefit from using centralized storage by being able to add
data analysis systems as load requires. The analysis processes need to be

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 13

broken up among the systems, but many systems can simultaneously participate
in the analysis process, leveraging the data from a common point.

One function of the data analysis layer is to have the ability to communicate with
the systems that are being analyzed out of band. One of the analysis processes
will be to verify the system status through an alternate path (other than the
network). The usual configuration for this is with system specially configured for
serial port connectivity (for UNIX systems) that can usually aggregate up to 48
serial ports per system. Some solutions can be found from Aurora
Technologies21 as well as from Mirapath.22 Out of band management combined
with Remote Power Boots will yield a fully remote manageable solution with the
exception of physical hardware replacement. Mirapath provides a very interesting
remote power management solution that is daisy-chainable and Western
Telematic23 also provides a solid solution, which facilitates additional response
options (allows you to power cycle systems even if the system is completely non-
responsive, which can be verified through the out of band connection).

The reason to have multiple data analysis systems would be if the processing
power required to perform the analysis required more processing power than a
single system requires. This allows you to use older system with perhaps less
processing power in tandem to accomplish the same result. This obviously
implies that one of the capacity points that you will be monitoring instantaneously
and historically would be CPU usage on the analysis system, but that is exactly
what we are trying to design – a system for monitoring any and all aspects of the
environment.

We will also need the ability to integrate any new analysis functions and interface
all to the response layer, and the response layer will have all the intelligence with
respect to what to do next, what the event means, if there are dependencies, and
if this analysis result is related to an issue.

The concept of an event ID (probably most commonly referred to as a trouble
ticket ID) needs to be tracked at this level, even though we have not yet
discussed the response system. If an analysis has been performed, and the
analysis system was not passed an event ID, that would imply that it is a new
event, and have an ID of (-1) until it is passed to the response system to be
assigned a unique ID. In the event that the response system needs additional
analysis performed, it will make a request of the analysis layer, and pass the
event ID to the analysis layer to update the status of the event with the result of
the analysis (for example, given the system does not respond to pings, check the
out-of-band status of the system).

21 Aurora Control Tower http://www.auroratech.com/
22 Mirapath Cyclades TS and Alterpath ACS http://www.mirapath.com/products/cycladesindex.htm
23 Western Telematic http://www.wti.com

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 14

Definitions for Analysis Systems

Data Analysis Type Description
Command Status Analysis The results of a ping request, port connection,

etc.
Expected Response Analysis A sample database query will have an

expected result. HTTP queries…
Threshold Analysis Performance values will be greater than or

equal to a threshold value. Resource capacity
points, round trip times, throughput tests, snmp
values

Integrity Analysis Data integrity, tripwire will either be equal or
not

Key phrase Analysis SWATCH, Shadow/SNORT, application log
analysis

Trend Analysis Historical trending of all monitored events
Custom Analysis As it says

Data Analysis Schedule Description
Continuous SWATCH, log analysis, etc.
On demand Any of the analysis
Scheduled Every 5 minutes, 15 minutes, hourly, daily,

weekly

Event Response System
This is the heart of the design, to have a single system (per monitoring
infrastructure) as the command and control center for all monitored events. This
system would have all the information regarding dependencies, how to
communicate, when to communicate, how to escalate, when to escalate, any
automated actions that can be taken, etc. This gives you a single focal point for
assessing issues within your environment.

Requirements of the response system:

• Track status
• Assign categorization
• Assign classification
• Escalation tracking
• Trigger action based on status change, escalation criteria, categorization

criteria, or classification criteria (state change).
• Leverage the analysis system to transform data into information
• Leverage other response systems to transform data into information

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 15

• Checking for freshness of the data – would indicate that a data collector is
probably down or not working properly.

• Coordinate ticket information with the analysis system for additional action
relative to an issue that has been raised

Some opensource options for your helpdesk package are:
Tuxmonkey Issue Tracking system24 and Request Tracker25

Programming Policy:
The response system will need to have an understanding of conditions for your
environment (what are the circumstances that indicate a fault state for each
system, service, application, or other monitored event). This will be comprised of
a collection of measurements, with different combinations indicating different
potential faults. You will then need to have responses defined for each variation
of fault, based on how the particular fault impacts the operation of your
environment. You will want to drive this based on the priority of the most urgent
function associated (including anything that is dependant) with the monitored
object. This will determine how fast you respond, how quickly you escalate, what
form of response, who would be notified, and during what hours you respond for
the identified issue.

This allows you to apply conditions to faults that are flagged by the lower layer
monitoring systems (data collection and analysis layers), thus imbuing them with
increased accuracy. In a normal monitoring infrastructure, the failure of a ping
monitor to a host would result in a fault being flagged to that system, and
generating a notification alpha-page to the system administrator. In our enhanced
model, we will only generate the alpha-page to the system administrator if the
ping test fails AND the out-of-band test fails as well. If the out-of-band test is
successful, this will trigger additional tests to verify the function of the switch,
individual switch port of the system in question, interface on the system through
the out-of-band system, and continue until we have enough information to draw a
conclusion as to the exact location of the fault. You can use automation to run
tests and attempt to recover the fault. In the event that you unable to recover the
fault in a predetermined period of time based on criticality (timer kicked off when
the initial fault is received from the analysis layer), you would THEN generate an
alpha-page to the appropriate administrator to notify them that there is an issue
that is unresolved, and in need of immediate attention.

