GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

The FreeBSD Jail: When Chroot is not Enough

Name: Syahrul Sazli Shaharir
Assignment Version: 1.2f

Introduction

Offering a service to the Internet, such as the web service, has an associated risk: there exists
the uncertainty of undiscovered security holes in its implementation. Even if they do get
discovered and become publicly known, services often do not get fixed or patched in time,
sometimes not until a few days, weeks, or not at all, depending on the constraints faced by the
system developers and administrators. During that time, the vulnerable service is threatened
by would-be attackers all over the Internet, who are equipped with freely downloadable tools
used to look for such holes, exploit them, and cover their tracks or even go undetected. The
impact can be serious. A successful exploit on a single vulnerable service usually leads to the
compromise of confidentiality, integrity, and availability of the whole system, or other
systems within reach. If these systems are secured behind perimeter firewalls, the impact
could be devastating, since the attacker is now located within the trusted network, usually
laden with sensitive proprietary data.

In order to mitigate such risks, "defense in depth" must be applied in setting up Internet
services. In UNIX-based systems, the chroot[7] system call has been an indispensable tool
used to limit, to some extent, what services can have access to in the Operating System. It
acts as a "safety net": if a bug in the service is exploited and access to the Operating System
is gained, the attacker's ability to make use of that access for breaching the rest of the system
(or other systems) will be reduced.

To seek further improvements to chroot in confining Internet services, Poul-Henning
Kamp[12] has developed the jail[8] kernel feature, which in addition to chroot, imposes more
limitations to system services. Currently, it is only implemented in the FreeBSD Operating
System.

The goal of this paper is to introduce the jail concept, comparing it with chroot and other
alternatives, and walk through a simple HOWTO on setting up a jail partition. Finally, we
look into the future of jail, and end with some concluding remarks.

What's Wrong with Chroot?

What chroot essentially does is it alters the current process's environment such that the root
directory (/) points to any given directory beneath it. From then on, all filesystem access will
be relative to this new root directory. A typical chroot usage is summarized as follows [2]:-

Prepare a directory containing only the service to be run, and its dependencies.
-Change to that directory, and then chroot into it, making it the new root directory.
-Become non-root user.

Run the service.

From here, it is evident that chroot is designed only to restrict filesystem access, nothing
more. All other resources of the running kernel, such as networking resources, and processes
outside of the chroot directory, are theoretically available for interaction by the chrooted
process, since chroot is not designed to cover that much scope. [1][16]

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The weakness which comes out of this is the following: as long as any possibility exists that a
service can re-gain root access in its operation, then there is a possibility of a "chroot escape",
i.e. the process breaks out of the chroot filesystem scope, and gains access to the rest of the
host filesystem. [15]

This makes chroot protection inadequate for situations which require delegation of high
privileges to untrusted services or users. A classic example is an Internet Service Provider,
hosting multiple independent and mutually untrusted web sites. Each site owner has the
privilege to install customized components such as Java, PHP, MySQL, etc. to their sites.
Here, site owners can do nearly whatever they want with their sites, but strictly no access to
others, as well as the base Operating System. [12] Another example is a more common
situation: due to certain constraints, system administrators are forced to run services which
are known to be vulnerable, needs the root privilege, or have dependencies all over the whole
filesystem. The risks involved in these kinds of situations cannot be effectively mitigated
using chroot, and will be referred to as "the System Partitioning Problem".

In order to solve this problem, many started to wrote features on top of, in addition to, or
totally replacing chroot, all with a common goal: to further isolate, the service from the rest
of its environment. Jail is one such effort, unique to the FreeBSD kernel.

How Does Jail Work?

At the time of writing, the current release version of FreeBSD is 4.4: the jail implementation
may have changed since then. Some definitions are established here before proceeding:-

-"host": the main Operating System.

«"kernel": the main Operating System module which resides in memory, handling core tasks
such as process and memory management, networking, I/O, and task scheduling.

-"userland": the outer layer of an Operating System which performs actual intended tasks, and
usually interacts between the user and the kernel.

