
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Design and Deployment of a Rapid Response
Security Vulnerability Scanning Infrastructure

Eliot Lim
Submitted for SANS GIAC GSEC Practical

Assignment version: 1.4b, option 2
24 May 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 2

1. Abstract

A large research university presents a formidable challenge to computer security
professionals. Among the hazards are a completely porous, non firewalled
border and decentralized administration of computers.

Considerable emphasis and effort is hence placed on proactive vulnerability
scanning in an attempt to reduce risk. This paper will discuss the evolution of a
software infrastructure designed to support that effort using mostly open source
tools.

Additionally, it will be shown how this infrastructure is used to rapidly respond to
emerging threats. A real life success story will be described that will underscore
the value of the investment made in this effort.

2. Before snapshot

2.1. Brief history of computer security at a large research
university

No environment is more challenging for security professionals than the modern
university where the free interchange of ideas and information is among the most
cherished of ideals.

- Quote from SANS ‘99 brochure1

Broadly speaking, the need for the “free interchange of ideas and information” in
a type of organization that has existed for approximately a thousand years is
currently taking precedence over the need to protect data on a technology
medium that has existed for just 30 or 40 years.

In practical terms this represents a nightmare scenario where most of the
generally acceptable security concepts and practices are absent. For example:

• A lack of a well defined comprehensive computer security policy

• Lack of enforcement of existing policies

• No risk analysis performed on information assets

1 http://www.sans.org/sf99/smu.htm

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 3

• No security in depth defenses – i.e. No border firewall

• Decentralized administration of networked computers

The following passage is from a paper2 published by a network administrator at a
large research university. It presents a fairly typical view of how firewalls are
regarded at these facilities. It is beyond the scope of this paper to discuss the
merits of the arguments presented. However, it aptly summarizes the reasons
why many large universities do not deploy border firewalls.

Our thesis is not that all firewalls are evil; rather, it is that all firewalls have
significant disadvantages, often ignored, and that their advantages are often
overstated. This is especially true of enterprise border firewalls, which are the
focus of today's debate.

Can systems be made secure (network safe) without using external firewalls?
Clearly yes. We have many examples of this. But that seems to be more the
exception than the rule, both because most operating systems are not network-safe
"out of the box", and because a large number of those systems are essentially
unmanaged.

There is unanimous agreement that evil packets should not be permitted to reach a
place where they can do harm, so the debate is not over whether to block, but
rather where the blocking should be implemented, and how to deal with the fact
that different people want different things blocked. ("One person's secure network
is another's broken network.")

The result of this absence of a well planned and executed security strategy is
what most professionals in the information security field already know – that
modern universities are easy hacking targets. All manner of intrusions are
routinely encountered. The sheer volume of incidents frequently overwhelms
computer security personnel. For the calendar year 2003, the security operations
team at my university recorded a staggering 13,022 security incidents. For
confidentiality reasons, details of these incidents will not be discussed.

The biggest risk faced by the University was generally regarded to be a
widespread network outage caused by compromised computers overloading the
network, typically as virus or worm carriers or distributed denial of service attack
zombies. Without the benefit of a defense in depth approach to implementing
security, attention was focused on other means to reduce risk.

2 http://www.educause.edu/ir/library/pdf/erm0319.pdf

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 4

2.2. Proactive vulnerability scanning project

The proactive vulnerability scanning project originally started with the premise
that security specialists would use well-known open source scanning tools to
scan the entire campus and track the vulnerability history of each and every
computer. We intended that upon detection of a vulnerability the appropriate
owners would be contacted. Later, when new policies were in place the team
would compel system owners to patch their systems or face the prospect of
being disconnected from the network.

The scanning team consisted of the security operations manager, myself and
another security specialist.

2.2.1. Nessus and Nmap

The open source vulnerability scanner nessus3 is a key component of this effort.
A lot of the attraction of nessus is the fact that it is open source, not just its
operating code but also its ever-expanding database of all known vulnerabilities.

The “nessus vulnerability database” is essentially a collection of individual
vulnerability tests called “plugins”, written by many individual contributors from
the open source community. With this architecture nessus not only keeps track
of all known vulnerabilities; it also provides a test for a newly discovered
vulnerability in a very short amount of time - typically in a day or less. At the time
of writing the nessus vulnerability database contained over 2000 vulnerability
tests.

The other tool we frequently used to complement nessus is the well-known port
scanning tool nmap4. Though much of nmap’s functionality is already provided
within nessus, we found that it was still advantageous to run nmap in isolation.
For example, we would run nmap with the –O (OS detect) option and save the
results separately into a file before running nessus. In that way we avoid the
extra computation of looking for platform specific vulnerabilities in a non-
matching platform. We found that almost all vulnerabilities are platform specific
and thus by initially pruning the target list we were able to generate scan results
faster. Nessus by itself could not avoid looking for a Windows specific
vulnerability in a UNIX computer. It would simply attempt the test and return a
negative result. Running nmap as a preliminary step allows for nessus to scan a
more focused target list.

