
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Windows Rootkits

Adam Gaydosh

GSEC Practical Assignment Version 1.4b Option 1

March 24, 2004

Abstract:

Rootkits are an emerging threat that responsible computer operators need to fully
understand in order to protect the integrity of their systems and contribute to the
overall stability of the internet. This paper focuses specifically on understanding
offensive and defensive rootkit technologies for the Microsoft Windows NT, 2000,
and XP Operating Systems (OS). We begin by reviewing common attack
scenarios and Windows malware operation, followed by an overview of Windows
rootkit technology and an examination of historical and contemporary examples.
Finally, we discuss the Windows security architecture and examine some tools
and strategies to prevent and detect a system intrusion.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2

TABLE OF CONTENTS:

1 Introduction

2 Know your Enemy

2.1 Windows Rootkits

2.2 Evolution

2.3 Current Threats

3 Windows Security Architecture

3.1 Host Hardening

3.2 Intrusion Detection

3.3 Rootkit Detection Tools

4 Conclusion

Appendix A: References

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3

1 Introduction
In this paper we will examine protection and exploitation techniques of the
contemporary Microsoft Windows OS family, including Windows NT, 2000, and
XP. We will specifically focus our examination on the impact of emerging
Windows rootkit technologies, including their operation, prevention, detection and
removal. The technical content assumes a familiarity with basic system
administration and network security, and is intended for system administrators,
incident responders, and forensics analysts.

2 Know your Enemy
In order to effectively defend your host system, you should study the motives and
intentions of potential attackers, to gain a solid understanding of their methods of
attack. We can broadly categorize attacks as those targeted at specific systems
and those targeted at random. The primary differences are the degree of effort
exerted by the attacker in order to subvert your defenses, and their intentions of
subsequent system use.

An common of example a targeted attack is the attempted theft, destruction, or
manipulation of sensitive corporate intellectual property. This attacker may be a
disgruntled employee launching attacks from inside your network perimeter, and
perhaps even have legitimate privileges to his target. It is however just as likely
the attacker is outside of your organization, attacking accross the Internet. In the
case of a randomly targeted attack, objective of the attacker is often simply the
use of system resources such as network bandwidth or storage space. In the
case that either attack is successful, the attacker will want to ensure they can
retain control of their victim’s host, hide their presence, and remove all traces of
the initial attack, and rootkits are the type of malware that can do exactly that.
However, while rootkits may provide attacker’s a desirable level of subterfuge,
administrator or system account privileges are required for them to be installed,
and this ultimately requires an independently exploitable vector for privilege
escalation.

2.1 Windows Rootkits
In his classic paper on the original Windows rootkit, Greg Hoglund defines a
rootkit as “…a set of programs which *PATCH* and *TROJAN* existing execution
paths within the system (1)”. As we touched on previously, rootkits are tools that
are often used by intruders to conceal their control of a system, but are not the
tool that is used to actually gain the system’s control. There are some
fundamentals to rootkit operation and design that must be discussed in order to
clearly understand how they are used by attackers to conceal themselves.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

4

The two primary types of Windows rootkits are user-mode and kernel-mode.
Both share the objective of obfuscating system resource usage from legitimate
users, which generally includes manipulating file system objects, services, and
registry keys. User-mode rootkits modify or replaces binaries, which retain their
restricted access to system resources through the application programming
interface (API). A classic example is the modified netstat.exe which does not
display activity on specified ports of the attackers choosing, such as the ones to
which their remote shell and ftp server our bound! In fact, user-mode rootkits
will often include a collection of altered system executables and other binaries
provide the attacker with a wide array of particular services, while attempting to
hide from authorized users any trace of their existence. However, with each
iteration of the Windows OS family, the effectiveness of the native security
controls has continually evolved to help defend against the classic user-mode
rootkits, although they are not foolproof and may provide the administrator with a
false sense of security. Take for example Window File Protection (WFP), which

“protects critical system files that are installed as part of Windows (for example,
files with a .dll, .exe, .ocx, and .sys extension and some True Type fonts). WFP
uses the file signatures and catalog files that are generated by code signing to
verify if protected system files are the correct Microsoft versions (Microsoft).”

While enabling WFP certainly goes a long way in preventing the installation of
user-mode rootkits by unauthorized users, an attacker who has sufficient
privilege may simply disable WFP, in some cases by changing a single registry
key.