It would be at this level that you will be able to program your entire configuration
into the system that can help determine more precisely where the REAL
problems lie. You can define dependencies associated with monitored items, and
if the monitored item is down, then check the objects that it is dependant on. If

24 TuxMonkey Issue Tracking System http://www.tuxmonkey.com
25 Request Tracker http://www.fsck.com

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 16

one or more of those objects are down, then you step in to the next layer in the
dependency chart, and make your dependency check again. You can continue
this until you identify the object farthest in on the dependency tree (closest to the
base) that is in a fault state, and report on that object, and not on every object in
the tree. This adds a tremendous amount of intelligence and improves the
accuracy of your solution.

It is important to also build fault tolerance into your monitoring system. You
should have monitors watching the monitors for availability, and sending
notifications in the event that a fault is discovered. It is also interesting to have
your system send out a regular (once a day during normal work hours) test
message during non-intrusive hours so that you will know from the system itself
that it is operating properly. If you do not get that regular message, you know to
go look.

Definitions for Response System
Object Classification type Description
Project Tracked in weeks, not minutes
Non-Critical Tracked during work hours, and is concerned

with individual productivity. Tracked in hours,
not minutes.

Important This is an escalation process for systems that
have import functions, but less devastating
implications. Tracked in single digit hourly
increments (1, 2, 4), and is fairly aggressive
about escalating when no progress is being
made.

Critical The most aggressive escalation process.
These are for absolutely critical
systems/services that the company is taking
financial impact from by being unavailable. A
highly aggressive escalation schedule dealt
with in ¼ hour increments (15 minutes).

Object Categorization Type Description
System Group [1-99] Helps identify who to notify
Service Group [1-99] Helps identify who to notify
Application Group [1-99] Helps identify who to notify
Network Device [1-99] Helps identify who to notify

Event Status Type Description
New Fresh out of the analysis layer
Responded An action has been taken, and the issues is in

process of resolution.
Closed All done!

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 17

Event Response Type
Log (passive notification) This can be local log files or can be collective

logs that are centrally registered. This would
require action (parsing the logs) on the part of
the administrator to be notified of an issue.

Web page update (passive
notification)

Updating a web page to indicate a fault. This
would require action (checking the web page)
on the part of the administrator to be notified of
an issue

Email notification (passive
notification)

Email notification can be either passive or
active at the same time. An email to an
administrators work email account would
require the administrator to log in a check
his/her email to see an event message, but with
newer technology, this can also just as easily
land on a Blackberry device or cell phone.

System audible / visual alarms
(active notification)

Perhaps your site is fortunate enough to have
24X7 staff that is tasked with performing round
the clock services (back-ups, help-center, fault
monitoring, NOC, etc.). Sending audible signals
to a system in the proximity of these individuals
would notify them that there is an event in need
of attention.

Alpha-numeric page (active
notification)

This considered active, but is susceptible to
device configuration management (having good
batteries in the pager or cell phone.). Count
the times you have heard that excuse ☺

Scripted Response This is for when you have gained enough
history with a problem, and can say with
certainty what actions to take. For example, if
when a system running a MS OS stops
responding to pings, you can probably rest
assured that sending the out-of-band
management system a power cycle for the
power port for that system would be a safe (and
probably the recommended) response to the
issue.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 18

Reference:

[1] Kern, Johnson, Galup, Horgan, Cappel
 Sun Microsystems, 1998

Pyramid concept and management top block
Building the New Enterprise: People, Process, and Technology (P 21)

[2] Odom, Wendal.

CCNA Exam Certification Guide
CCNA Exam 640-607, P75-81

[3] Bell, Chris; Burroughs, Eric
Concepts for helpdesk as an aggregation point
Original designers of OpenARGUS
http://openargus.sourceforge.net

[4] Tripwire

http://www.tripwire.com/products/servers or alternately,
http://www.tripwire.org for the opensource version of Tripwire

[5] NMAP

http://www.insecure.org/nmap

[6] Tripwire

http://www.tripwire.com/products/network_devices

[7] Firewatch

http://www.bellcore.com/SECURITY/firewatch.html

[8] SNORT

http://www.snort.org

[9] General Security Paradigm

“What you cannot prevent, monitor, and what you cannot monitor, prevent.”
 SANS, USENIX, SAGE conferences

[10] An overview of many of the available tools and what they do

http://www.slac.stanford.edu/xorg/nmtf/nmtf-tools.html

[11] HP/Openview

http://www.openview.hp.com/about/index.html

[12] IBM/Tivoli

http://www-306.ibm.com/software/tivoli/features/oct2003

[13] SNIPS - formerly NOCOL

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 19

http://www.netplex-tech.com/snips/

[14] Nagios - formerly NetSaint

http://www.nagios.org/about.php

[15] Categorizations taken from Network Monitoring Explained:

Design and Application By: Dah Ming Chiu (p29-34)

[16] ArpWatch

 http://www.securityfocus.com/tools/142

[17] SATAN -

http://ciac.llnl.gov/ciac/ToolsUnixNetSec.html#Satan

[18] SNMP

http://sourceforge.net/projects/net-snmp

[19] Orcallator

http://www.orcaware.com/orca/docs/orca.html

[20] Werner Heisenberg

The Heisenburg Uncertainty Principle

[21] Aurora Control Tower

http://www.auroratech.com/consolemanagement/ct/

[22] Mirapath Cyclades TS and Alterpath ACS

http://www.mirapath.com/products/cycladesindex.htm

[23] Western Telematic

http://www.wti.com/power.htm

[24] TuxMonkey Issue Tracking System
http://issue-tracker.sourceforge.net/

[25] Request Tracker

http://bestpractical.com/rt/