The maintenance of these open source software tools, including building and
upgrading them was my responsibility. I was also responsible for evaluating the

3 http://www.nessus.org/

4 http://www.insecure.org/nmap/index.html/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 5

tools and acquiring expertise in using them effectively for our specific needs. I
provided feedback and suggested improvements to the various authors of these
tools. Additionally, I was responsible for the hardware and the Linux operating
system on which they ran. My other team member took on the responsibility of
being the public face of this effort while my responsibility was more in the back
room designing and building of the scanning software infrastructure.

2.2.2. Early results (part 1)

Early runs using this strategy brought mixed results for the scanning team. One
scan in particular involved an attempt to locate ssh daemons vulnerable to a
buffer overflow exploit, (CERT® Advisory CA-1999-15)5. The team performed a
scan to specifically locate this vulnerability across a large university campus of
approximately 60,000 computers.

Nmap was run to locate all computers listening on port 22, the traditional ssh
port. We then fed this list to two different implementations of the same test.

The test itself was nominally verified against a small number of workstations that
were available to the team within the organization. The results of the campus
wide scan were naively taken at face value. My team member proceeded to send
out advisories warning of potential root compromise to individuals listed in DNS
records corresponding to the IP addresses of computers that our test indicated
had vulnerable ssh daemons.

A significant amount of negative feedback was received in return, broadly divided
into two categories: False positive and incorrect contact person

False positive

Post mortem analysis of this event revealed that the tests for this particular
vulnerability involved simply connecting to the ssh daemon, reading its header for
the version number and comparing it against a list of predefined vulnerable
version numbers. For example, a sshd header announcing itself to be version
1.2.27 would be flagged as vulnerable while version 1.2.28 would not.

It turned out that some highly skilled administrators had simply patched the
vulnerability by hand, stitching in the source code changes and leaving the
original version number intact. This was done for a good reason: Local
enhancements were made to the ssh source to provide additional functionalities.
To simply download a newer version of ssh would have meant reapplying all the
local modifications to the new version. It was thus a lot easier to simply extract

5 http://www.cert.org/advisories/CA-1999-15.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 6

the fixed portion of source code from the new version and apply it to the source
code of the old version.

The other groups of people affected were those running packaged ssh. For
vendors such as Redhat Linux, the patched executables supplied by the vendor
also left the ssh header information intact. Redhat refers to this practice as
“backporting6”

Incorrect contact person

Many warnings were sent to individuals who were:

• Not the real owners of the computer tested, or

• The correct owner of a computer that had a recycled DHCP address

belonging to a vulnerable computer that had previously used the same
address.

2.2.3. Early results (part 2)

This early strategy was also used with somewhat better results on the Code Red
Worm7 (CERT® Advisory CA-2001-19) outbreak. My team member supplied me
with a list of computers on campus that were listening on the traditional http/https
ports and I proceeded to run nessus on them. A total of 502 systems were
scanned and 1649 security holes were found. However at this point we were still
not completely confident with the reliability of the results. We were also
concerned about computers crashing when they were scanned.

2.2.4. Lessons learned from early forays

• Sending out warnings based on inadequately verified scanning results was a
bad idea. False alerts rapidly undermined the team’s credibility.

• Due to the decentralized nature of a university campus it became clear that
maintaining accurate information on computers was a crucial requirement of
this project. In particular, we needed owner contact information and its
physical location.

6 http://www.redhat.com/advice/speaks_backport.html

7 http://www.cert.org/advisories/CA-2001-19.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 7

• On my large university campus there are over 60,000 registered DNS entries.

Given this size it would be computationally infeasible to run scans on an as-
needed basis whenever a new vulnerability was announced. The results
would simply take too long to generate, even with the availability of powerful
computers. Target computers often take their time to respond fully to nmap,
and nmap makes many different attempts at discovering open ports8 and
resorts to even more trickery (hence increasing the time taken) to do OS
detection9. We simply would not have enough of a time cushion to run a
vulnerability scan, verify the results and alert potential victims.

• Identifying a computer by its IP address is usually adequate when reporting

an incident originating from a foreign site. However, due to the use of DHCP,
which allows for multiple computers to use the same IP address at different
times, it became problematic to identify local computers by their IP
addresses. The growing proliferation of laptop computers and their great
mobility made this a serious problem. A worm infected laptop could appear in
multiple locations across campus at different times of the day and could use
multiple IP addresses, depending on where it was plugged into the campus
network.

• Results from older scans still had value. For example, we could compare a list

of open ports a computer had over time. If a new port suddenly appeared in a
fresh scan that information could be used to signal an alert for more scrutiny.
The popular scanning tools that we used were handy and very powerful in
terms of providing snapshots of a target computer’s security status from an
attacker’s viewpoint, but their ability to archive and correlate historical data
was very limited or non-existent.