Kernel-mode rootkits take the subterfuge deeper into the internal layers of the
OS by effectively patching the system kernel. They can manipulate or replace
APIs by employing device drivers that allow the malware to directly access the
core system resources. Some kernel-mode rootkits may be sophisticated
enough to escape detection by some, if not all of the tools available today, and
are the focal point for most contemporary Windows rootkit research and
development. The traditional ways kernel-mode rootkits hide various objects
include hooking dynamic link library’s (DLL’s) functions (API/ Import Address
Table [IAT] hooking), modifying DLL’s functions (raw code change), hooking
entries in Service Descriptor Table (SDT) / System Service Table (SST) /
KiServiceTable (very popular), hooking interrupt descriptor table (IDT) 2Eh entry,
and modifying kernel code (raw code change) (Rutkowska, November 2003).
The end result of all these techniques is the ability to be able to control process
calls to protected system resources.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5

2.1.1 Evolution
The very term ‘rootkit’ reveals the UNIX background of this class of malware,
referring the hidden root level access they provide to attackers of the UNIX
platform. The first publicly available kernel-mode Windows rootkit was NTRootkit
by Greg Hoglund, which set the standard for functionality that most future
generations of Windows rootkits have continued to provide, albeit employing
progressively more sophisticated techniques to hide their presence.

This rootkit has been designed as a kernel mode driver that runs with system
privileges right at the core of the system kernel. Given this fact, it has access to
all resources of the operating system, thus having a broad field of action. In order
to install it one requires the administrator’s permissions whilst simple net start/net
stop commands are sufficient to activate/disactivate (sp.) it respectively
(Bobkiewicz, 4).

The hallmark features of Windows rootkits that NTRootkit provides include the
ability to hide services, files, processes and registry keys. NTRootkit was never
fully realized, but provided the framework for features that have been found in
later generation Windows rootkits, such as serving a remote command shell or
runnninga keyboard sniffer that can intercept all consol keystrokes (Kuepper, 17).
NTRookit project is hosted at Hoglund’s seminal web site, rootkit.com, which
itself has provided a fertile environment helping fuel the emergence of many of
the latest generations of Windows rootkits, such as Vanquish, He4Hook, and Fu.

2.1.2 Current Threats
The collaborative nature of malware development and knowledge sharing
amongst computer researchers has resulted in windows rootkit technologies
evolving comparably to the dissemination of information on the operation of the
lowest layers of Windows. As such, contemporary Windows rootkits are
sophisticated software designed to elude the most meticulous administrators.
The latest generation of kernel-mode rootkits have evolved beyond hooking or dll
injection, employing advanced techniques of resource manipulation that continue
to test the current limits of rootkit detection. For example, by using Direct Kernel
Object Manipulation (DKOM) in memory, “a device driver or loadable kernel
module has access to kernel memory…and a sophisticated rootkit can modify the
elements directly in memory in a relatively reliable fashion to hide (Butler, 12).”

As Windows rookits continue to evolve, the trend has been to peel away the
layers of access restrictions in the OS in order to inference as directly as possible
with the physical hardware. Future rootkit threats that may be beyond the
capabilities of current detection methods may reside solely in peripheral
hardware such as video card and hard drive controllers.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

6

3 Windows Security Architecture
It is important to understand the internals of the Windows security architecture, in
order to effectively enable it’s native security controls as well as understand their
potential for exploitation. What follows is a brief introduction to the Windows
security architecture concepts that are imperative to understanding a technical
analysis of any Windows rootkit. The OS is logically divided into two area’s of
privilege, the Userland and the Kernel. Useland contains applications, services
and process and the environmental subsystems, provided as the user’s interface
to the OS. The Kernel contains the Executive API, Registry, and Hardware
abstraction layer (HAL) that the userland components use to control the physical
system hardware. Stepping through the execution of a user mode application,
it’s subsystem DLLs access the kernel through the appropriate API, which uses
the HAL to ultimately control access to the physical hardware for execution.
While a familiarity with the underpinnings of the kernel architecture is important
for understanding the operation of some of the more advanced rootkits in use
today, much of our defensive security posturing is concerned with the access
controls available to Userland.