The jail[8] system call is typically called by a userland binary called jail[9], which takes 4
arguments:-

jail path hostname ip-number command ...

1."path": An arbitrary directory in the host containing the jail filesystem environment. Similar
to chroot, this directory can contain minimal service binaries, dependent libraries, devices,
and configurations with minimum permissions set up for the service to run. However, in jail
environments, it is common for the whole FreeBSD distribution to be installed into this
directory, with only small exceptions, such as most device nodes and the kernel. [12]

2."hostname": The hostname assumed by the jail environment. This entry is currently used
for rudimentary jail process accounting.

3."ip-number": A unique IP address, an alias of the host interface. The jail will not be able to

bind and utilize network resources on the host, except the ones associated with this IP
address.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

4."command": The program that is to be run in the jail, typically a shell such as /bin/sh.
The first three arguments is then passed to the jail[8] system call, which does the following:-

1.Calls chroot to change the root filesystem environment to the supplied "path". Here, the
usual rules of chroot applies, along with some FreeBSD-specific protections against known
chroot escapes. [5]

2.Assigns a "prison" structure to the current process. The structure holds the “hostname”
and “ip-number” pair associated with the jailed process, which gets inherited to its
children. This prison structure gets associated with the process until the process is eliminated.
In other words, the process and all its children are imprisoned, in the same jail, for life.

[6][13]

The “command” is then executed via the execve system call, thus becoming a new process,
inside the chroot environment, bound by the prison structure.

How does the kernel recognize a jailed process, and how to restrict its movements?

In various parts of the FreeBSD kernel, additional checks are made to see if the current
process is associated with a prison structure, so called a jail "inmate". If the process is an
inmate, restrictions will be imposed to the process, which can roughly be divided as follows
[6][13]:-

1.Restrictions on network resources.

An inmate will only be able to bind and utilize the single IP address “ip-number”
associated to it in its prison structure. Requests to use other available IP addresses (such as
the host system's and other jails', including loopback address 127.0.0.1) will be silently
diverted to this IP address.

2.Restrictions on processes.

An inmate can only interact with its fellow inmates, i.e. other processes in the same jail.
Processes in other jails and the host system will not be accessible, or even visible, at all. Even
with prior knowledge of processes running in other hosts, most inter-process communications
and memory sharing mechanisms between them are prohibited.

3.Restrictions on the root privilege set.

An inmate with root privileges will be prohibited from:-

- Modifying the running kernel and its parameters (e.g. sysctl, securelevel, kldload)
- Modifying any network resource (e.g. ifconfig, route)

- Mounting and unmounting file systems (e.g. mount, umount)

- Creating device nodes (e.g. mknod)

- Changing file flags (e.g. chflags)

- Accessing raw, divert or routing sockets (e.g. ping, tcpdump, packet generators)

If a process has no prison structure, it is deemed as a host process, and is exempted from all
the above restrictions.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The end result: root's powers within jail are severely limited, and what's left of these powers
are only effective inside the jail. On the other hand, the host system root has full authority
over all jails.

A rough visualization of the difference between chroot and jail is shown in the diagram
below.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

192,168,100, 1

/var

S
A

Figure 1: Chroot environment still has full access to most kernel resources

/
|

Host Kernel Space

usr /chroot

192.168,100.2 |

/usr /var

Jail environment

Figure 2: Jail environment goes through mandatory checking and restrictions at the kernel.
All network activity in jail is redirected to an aliased IP address (192.168.100.2).

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

A Short Generic HOWTO

Setting up jail partitions is fairly straightforward (This assumes familiarity with FreeBSD or
any UNIX-based Operating System):-

PART 1: Preparing the Host System

The following preparations are done in the host system, as root. The steps can easily be put in
scripts for faster maintenance:-

First, we need to create IP address aliases for our jails. If the host is equipped with a single
network interface denoted as 'fxp0', and located inside a hypothetical subnet

192.168.100.0/24, put the following entries in /etc/rc.conf, defining alias for each jail:-

ifconfig_fxp0="inet 192.168.100.1 netmask 255.255.255.0"
ifconfig_fxp0_aliasO="inet 192.168.100.2 netmask 255.255.255.255"
ifconfig_fxp0_alias1="inet 192.168.100.3 netmask 255.255.255.255"

To activate an alias manually, type:-

ifconfig fxp0 inet 192.168.100.1 netmask 255.255.255.255 alias
1.Build the FreeBSD world distribution, as normal:-

cd /usr/src; make buildworld

2.Create the jail partition, e.g. /jail. For fast performance, /jail should be mounted to a
separate, fast disk subsystem.