3. During snapshot

3.1. Solving the DHCP identification problem

The solution that offered the most promise to solving the DHCP identification
problem was to tie each IP address at the time of the nmap scan to the
computer’s MAC address. A pairing of IP and MAC addresses would offer a

8 http://www.insecure.org/nmap/nmap_doc.html

9 http://www.insecure.org/nmap/nmap-fingerprinting-article.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 8

much more positive identification of a particular computer than just IP address
alone.

3.1.1. Getting ARP cache data

Of course this would not be possible if we did not have ready access to the ARP
cache data containing the IP to MAC address mappings of all the routers on
campus. Fortunately we were able to secure the cooperation of the university’s
network engineers, who were responsible for the smooth delivery of packets
throughout the university campus and who had a vested interest in not seeing the
network performance deteriorate due to security related incidents. While many
individual computers tended to be individually administered (or non-
administered!), the main networking infrastructure was centrally administered.
Therefore, there was a completely streamlined process of collection, storage and
processing of ARP cache data already in place. A trusted server polled all routers
four times a day and collected ARP cache data. This data was then processed
and organized into human readable files.

3.1.2. Potential complications

There was some discussion in our meetings concerning the potential pitfalls of
this scheme. Some departments had elected to deploy a “logical firewall10”,
essentially a stripped down linux computer running a set of iptables11 rules. A
fully ready to install CD of this freeware product had been distributed to and
deployed by interested parties around the campus. All hosts behind this firewall
implementation have internal non routable RFC191812 addresses. The firewall
maintained unique world accessible IP addresses for inbound connections that
mapped to each host but they would all have the MAC address of the firewall’s
NIC.

We decided that departments who deployed even rudimentary firewalls were
already more proactive and secure than systems that were unpatched and wide
open to the world. I reminded the team and our managers that the focus of
the scanning effort was not to attempt to break the hardest defenses but
rather to locate the least protected and most vulnerable computers and to
alert their owners. With the assumption that attackers were typically not
targeting specific boxes but rather those that offered the weakest defenses, we
decided that MAC addresses that had multiple IP addresses associated with
them at a single given moment in time were very likely to be logical firewall hosts

10 http://staff.washington.edu/corey/fw/

11 http://www.netfilter.org/

12 http://www.faqs.org/rfcs/rfc1918.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 9

and hence we would discard this data on the assumption that these were
protected systems that we did not need to worry about.

I performed some data analysis of the ARP cache data to get a feel for how
much spurious and bogus data we would encounter. I was also intent in learning
about the nature of the data, like how static or dynamic MAC to IP mappings
tended to be. I found that approximately 10% of all MAC addresses collected had
multiple IP addresses associated with it. These were discarded. The remaining
addresses tended to be very static and thus became suitable for our need to
uniquely identify computers.

It should be mentioned that nessus provides a means to identify computers by
MAC addresses but this feature only works for computers on the same network
segment as the scanning computer. - i.e. only if the computer is reachable
without traversing a router.

3.2. The need for a computer security database

It became clear that the running of regular periodic nmap scans and the
cataloging of the results in a relational database would be a very powerful tool. In
addition the database would contain freshly updated contact information and
ARP cache information. When an emergency arose a query to the database
would yield results much more quickly. This turned out to be a major contributing
factor to the success of the overall scanning project.

Though newer releases of nessus do provide a means to keep track of older
scan data, it does not provide enough flexibility to incorporate standalone nmap
scan data and to allow for the radical step of tying MAC addresses to IP
addresses. Basically it was a closed off database that did not allow for external
data to be integrated with it. Hence it was quickly rejected for being unsuitable for
our purposes.

A key design feature of our database was its ability to track historical data. For
each network device scanned, the database would have the ability to compare
the list of open ports discovered now with that discovered at the previous scan.
Since MAC addresses were recorded, this database also had the ability to track
the physical movement of a computer as well as its OS history.

3.2.1. Database design and implementation

A commercial database, IBM’s DB213 was used for the backend. This choice is
simply due to the local availability of expertise and existing backup infrastructure
in my environment. There is nothing inherent in this scanning infrastructure

13 http://www.ibm.com/software/data/db2

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 10

design that prevents the use of open source DBMS products like MySQL14 or
postgreSQL15.

I installed and configured IBM DB2 version 7.1 on our Linux system. I enlisted
the help of another engineer in my team who had extensive experience in
database design and operation. He was also quite experienced with the IBM DB2
product. Our team held several database design meetings with our guest
engineer in attendance. We briefed him on our data management needs and he
in turn guided us in the design and specification of the database schema. I did
the eventual coding of the actual schema.