Like any large piece of complex software, Microsoft Windows has seemingly
endless potential for security bugs and vulnerabilities, not to mention operator
error. Regardless of whether or not you agree with the preceding statement, you
are well advised to take a moment to consider it, because more often then not, it
is the point of view of your attacker. Luckily, we can turn these sentiments back
on him by applying them to our own system’s security analysis. While we will
leave it to the bug trackers and other security researcher to keep finding new
vulnerabilities, there is plenty of opportunity for us to be proactive in operator
error reduction. Considering the size and complexity of any OS, and particularly
Windows, perhaps the most prudent approach to system security is that of least
privilege. While logically this applies to using well defined Groups and Users to
appropriately delegate permissions to all system objects, it should also be
extended to include reducing which services and process run to the least number
necessary. In theory, a system’s level of security is inversely proportional to its
usability, so that any additional process, service, or functionality will compromise
your threat threshold. By reducing the complexity of your system you can go a
long way in reducing its vulnerability to compromise.

3.1 Host Hardening
Due diligence in properly administering your system is the best defense against
rootkits and other malware. There are already many fine resources available that
provide extensive detail on effectively securing Windows hosts that
administrators should review before installing a new system, so we will not

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

7

rehash the details extensively here. Two good places to start are the Microsoft
Security homepage (http://www.microsoft.com/security/) for hardening checklists
and other security information on your specific version of Windows, and the
Center for Internet Security (http://www.cisecurity.org/), which provides
independent security benchmarks and assessment software. However, it still is
useful to discuss how some particular precautions, which although may be
considered standard best practice of systems administration, are also strategies
that particularly aide in preventing, or at least detecting, a successful rootkit
intrusion.
First and foremost, be sure to enable strict Discretionary Access Control Lists
(DACLS) on all system files and folders, shares and registry keys, so that
unauthorized users cannot add additional services and other objects. By then
enabling the corresponding System Audit Control Lists (SACLS), security events
will be audited and available for investigation (Carvey, 2004). Diligent application
of vendor issued patches for the OS and all applications is absolutely mandatory
for any system to withstand the barrage of automated attacks to which internet-
facing hosts are constantly exposed, and it should go without saying that all pre-
deployment configuration and patching must be done on a protected network
segment or entirely off-line. Services and processes should be operated under
the principal of least privilege to reduce the potential for further exploitation in the
event of a successful attack. Of course if an attacker is an unauthorized system
user who has obtained root privileges through an independent attack vector, he
will be able to roll back any security configuration and still install a rootkit. The
importance of disciplined host hardening can not be overstated in limiting the
exposure to attacks that may lead to total system compromise.

When the initial hardening of clean build has completed, it is imperative to get a
snapshot of the system configuration in a known good state, to provide a base-
line for future incident detection. For example, md5 hashes of the file system can
then be compared to archived versions to ensure they have not changed.
However, any data gathered on expected production system behavior may be
used in the future to spot even subtle anomalies, so that it’s use need not be
limited to providing conclusive evidence of a compromise.

3.2 Intrusion Detection
Determining that a system has been compromised is not always a strait-forward
task. Often times the administrator will notice an anomaly that is indicative of
malicious system use and proceed to review the host. First a review of the
system logs should indicate if any unauthorized activity has been attempted,
assuming auditing has been enabled as discussed above in host hardening.
Microsoft has provided a lush interface to the Window API in Windows
Management Instrumentation (WMI) for effectively managing any system object.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

8

WMI accommodates a variety of popular scripting languages such as PERL and
VBS and provides Windows administrators the perfect opportunity to automate
critical system reporting for accurate data correlation. There is no shortage of
scripting resources on the Internet for system administrators. Carvdawg’s Perl
Page (http://patriot.net/~carvdawg/scripts) is one such location that provides
several scripts specifically developed for Windows IR (procdmp.pl) and log
monitoring (WmiEvt.pl).

While diligent system monitoring and testing may provide evidence of certain
compromises, the rootkits we are examining have been specifically designed to
hide their operation from other system users. For detecting the presence of user-
mode rootkits on suspect systems, network port scanning, from either a remote
host or locally running clean binaries on read-only media, can be extremely
effective. Using the original example of the Trojaned netstat.exe, you can
compare the local output to the results of a remote scan to quickly spot
indiscrepancies and zero in on suspicious endpoints.