3.For extra protection, edit /etc/sysctl.conf, and for extra put:-
jail.set_hostname_allowed=0

This is to protect root accounts in jail from being able to change the jail's hostname, thus
possibly disrupting jail process accounting.

4. Make sure the host system is not running any service, but if some is needed, make sure that
it listens only to the host IP address. This is done by doing:-

netstat -an | grep LISTEN

and make sure no service is listening to all addresses INADDR.ANY, or denoted as '*' in the
netstat I[P address output).

PART 2: Preparing each Jail Subsystem

1.For each of the jail directories e.g. /jail/dir, install copies of the compiled FreeBSD
distribution:-

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

mkdir /jail/dir

cd /usr/src; make installworld DESTDIR=/jail/dir

cd /usr/src/etc; make distribution DESTDIR=/jail/dir
NO_MAKEDEV=yes

NOTE: If this is an upgrade, do cd /usr/src; mergemaster -D /jail/dir to merge the
configuration changes.

Note also that this step can be replaced with chroot-style directory preparations, such as
limiting directory contents with only needed binaries, libraries and devices. [2]

2.For each jail, create the jail-relevant devices:-
cd /jail/dir/dev; sh MAKEDEV jail
3.For each jail, create bogus kernel and fstab:-

cd /jail/dir; In -sf dev/null kernel
touch /jail/dir/etc/fstab

4 Mount procfs for jail process accounting:-

mount -t procfs proc /jail/dir/proc

5.Next, the sysinstall binary is created for each jail:-

mkdir /jail/dir/stand; cp /stand/sysinstall /jail/dir/stand
6.Enter the jail by executing:-

jail /jail/dir jail-hostname 192.168.100.2 /bin/sh

This will open up a shell in the new jail. From this point on, all operations below are run
within the jail subsystem.

7.Run /stand/sysinstall. Choose "Do Post-install configuration..".
8.Go to time zone, and define the time zone. Exit sysinstall, and the jail shell.

Now we have created a fully independent FreeBSD system inside the jail. To start or "boot"
the jail environment, do the following:-

jail /jail/dir jail-hostname 192.168.100.2 /bin/sh /etc/rc

Once the jail is up, the administrator can log on into it, install and configure required
packages, as with any normal FreeBSD host. (e.g. pkg add or 'make install' in /ust/ports tree).

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Further Enforcement on Jails

What if a malicious attacker, who managed to gain root in a jail environment, uses the jail
environment as a launch pad for attacking other hosts reachable in the network?

Recall that a jail is always spawned from the single host kernel. All low level operations in
the jail, including networking, will go through the host kernel. Therefore, any security
policies enforced on the host system kernel will be inherited by the jails. Also recall that root
cannot in any way modify the running kernel and its parameters. This would include the
enforced security policies, thus protecting it from being changed by the jailed root.

For example, a host administrator might want to limit and monitor all networking activity in
the jails. To achieve this, the administrator can configure the host kernel to perform packet
filtering, redirect certain traffic to a proxy, or sniff all traffic and analyze them using a
Network Intrusion Detection System. Next, the administrator might also want to enforce disk
quota on the partitions where the jail directories reside. All jail subsystems will be subjected
to these mechanisms without any way of getting around them.