Our database contained these tables:

• The device table holds information pertaining to the network device, tying
its MAC address with a SQL generated unique device id dev_id that serves
as a key to the other tables. The device table allows for the device to have
different IP addresses associated with it, and stores the last seen IP
address in last_ip. A restrictions field is defined to store scanning
restrictions if applicable. The created field is used to record when the
particular device entry was first created. The SQL definition is listed below:

CREATE TABLE DEVICE (
dev_id INT NOT NULL GENERATED ALWAYS AS IDENTITY PRIMARY
KEY,
mac VARCHAR(32) NOT NULL,
last_ip VARCHAR(32) NOT NULL,
isup SMALLINT DEFAULT 0,
lastseen TIMESTAMP DEFAULT CURRENT TIMESTAMP,
created TIMESTAMP DEFAULT CURRENT TIMESTAMP,
restrictions SMALLINT DEFAULT 0
);

• The openports table contains open port information for each port open on
dev_id. The instance field is incremented each time the port is seen,
hence recording port history information. port and protocol would be
used to record the port number and its protocol (tcp or udp). scannum is
used to record the scan event number. The SQL definition is:

CREATE TABLE OPENPORTS (
dev_id INT NOT NULL,
scannum SMALLINT NOT NULL DEFAULT 0,
port SMALLINT NOT NULL,
instance SMALLINT NOT NULL DEFAULT 0,
protocol VARCHAR(4) NOT NULL,
PRIMARY KEY (dev_id,scannum,port,instance,protocol)

14 http://www.mysql.com/

15 http://www.postgresql.org/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 11

);

• The idscan table contains identity information for the particular dev_id.
There is an ip field to record the IP address of the device at the time the
nmap scan was performed. Additionally its fully qualified domain name,
hostname, is recorded. Nmap provides verbose OS information from its –O
option. I decided that we needed a condensed summary of OS such as
“linux” or “MS”. This summary OS type is stored in os_short while the full
OS identity string returned by nmap is recorded in os_full. Physical
location and contact person information is stored in location and contact
respectively. The SQL definition is listed below:

CREATE TABLE IDSCAN (
dev_id INT NOT NULL,
scannum INT NOT NULL,
ip VARCHAR(32) NOT NULL,
hostname VARCHAR(128),
scandatetime TIMESTAMP DEFAULT CURRENT TIMESTAMP,
os_short VARCHAR(8),
os_full VARCHAR(256),
created TIMESTAMP DEFAULT CURRENT TIMESTAMP,
location VARCHAR(128) DEFAULT NULL,
contact VARCHAR(128) DEFAULT NULL,
PRIMARY KEY (dev_id,scannum)
);

3.2.2. Database tools development

Following the design of the database, we wrote software to interact with it.

1. Distributed nmap scanner

My team member wrote a distributed nmap wrapper script whereby nmap is
invoked with a certain set of options to scan a single subnet. The wrapper
script dispatched multiple instances of nmap to run at the same time to fully
utilize processor cycles. The other main feature that the wrapper script
performed was to direct nmap output into individual files named after its target
subnet. All of these files were stored in a directory named after the date of the
nmap scan. For example, a directory named “101503” would contain nmap
output files called “10.2.227”.

2. load_nmap_data

I wrote this program that essentially takes raw nmap data, processes it and
loads it into the database. Data is processed in the following phases:

• Read nmap output files created by the nmap wrapper program above;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 12

• Download ARP cache data;

• Associate MAC addresses from the ARP cache data with IP addresses
and hostnames collected by the nmap scan;

• Condense nmap OS identification strings into a simpler form like “linux”,

“MS” and “BSD” compared to ”Linux 2.5.25 - 2.5.59 or Gentoo 1.2
Linux 2.4.19 rc1-rc7)”, “MS Windows XP Pro Version 5.1 Build
2600” and “OpenBSD 3.0 (x86 or SPARC)” respectively. This allowed for
coarser grained queries and the ability to handle the somewhat chaotic list
that nmap sometimes generate; and

• Generate SQL commands to directly load the processed data into the

database

3. Simple database query programs

I wrote the following simple text based programs to query the database for
specific information and display that information.

• get_dev_id_by_ip display all dev_ids matching an IP address

• get_macip_by_os_port display all mac and IP addresses matching
a particular OS with a particular port open

• put_contact_by_ip Input contact information associated with the

particular IP address.

• put_contact_by_subnet Input contact information associated with
the particular subnet.

3.3 Database population

With all these tools in place we then proceeded to run weekly nmap scans and
have its output automatically processed loaded into the database. If necessary
we could run this scan and store infrastructure daily but given the intrusiveness
of running nmap in such a widespread fashion we decided on weekly intervals.

The IP and subnet contact information were filled in independently when more
accurate information were available compared to those maintained by the DNS
administrators.