Because kernel-mode rootkits can effectively invalidate any reliance on the host
OS for intrusion detection, examining the suspect system from an alternate OS
burned to a bootable CD can effectively reveal their presence. This trick will not
be able to detect all malware however, so that sniffing the host’s network traffic
may be required. In some cases, monitoring network traffic may be only way to
detect malicious activity, and can substantiate evidence found on the victim
computer (Casey, 29). Like most methods of intrusion detection, this method is
most effective if you have an extensive baseline analysis of clean traffic patterns
that can be used to detect deviations in live packet captures. Similarly, it should
only be trusted to determine that there may be some malicious activity and never
used to determine that the host is emphatically clean.

Execution Path Analysis (EPA) is an advanced Windows rootkit detection
technique that provides reliable detection by exploiting “the processor stepping
mode to measure the number of instructions executed in system kernel an DLLS,
in order to detect additional instructions inserted by malicious code (Rutkowska,
2003).” Because EPA uses statistcical analysis to determine if the number of
instructions execute on the live system is a suspicious deviation from the
expected number, it share the weakness of many other rootkit detection
techniques, and that it is only effective if a clean baseline has been established.
As successful as EPA is detecting most rookits, it was not long before the Fu
rootkit was released, which avoids EPA detection. EPA uses debug registers to
protect the instruction counter in the IDT, but the debug registers do not protect
physical memory. Essentially, Fu uses DKOM to write directly to physical
memory and bypass the debug registers. (Barbosa, 1)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

9

3.3 Rootkit Detection Tools
The deeper the particular malware interfaces with the victim operating system the
more difficult detection becomes, which is why user-mode rootkits generally
require less sophisticated detection tools then kernel-mode rootkits. User-mode
rootkits are most effectively detected using standard system reporting tools, and
the most important point is to ensure you are using known clean binaries. It is a
good idea to download the latest copies of all the tools you’ll want for an IR CD,
from a secure host of course, and either compile your own from source, or
ensure that the binaries are digitally signed. The first tool in any such kit should
be a network port usage monitor. There are many fine such programs available
for the Windows platform that you should familiarize yourself with, such as open
ports (http://www.diamondcs.com.au/openports/index.php?page=download) and
fport (http://www.foundstone.com/knowledge/proddesc/fport.html), in addition to
the native netstat. Try using them all to collaborate their results. If you find any
unfamiliar or know-bad processes bound to a network socket, or a legitimate
process running on an unusual port, than it is cause for concern, and may be
indicative of a Trojan horse infection or other malware. In the case of discovering
a known Trojan or rootkit listening on your system, you may be satisfied with the
evidence from your port monitor. But in the case of a suspicious system process
listening on an unusual port (e.g. ftp on ephemeral port only, not tcp/21), you will
want to investigate the process in more detail without using the compromised
system binaries. Luckily there are also plenty of tools for reporting all the
execution details of a running process that are very useful for analyzing it’s
behavior. For example, ProcessExplorer
(http://www.sysinternals.com/ntw2k/freeware/procexp.shtml) reports on all
system objects a particular process calls, and provides extensive data on system
drivers. The Sysinternals web site
(http://www.sysinternals.com/ntw2k/utilities.shtml) has many other useful
monitoring utilities besides ProcessExplorer such as CPUMon, DiskMon,
FileMon, PortMon, RegMon, and TokenMon, that provide real-time views of
specific Windows subsystems.

Because kernel-mode rootkits directly modify system calls, regardless of the
source of the binaries you use on the local system, their results will conceal the
rootkits presence. One category of tools that can detect most kernel-mode
rootkits are system integrity checkers. Integrity checkers such as Tripwire
(http://www.tripwire.com/products/servers/index.cfm), operate in a manner similar
to WFP, creating an cryptographic hash of system files and comparing them to a
know good version. The drawback to integrity checkers is that they’re
effectiveness is dependent on ensuring that the initial hash generation uses
clean files, which must be established before any suspected incident. Otherwise,
more advanced detection techniques must be employed. As mentioned above,

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

10

booting a suspect host off a CD OS distribution such as Knoppix-STD
(http://www.knoppix-std.org/download.html) and F.I.R.E
(http://sourceforge.net/project/showfiles.php?group_id=46038&package_id=5657
4&release_id=159330) can be effective in determining if the host has been
compromised. Both examples are extremely specialized ‘NIX distributions that
provide an extensive array of security tools that should prove to be an invaluable
additional to your burgeoning security toolkit. With NTFS support built in, you are
able to comb the file system for artifacts indicative on an intrusion that would
otherwise be hidden by the rootkit. For example, illicit FTP servers (pubstro’s)
may be serving data from obfuscated directories on your file system that are
easily detected from a clean OS.