A demonstration of such a controlled jailed environment can be found in OpenRoot.org, a site
which gives out root accounts to any interested visitors. The root accounts are safely tucked
inside jailed partitions, having full power within the jail, but totally powerless to the outside
world. For example, the only network connection allowed is FTP access to an anonymous
FTP site. [14]

A Comparison with Other Partitioning Efforts
Other approaches to solving the partitioning problem follows:-
1.Trusted Operating Systems, Derivatives and Subsets

Trusted Operating Systems, first introduced in the early 1980s, offer much more fine-grained
compartmentalization of system resources. For example, the UNIX file permissions model is
replaced with stronger access control list, covering every resource in every possible access
methods. The powerful set of privileges previously owned by root are broken apart into
"capabilities", each capability given to processes and users in a strict "need to" basis,
consistent with the "least privilege" principle. Users are classified in military-style multi-level
security. Examples of such systems include Trusted Solaris, Trusted IRIX, Trusted AIX, and
TrustedBSD. [17] Efforts which apply a subset of or alternative to these features also exist,
notably Immunix and its Subdomain component. [3]

The disadvantages of trusted systems however are:-

(1) Trusted systems are complex, resulting in high set up and administration costs.
Complexity also invites more bugs and security holes to the trusted system implementation
itself. Furthermore, it also slows down development: trusted systems often lag behind their
mainstream counterparts in terms of features and capabilities. [11]

(i1) Not fully compatible with applications: most applications are not designed to run on

trusted systems. As a result, applications need to be fully studied and tested to determine
what resources they need, and what privileges they need to have on them. [11][3]

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

In contrast, FreeBSD jail preserves the simple UNIX Security model in each jail, thus being
more friendly to system owners, administrators, and applications alike.

2.Userland Virtual machines

These are a newer breed of solutions which usually involves booting a whole Operating
System on top of a userland emulation layer. Examples include VMware and User-mode
Linux [4]. Although their design and purpose may not be in the same vein as chroot and jail,
they can be used to solve the partitioning problem. In each virtual machine, every system
resource, including disks and network interfaces, are emulated, all as a non-root user. As a
result, the emulated system is securely isolated from the base system and other virtual
machines. As each virtual machine is run as non-root, resource limiting can easily be
enforced on them, to avoid host availability attacks from within each virtual machine.

However, this also becomes a disadvantage: each virtual machine needs to run its own copy
of the kernel in the host's memory space. Thus each virtual machine has a much bigger
memory footprint. Furthermore, performance of virtual machines are slower, since every low
level operation has to go through the emulation layer. In contrast, FreeBSD jails interact with
a single kernel, controlled by the underlying host.

Disadvantages of FreeBSD Jail
FreeBSD jail does have some downsides:-
1.Jail is not a portable solution: it is only available on FreeBSD.

2.Jail is a relatively recent, immature implementation. It was first released along with
FreeBSD 4.0, in March 2000. As with any new feature, the security and robustness of the
implementation is not yet proven. Jail management utilities, for administration and
monitoring from the host system is also lacking. For example, there is no distinction between
processes in different jails via 'ps'. For host availability protection, per-jail resource limiting
mechanisms are not possible: they share a common limit imposed at the host kernel. As a
result, a jailed root can easily perform denial of service attacks on the host system resources,
and other jails. Although these problems can be solved using third party tools, it is beyond
the current scope of jail.

3.Jail is also arguable as a kernel feature. Some view FreeBSD jail as a "kernel bloat" and a
case of "creeping featurism": the kernel goes out of its way to act as a safety net for
applications, and in doing so, adds complexity to the otherwise simple kernel. This opens up
more opportunities for bugs and security holes in itself. This argument probably explains why
the feature has not been, or will never be ported to other BSD-based kernel implementations.
[10]

The Future of FreeBSD Jail
The jail feature is under heavy development, and in some areas, being re-implemented, led by
Robert Watson. [18] The new version is known as jaiING. Notable improvements in jailING

are improved jail management facilities, per-jail system policies, and better virtual
networking support. The jail concept is also used in Watson's TrustedBSD project, an effort

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

to incorporate Trusted Operating System features into the FreeBSD kernel. [17]
Conclusion

Overall, the FreeBSD jail concept is an interesting addition to solving the system partitioning
problem: it fills the gap between the traditional UNIX security model, and the more fine-
grained security models such as the Trusted Operating System. Although it is still immature,
and has problems of its own, the jail concept is still attractive as its design is simple and
friendly to current applications and administrator skillsets. However, like chroot, in most
cases jails act as "damage control" mechanism. The fact remains that for each service, there
is always some amount of data associated with it: such that a successful exploit of a service,
even trapped within a jail, can be an unacceptable risk. In this case, even jail is not enough: in
addition, a secure implementation of the service is used, and always kept up-to-date with
security fixes.