3.4. Nessus tuning

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 13

Very early on it became clear that unless nessus scanning was performed in a
highly distributed and independent manner (i.e. run on multiple computers with a
divided target space) the computing requirements would exceed the resources
available to the team. It would take typically 30 minutes or more to do a full
nessus scan of a single /24 subnet with approximately 100 live hosts. There
were over 3,000 subnets of varying sizes in the entire university campus. The
total number of unique MAC addresses that had been recorded in the scan
database was approximately 80,000.

I explored options at fully optimizing nessus for maximum performance. I felt that
the parts of nessus that made it user friendly to the casual scanner also created
performance and reliability bottlenecks. I attempted to strip away as much of the
user-friendly interface as much as possible in order to gain maximum
performance. The following is the evolution of the steps I took to improve nessus
performance:

• Scan only for the vulnerability of the day. Though there are thousands of

known vulnerabilities, it was typical that only a single vulnerability would
cause mayhem at any one time, rather than many at once. Given that the
purpose of this effort was to rapidly respond to an imminent threat, we
decided that the effort should also focus on a single “hot” vulnerability though
the strategy was open ended enough to handle multiple vulnerabilities, but at
a cost of reduced responsiveness. Thus instead of unleashing 2,000
vulnerability tests on a single computer we would only do a small handful,
typically no more than 5, but on a very large number of computers.

• Completely bypass the X windows based user interface. Early versions of

nessus would occasionally crash in the middle of a scan and lose all of the
scan results. Many crashes were traced to X11 server problems. Later
versions of nessus featured running nessus in “batch” mode and the ability to
save intermediate scan results16. I explored these new features but I found
them to still not be completely satisfactory in terms of reliability, flexibility and
performance.

• Completely bypass the client/server architecture, authentication

mechanism. Nessus is built on a client/server model intended to allow one
main scanning server engine to serve multiple scanning clients running their
own user interfaces. To support this a security infrastructure is provided to
encrypt the traffic as well as to properly authenticate clients. We found that if
we used nessus in command line mode or “batch” mode17, client
authentication was still required. Furthermore the password had to be typed

16 http://www.nessus.org/doc/session_saving.html

17 http://www.nessus.org/doc/nessus.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 14

out in the clear. I felt that this was unnecessary and cumbersome. Hence I
bypassed this scheme altogether.

• Completely bypass the long complicated configuration file with its
complex options. Nessus documentation is constantly improving but its
structure and layout of options has always been complex and confusing. In
order to specify just one specific test to be run, one had to either use the user
interface, which has improved tremendously in recent releases, or one had to
manually edit the long nessusd.conf configuration file. I found this to be
cumbersome to use and bypassed it.

• Run the nasl interpreter directly on the nessusd host, and run it in parallel.
At the heart of nessus is the nasl 18(nessus attack scripting language)
interpreter and the thousands of open source vulnerability tests written in nasl
and contributed by programmers all over the world. Eventually all the steps of
stripping away unneeded features of nessus described above led to this
innermost core where the potential for maximum performance lay. Having
stripped off nessus features to this point can be considered to have departed
significantly from the conventional way of running nessus. The next section
will be used to describe this deployment.

3.5. Design of a nessus based high speed vulnerability
scanner

To fully utilize powerful CPUs and wide bandwidth to scan large numbers of
computers parallelism is required. This is because target computers may not
respond instantly to a test, and the time taken to wait for a test to complete can
also be used to test additional computers or to launch different tests. The
following are design highlights and issues of this scheme.

• Parallel scanning algorithm

18 http://www.nessus.org/doc/nasl2_reference.pdf

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 15

The following pseudo-code is based on real code that I wrote using the scripting
language rexx19. The pseudo-code presented here, however, can be
implemented in just about any programming language of choice.

 Max = max # of scans to run in parallel

Threads = max /*initially */
 While list still contains hostnames
 Do threads
 Get the next hostname in the list
 Run_single_scan using nasl on hostname &

/* run it in the background! */
 End
 Sleep 2 seconds
 threads = Max – count_threads_still_running()
 End
 Exit

 Function count_threads_still_running()

 Return the result of: ps –ef | fgrep “nasl” | wc –l

From the pseudo-code it can be seen that an algorithm to devise a self-tuning
parallel scanning program is fairly trivial. The code has a predefined upper bound
on the number of scanning threads. The individual scans are launched in the
background so each call returns immediately after a scan is launched. The inner
loop thus exits quickly after launching its quota of individual scans. After a short
time the operating system is queried via the unix ps command to determine how
many individual scans are still running.

This number of uncompleted scans is deducted from the next batch to be
launched so that we do not overwhelm the scanning computer with excessive
processes. For example, in the first batch 200 parallel scans are launched and
after 2 seconds 130 have completed, leaving 70 still running. Therefore for the
next batch only 130 are launched to bring the total number of simultaneously
running scans close to the predetermined maximum of 200.

After the 2 second interval a query is submitted again and perhaps this time 160
scans would have completed and so forth. In this way the program can be tuned
to keep the CPUs 100% busy yet at the same time not overwhelm the system.