A new rootkit detection tool using EPA named Patchfinder (PF) has been
developed to target modern kernel-mode rootkits, and can detect Hacker
Defender, APX, Vaniquish, He4Hook and many other modern kernel-mode
rootkits (Rutkowska, 2004). Unlike some of the other tools we’ve discussed so
far, PF provides reliable results from the live system without requiring a reboot.
However, like integrity checkers, it must be previously installed on the clean
system in order to detect system compromise. PF performs statistical analysis
against the clean baseline and reports detections to the EventViewer.

The latest tool in the never-ending security software arms race is Klister
(http://www.rootkit.com/vault/joanna/klister-0.4.zip), the only toolset known to
detect rootkits that employ DKOM, such as Fu. Klister reads the internal kernel
thread list, which is used by the kernel dispatcher to allocate CPU time, to
enumerate all threads and processes running on a system.

4 Conclusion
It is critical to never assume your system’s security is impenetrable, and one
should always perform diligent security practices within a paradigm of calculated
risk management. The Internet should is an extremely hostile environment, and
systems that are connected to it must be prepared to defend against the
onslaught of Worms, Trojan horses and Viruses that infesting it today.

In this paper we have presented a technical overview of Windows rootkit
technologies. Weather an attacker is looking to surreptitiously manipulate
sensitive data, disrupt system services, or even destroy critical assets, the latest
generation of Windows rootkits makes it very difficult to detect their existence.
Because Windows rootkits have evolved into such sophisticated toolsets, they
enable even the least knowledgeable of attackers to effectively conceal their
presence on your system. It is imperative that we all act as responsible
netizens and develop an understanding of the tools and techniques used by

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

11

attackers so that we can appropriately defend our hosts and help stem the flow
of malware at large.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

12

Appendix A: References

Barbosa, Edgar. “Avoiding Windows Rootkit Detection.” February 2004.
http://packetstormsecurity.org/papers/bypass/bypassEPA.pdf

Bobkiewicz, Bartosz. “Hidden Backdoors, Trojan Horses and Rootkit Tools in a
Windows Environment.” January 23, 2003.
http://www.windowsecurity.com/articles/Hidden_Backdoors_Trojan_Horses_and_
Rootkit_Tools_in_a_Windows_Environment.html.

Butler, Jamie. “Direct Kernel Object Manipulation.” 2004.
http://www.blackhat.com/presentations/win-usa-04/bh-win-04-butler.pdf.

Carvey, Harlan. “Data Hiding on a Live System.” 2004.
http://www.blackhat.com/presentations/win-usa-04/bh-win-04-carvey.ppt.

Casey, Eoghan. “Network traffic as a source of evidence: tool strengths,
weaknesses, and future needs.” Digital Investigation February 2004 1(1): 28-43.

Hoglund, Greg. “A *REAL* NT Rootkit, patching the NT Kernel.” Phrack
Magazine September 9, 1999 9(55): 5.

Kuepper, Brian. “What You Don’t See On Your Hard Drive.” April 4, 2002.
http://www.sans.org/rr/papers/27/653.pdf

Microsoft. “Description of the Windows File Protection Feature.” December 15,
2003. http://support.microsoft.com/default.aspx?scid=kb;EN-US;222193

Rutkowska, Joanna. “Advanced Windows 2000 Rootkit Detection (Execution
Path Analysis.” July 2003.
http://www.rootkit.com/vault/joanna/windows_rootkit_detection_joanna.pdf

Rutkowska, Joanna. “Detecting Windows Server Compromises.” November 6,
2003.
http://www.hivercon.com/conf/archive/hc03/Rutkowska_Win32RookitDetection_H
C2003.ppt

Rutkowska, Joanna. “Detecting Windows Server Compromises with Patchfinder
2.” January 2004.
http://www.rootkit.com/vault/joanna/rootkits_detection_with_patchfinder2.pdf