SOURCES

[1] Al-Herbish, Thamer. "Secure UNIX Programming FAQ", May 1999.
http://www.whitefang.com/sup/secure-faq.txt

[2] Borland, Matt. "Locking Down Your Daemons: An Overview of 'chroot
jailing' Services in Linux", SANS Institute: Information Security Reading Room, May 2001.
http://www.sans.org/infosecF AQ/linux/daemons.htm

[3] Cowan, Crispin; Beattie, Steve; Kroah-Hartman, Greg; Pu, Calton;
Wagle, Perry; Gligor, Virgil. "SubDomain: Parsimonious Server Security",
WireX Communications, Inc., 2000.
http://www.immunix.org/subdomain.pdf

[4] Dike, Jeff. "The User-mode Linux Kernel Home Page: The Kernel",
2001. http://user-mode-linux.sourceforge.net/kernel.html

[5] FreeBSD Project, The. "CVS log for src/sys/kern/vfs_syscalls.c",
November 2001.
http://www.freebsd.org/cgi/cvsweb.cgi/src/sys/kern/vfs syscalls.c

[6] FreeBSD Project, The. "CVS log for src/sys/kern/kern_jail.c",
December 2001.
http://www.freebsd.org/cgi/cvsweb.cgi/src/sys/kern/kern_jail.c

[7] FreeBSD Project, The. "FreeBSD Hypertext Man Pages: chroot(2)",

June 1993.

http://www.FreeBSD.org/cgi/man.cgi?query=chroot&sektion=2 &apropos=0&manpath=Free
BSD+4.4-RELEASE

[8] FreeBSD Project, The. "FreeBSD Hypertext Man Pages: jail(2)", April

1999.

http://www.FreeBSD.org/cgi/man.cgi?query=jail&sektion=2 &apropos=0&manpath=FreeBS
D+4.4-RELEASE

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

[9] FreeBSD Project, The. "FreeBSD Hypertext Man Pages: jail(8)", April

1999.

http://www.FreeBSD.org/cgi/man.cgi?query=jail&sektion=8 &apropos=0&manpath=FreeBS
D+4.4-RELEASE

[10] Google Groups. "Re: chroot() break", Online Discussion Thread in
openbsd.misc, on the Merits of Jail as a Kernel Feature, May 2001.
http://groups.google.com/groupshl=en&th=95c4fab32332ec1 1 &rmum=15

[11] Jacobs, Charles. "Trusted Operating Systems", SANS Institute:
Information Security Reading Room, May 2001.
http://www.sans.org/infosecF AQ/securitybasics/trusted OS.htm

[12] Kamp, Poul-Henning; Watson, Robert N.M. "Jails: Confining the
omnipotent root", The FreeBSD Project, May 2000.
http://docs.FreeBSD.org/44doc/papers/jail/jail.html

[13] Sarmiento, Evan. "Inside Jail", Daemonnews, September 2001.
http://www.daemonnews.org/200109/jailint.html

[14] Sarmiento, Evan. "Openroot.org", 2000.
http://sektor7.ath.cx:8080/openroot/index.php

[15] Simes. "How to break out of a chroot() jail", January 2001.
http://www.bpth.net/simes/computing/chroot-break.html

[16] suplist@whitefang.com. "Newbie Q : What about chroot?", Secure UNIX Programming
Mailing List Thread, June 1999.
http://www.whitefang.com/sup/archive/msg00000.html

[17] Watson, Robert N.M. "Adding Trusted Operating System Features to
FreeBSD", June 2001.
http://www.trustedbsd.org/documentation/implementation/trustedbsd-usenix-2001.ps.gz

[18] Watson, Robert N.M. "jailNG", April 2001.
http://www.watson.org/~robert/jailng/

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