The maximum number of threads and the polling interval was initially randomly
selected and then fine-tuned via trial and error by observing system load using
the unix top command. The numbers used in the example are the actual
numbers of 200 threads and 2 second polling intervals used on our scanning

19 http://regina-rexx.sourceforge.net/doc/fregina-00.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 16

computer, an IBM Netfinity, with twin 1GHz Intel Pentium P3 processors, 512MB
of memory and the Redhat Linux version 7.3 operating system.

• Output to file

Each thread would either terminate quietly if the host tested negative or would
create a file named after the target host if it tested positive. By writing the results
of a parallel program to individual files, I could avoid the tricky timing and
synchronization problems that typically plague the parallel programmer. Because
each thread ran independently and did not care or depend on the results of other
threads the problem was tremendously simplified compared to traditional
multithreaded and parallel programs. I simply had to wait until I saw no more
threads running to know that the program had finished running.

Having hosts that tested positive represented by a file named after them made it
easy to create lists of vulnerable hosts, simply by using the unix ls command.

To have the scan results written to a file named after the target box, it was
necessary to wrap the nasl command in another script. The pseudo-code is
presented here.

/* read hostname in from the command line */
hostname = read_command_line_arg()

/* define output filename as /tmp/<hostname> */
output_filename = /tmp/ || hostname

/* perform the actual test on hostname */
/* negative result will result in no output */
/usr/local/bin/nasl -t hostname \
/usr/local/lib/nessus/plugins/msrpc_dcom.nasl > output_filename

if empty_file(output_filename) then
 delete output_filename

• Additional tweaks

A little bit of tweaking was required on the nessus plugin before it would work
correctly if invoked directly by the nasl interpreter. This involved removing code
that interacted with the nessus “knowledge base” which is the mechanism that
nessus uses to track historical scan information. By running nasl directly, the
knowledge base is not properly initialized and calls to it within the plugin would
generate error messages.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 17

• Unreachable targets

A further advantage to this scheme was that the nasl interpreter eliminated hosts
that were unreachable because they were firewalled, powered down, or
unplugged. Hosts that did not respond would simply return a test result of
“negative”. We took an attacker’s perspective that a potentially vulnerable
computer that is powered down is not considered vulnerable. We did not think
that it would be possible to discover every single vulnerable system; rather we
were aiming to minimize the number that got attacked.

• Real world performance

We were extremely pleased with the efficiency gains of the multithreaded script
compared to stock nessus. In the real life scenario to be described in the “after
snapshot” section, it was able to scan almost 20,000 computers in just 20
minutes for a single vulnerability.

4. After snapshot

4.1. Deployment example in responding to a serious
incident (MS03-026 DCOM “Blaster” worm outbreak)

Our scanning infrastructure was deployed with great success for this particular
incident. Compared to older vulnerabilities, this incident evolved very rapidly from
the discovery of the vulnerability to the development of a rapid spreading worm in
just 3 weeks. In the past many months could go by before a discovered
vulnerability was exploited. Fortunately our team managed to make a significant
impact in preventing many computers from being infected. The chronology of
events is as follows:

7/16/03 The “research” group “Last stage of delirium”20 announced the

discovery of a vulnerability in Microsoft’s RPC DCOM Interface. On
the same day Microsoft issued advisory MS03-026 21 and a patch
labeled “critical”.

7/17/03 The nessus site published a plugin22 test for this vulnerability. This
plugin checks the Windows registry for the presence of the MS03-

20 http://lsd-pl.net/

21 http://www.microsoft.com/security/security_bulletins/ms03-026.asp

22 http://cgi.nessus.org/plugins/dump.php3?id=11790

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 18

026 patch and requires Administrator privileges. Unfortunately due to
the decentralized nature of university computers this test was of very
limited use to us.

7/25/03 Another hacker group Xfocus.org23 published the first exploit in its
web site. This exploit required the attacker to specify the version of
Windows of its target (XP or 2000) and which patch level was
applied. A total of 2 XP service pack levels and 4 of W2K were
exploitable.

This initial exploit had a limited impact because specifying the wrong
Windows version and/or the wrong service pack level caused the
target system to simply crash. That attacker had no better than a 1 in
6 chance of a successful exploit. However this was an alarming
development and it led to a high state of alert for the security team.

7/26/03 The security products company eeye24 released the first vulnerability
scanner for MS03-026. The free version that was available only
allowed scanning a subnet at a time and only ran on the Windows
platform. I tested this scanner and concluded that it was not
sufficiently powerful or efficient to scan the entire university campus
in a reasonable amount of time.

7/29/03 The nessus site released a new test25 based on the eeye scanner.
Unlike the test released earlier this test did not require Administrator
privileges. I tested it immediately on those computers that belonged
to our organization where we had the ability to login, verify the patch
status and thus verify the accuracy of the test. The initial results were
very disappointing, with a 50% false positive rate. I decided that this
test would not be sufficiently accurate to be deployed for the entire
campus.

7/31/03 A strongly worded advisory was sent to 75,000 email recipients
across the entire campus by our computing directors, warning all
computer users of this problem and urging them to patch their
systems immediately. Many administrators heed the warning and
patch their systems. Based on our previous experiences, however,
we felt that there would be many more systems that would have
been unpatched.

8/2/03 Several popular TCP ports for Windows services, including the MS

23 http://xfocus.org/advisories/200307/4.html

24 http://www.eeye.com/html/

25 http://cgi.nessus.org/plugins/dump.php3?id=11808

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 19

RPC DCOM port 135 were blocked bidirectionally at the border
routers.

8/5/03 The first worm appeared but it was based on the proof of concept
Xfocus.org code, which required prior knowledge of the patch level
and OS version of its target. I spent time studying the Xfocus.org
exploit code, the nessus plugin test and the vulnerability paper in an
attempt to better understand the risks and the technicalities of the
exploit.

8/6/03 The hacking group “oc192”26 released a significantly improved
exploit. This exploit27 was now patch level independent. The code
was simply called “oc192.c”. It still required the attacker to specify
the target as either Windows XP or W2K. I tested this exploit on a
test system and found that it was very effective.

At the same time the author of the nessus test had been working
hard to further refine the accuracy of his test. Many revisions were
issued and I watched the nessus site daily and downloaded each
fresh release of the test and tried it. I found the rapidly evolving test
to show steady improvement but it still did not give us the accuracy
that we needed.

8/7/03 It occurred to me that I could create a very high confidence test from
the oc192.c exploit code by removing the portion of code whereby a
shell on the exploited computer was spawned after it was
compromised. I explained to my managers that this amounted to
“opening the door but not entering, and then shutting it”. Given the
requirement of a high confidence test, my managers instructed me to
proceed. By removing a small portion of code, the oc192.c exploit
was converted into a vulnerability test that was virtually 100%
accurate.

The remaining problem that I had to solve was to properly identify
the version of Windows that the target computers ran: XP, W2K or
some other variant like NT4. I did not have the luxury of improperly
identifying a target system and crashing it. The nmap OS
identification fingerprinting did not have sufficient granularity to
resolve between XP and W2K. After some discussion with other
engineers, I arrived at the following ad hoc algorithm:

• Use netcat to determine if port 5000/tcp is open, if so identify

it as XP. The syntax used was: nc –w 5 –v –z <hostname> 5000.

26 http://www.oc192.us/security.html

27 http://www.oc192.us/projects/downloads/oc192-dcom.c

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 20

This was somewhat simplistic but it turned out to be a very good
test.

• Use the smbclient command to establish a null session with

the target and parse the output for Windows version. The syntax
used was: smbclient –L <hostname> -N –p 445. Output from
smbclient would typically look like:

smbclient -L target.com -N
added interface ip=10.12.13.46 bcast=10.12.13.63
nmask=255.255.255.224
session request to TARGET.COM failed (Called name not
present)
Anonymous login successful
Domain=[XXX] OS=[Windows 5.1] Server=[Windows 2000 LAN
Manager]

Sharename Type Comment
--------- ---- -------
Error returning browse list: NT_STATUS_ACCESS_DENIED

Enough information was returned in many cases to determine the
OS version even though full access privileges were not available. In
the above example the token that my script looked for was
“OS=[Windows 5.1]”. Windows 5.1 is XP, while 5.0 is W2K and 5.2
is Windows 2003 Server.

Some systems that were properly secured would not answer to this
query, though these were in the minority. Typical output would look
like:

smbclient -L fort.knox.gov -N
added interface ip=10.12.13.46 bcast=10.12.13.63
nmask=255.255.255.224
timeout connecting to 10.12.17.23:445
Error connecting to 10.142.17.23 (Operation already in
progress)
Connection to fort.knox.gov failed

I felt once again that we should concentrate on unmanaged,
unpatched and weakly secured systems rather than those whose
owners were more proactive. We decided that a Windows system
where the null session was properly secured would also have a good
probability of having a capable administrator. Therefore, if I was
unable to make a determination of the exact OS version, my script
would abandon the target.

The two step approach was taken once again for speed. It was faster
to use netcat to check for port 5000 than it was to use smbclient.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 21

Lastly, I was also not able to reliably test Windows NT for the
vulnerability using the oc192 code. Since the most dangerous exploit
code that had thus far been released did not have an ability to exploit
Windows NT I also decided to disregard potentially vulnerable NT
systems for the time being and concentrate on just XP and W2K. We
found out later that even though Windows NT was vulnerable to the
same bug, the exploit code written for W2K and XP would not work
at all on NT because their internals were too different.

8/8/03 to
8/9/03

With the final technical challenges resolved I was now ready to scan
the entire campus. From our database of nmap data, I obtained a list
of about 20,000 computers that met the following criteria:

• Running some version of Microsoft Windows
• TCP port 135 open to internet

The vulnerability scan was divided into 2 phases. In the first phase
nessus was used to do the screening. This initial screening
accomplished multiple objectives:

• Since it was a safe test that did not crash the target system it
could be deployed using the parallel scanning engine
described in the previous section. It took no more than 20
minutes to do the first phase scan of 20,000 Windows
computers.

• The first phase scan eliminated systems that were

unavailable, powered down, or simply were not listening on
port 135, such as older versions of Windows like ME and 98.

Scan results:

The first phase narrowed down the list of targets to 5205 listening on
port 135 during the time of the scan. 1102 were found to be
“potentially vulnerable”. These I subjected them to the much more
dangerous oc192 code after identifying them as either XP or W2K.
They were not scanned if a positive identification was not obtained.

• 112 systems were positively identified as XP. Out of these,
102 were found to be vulnerable with virtually 100%
confidence, 10 were found to be false positives that were
identified by the nessus test.

• 484 systems were positively identified as W2K from which 442

were found to be vulnerable with virtually 100% confidence
while 23 were nessus false positives.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 22

• The remainder was NT4 or systems that no longer answered

on port 135.

I ran another test to verify that the first phase nessus test did not
produce false negatives. i.e. that an unpatched system did not test
negative by nessus. I ran the dangerous oc192 test on these
systems and found that nessus did not produce any false negatives.
That meant that the two-phase approach to scanning was sound.

Post scanning notes:

• While it was possible to also scan the 1102 systems in parallel, I decided
to only scan them serially (one at a time) because of the danger involved
in overflowing buffers. If something went wrong, it would have been much
easier to terminate a sequential test than if several hundred were
launched to run together. The conservative approach meant that not a
single system tested crashed, and every system that was identified as
vulnerable was indeed found to have been vulnerable.

• In a post incident presentation I was asked why for a campus of 60,000+

registered DNS names and 80,000+ unique MAC addresses that had
been recorded in our scan database only 19,850 computers were
scanned. The reason is that the 80,000+ MAC addresses were recorded
over a period of months by weekly scans. When the time came to scan,
only a fraction of the systems that had been seen in prior months were up
and running, and out of these only another fraction were Windows
computers. We believed that since this outbreak occurred during the
summer break, many students were away and hence did not have their
computers connected to the Internet from campus.

• The oc192.c modified exploit was by far the most accurate test, since the

blaster worm is actually based on a scanner wrapped around the oc192
exploit. However, the two-phase test would be unnecessary if we had a
higher tolerance for false positives such as in an environment where we
have Administrator access to all systems tested. Running just the first
phase using the safe nessus test to generate a list of potentially
vulnerable systems and then verifying them with Administrator access
would have been a less risky and easier strategy if it was possible.

• This infrastructure was deployed again to scan for the related vulnerability

MS03-039. Doing the first phase nessus scan in parallel took 45 minutes
for approximately 27,000 hosts.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 23

5. Conclusions

Proactive vulnerability scanning on a large scale is a much more challenging
endeavor than it first appears. However given the difficult security challenges in
our environment, we pursued this solution which we felt had the greatest
potential for risk reduction. We tackled the technical challenges head on and
eventually became successful in achieving our goal.

6. Bibliographic References

1. Gray, Terry. “Firewalls: friend or foe.” Educase Review Jan 2003 16 Feb
2004
URL: http://www.educase.edu/ir/library/pdf/erm0319.pdf

2. Anderson, Harry. “Introduction to Nessus.” Security Focus Infocus 28 Oct

2003. Feb 16, 2004
URL: http://www.securityfocus.com/printable/infocus/1741

3. fyodor. “Remote OS detection via TCP/IP stack fingerprinting.” 11 Jun

2002. 16 Feb 2004
URL: http://www.insecure.org/nmap/nmap-fingerprinting-article.html

4. Hoffman, Forrest. "An Introduction to Parallel Programming." Linux

Magazine Mar 2002. 16 Feb 2004
URL: http://www.linux-mag.com/2002-03/extreme_01.html

5. Arboi, Michel. "The NASL2 reference manual." 6 Feb 2002. 16 Feb 2004.

URL: http://www.nessus.org/doc/nasl2_reference.pdf

6. Freeman, Wayne J. "An Analysis of the Microsoft RPC/DCOM
Vulnerability MS03-026." 22 Sep 2003. 16 Feb 2004
URL: http://www.inetsecurity.info/downloads/papers/MSRPCDCOM.pdf

7. author unknown. “Information Security in the Modern University: Is it

mission impossible?” SANS Security Conference San Francisco 99
brochure 1999
URL: http://www.sans.org/sf99/smu.htm

