
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec


© 2016 The SANS Institute Author retains full rights. 

Basic Reverse Engineering with Immunity Debugger 

GIAC (GSEC) Gold Certification 

Author: Roberto Nardella, roberto.nardella@fastwebnet.it 

Advisor: Richard Carbone 

Accepted: May 7, 2016 

Abstract 

Reverse Engineering is an intriguing art, but also one of the most difficult topics in 
Security and Malware Analysis. Skilled reverse engineers have an in-depth knowledge of 
Assembly language, of processor architectures and a great familiarity with the most 
important debuggers. However, there is a lot of information that can be gathered with an 
even essential knowledge of debuggers and Assembler. This paper shows some very 
basic, but very useful, reverse engineering steps carried out with a great debugger, 
Immunity Debugger. 



© 2016 The SANS Institute Author retains full rights. 

Basic Reverse Engineering with Immunity Debugger 2 
 

Roberto Nardella, Roberto.nardella@fastwebnet.it   

 
1. Introduction 
The intention of this technical paper is not to enter into the technical specifics of 

Assembly language, which is a skill that it is strongly required in order to perform in-

depth reverse engineering. Instead, it is show basic and easy steps that are possible to 

perform with Immunity Debugger and that can return many useful indications at the same 

time. For a good understanding of this paper, a basic knowledge of the C programming 

language for Windows (WinAPI) is also required. 

The example code snippets used in this paper are meant to resemble, as much as possible, 

some “real life” code snippets, emulating the actions that best part of malware do, like 

downloading files from the internet on the targeted machine, renaming extensions, 

writing files on disk, add some persistence mechanisms by modifying or creating registry 

keys. 

1.2 Main assumptions 
All the source codes shown in this paper have been compiled with “Pelles C” free C 

compiler. The settings used for the compilation of the executables are shown in Appendix 

A of this paper. All source code has been compiled under an x86 32-bit environment. 

Although the purpose of this paper is to show the potential of basic debugging the 

technical specifics of Assembly language are out of scope, although a description of the 

main Intel processor registers cannot be avoided. To keep the difficulty of reading this 

paper to a minimum, the following two tables briefly describe the purpose of the main 

x8086 general purpose registers and pointers registers (also called “index registers”). A 

table describing the Segment Registers is deliberately avoided, as no such registers will 

be cited in the examples looked at in this paper. The initial “E” in the acronyms below 

(EAX, EBX, etc.) stands for “Extended” or “Enhanced.” 

 

 



© 2016 The SANS Institute Author retains full rights. 

Basic Reverse Engineering with Immunity Debugger 3 
 

Roberto Nardella, Roberto.nardella@fastwebnet.it   

Table 1: General Purpose Registers 

(name) (description) 

EAX Accumulator Register. This register is generally used to store temporary data, like the 
return value of a function, or used to contain values to be used in mathematical operations. 

EBX Base Register. This register has no specific purpose: is it used to store temporary data, it 
can be also used for indexed addressing. 

ECX Counter Register. The Counter register is used as a loop counter. 

EDX Data Register. It is used for input/output operations and as an additional general-purpose 
register. 

 

Table 2: Pointer Registers 

(name) (description) 

ESI Source Index. This register is used for operations on arrays and strings, generally in 
“reading mode.” 

EDI Destination Index. Same as per ESI, but generally in “write mode.” 

EIP Instruction Pointer. This is a read only register, containing the address of the instruction 
that will be executed next. 

EBP Base pointer. Contains parameter variables passed to a subroutine, and used also for 
passing arguments to data structures. 

ESP Stack pointer. Contains the address of the top of the memory stack. 

 

1.3 Immunity Debugger Environment 
Immunity Debugger is a great and free, debugger. The basics of Immunity Debugger are 

explained in a very clear and useful article from Igor Novkovic [1]. Although already 

explained in his article, it is worth reminding, what the four main Immunity Debugger 

panes are, and what information do they contain, once an executable is opened or a 

process is attached. 

Shown in Figure 1 is the debugger interface, broken into labelled panes for easy reading. 



© 2016 The SANS Institute Author retains full rights. 

Basic Reverse Engineering with Immunity Debugger 4 
 

Roberto Nardella, Roberto.nardella@fastwebnet.it   

 

Figure 1: the Immunity Debugger user interface  

• Pane 1: this pane will contain the assembly instructions (third column from 

the left), along with the original machine code (second column), and the offset 

for each instruction (first column). The last column (first from the right) will 

contain comments added by Immunity Debugger itself, or comments added by 

the user during the analysis; 

• Pane 2:  Pane nr. 2 contains the CPU registries pane. Some of these registers 

have been already briefly described, and will be mentioned during some of the 

examples shown below; 

• Pane 3:  this pane contains the hex dump of the executable under analysis; 

• Pane 4: this pane contains the Memory stack view (offset and content). 

During the analysis of the executable or of the process, the content of this 

pane changes dynamically, as soon as new elements are pushed onto the stack, 

or removed from it. 

 



© 2016 The SANS Institute Author retains full rights. 

Basic Reverse Engineering with Immunity Debugger 5 
 

Roberto Nardella, Roberto.nardella@fastwebnet.it   

Amongst all the icons available on the menu bar, immediately under the drop down menu 

of the main Immunity Debugger window, three are worth a quick explanation (Figure 2): 

 
• Display graph 
• Step into 
• Step over 

 

     

Figure 2: useful functionalities of Immunity Debugger 

The first one (Display Graph) will draw a graph of the program flow, as shown in Figure 

3. The logic of the program, depending on a certain condition (a new value assigned to a 

variable, an event, the result of a comparison and so on), may decide to execute a block 

of instructions instead of another, and this is obviously quite clear to understand if this 

flow is displayed in a graph. Different from other debuggers, the flow chart displayed by 

Immunity Debugger will not show the program flow of the entire program, as other 

debuggers may do, but just at a more contained level of recursion. 

In other words, as we will see in Example nr.2, choosing a function as a starting point can 

be important to generate a useful flow chart for the examination. In Figure 3, for 

example, we can recognize some “Jump” Assembler instructions, like “JMP” (Jump), 

“JE” (Jump if equal), JA (Jump if above): 

 

 

 



© 2016 The SANS Institute Author retains full rights. 

Basic Reverse Engineering with Immunity Debugger 6 
 

Roberto Nardella, Roberto.nardella@fastwebnet.it   

Figure 3: sample of flow chart generated by Immunity Debugger 

For further details about Assembler jump instructions, it may be worthwhile to check the 

following Jump instruction quick reference [2]. 

The other two functionalities, “Step into” and “Step over,” are particularly useful to 

examine the program by executing one assembly instruction at a time: the difference is 

that, when a “CALL” instruction is met, the “Step into” functionality will make the 

cursor jump to the location where the called function is. The “Step over” functionality, 

instead, will execute the called function but will leave the cursor where it is.  

When a Jump instruction is met, both “Step Into” and “Step over” will behave in the 

same way, and the cursor will just move to the specified offset. 



© 2016 The SANS Institute Author retains full rights. 

Basic Reverse Engineering with Immunity Debugger 7 
 

Roberto Nardella, Roberto.nardella@fastwebnet.it   

 

Figure 4: evaluation of a Jump instruction 

The cursor (the green line) visible in Figure 4 is now placed at offset 0x7C862D0B, on a 

JNZ (“Jump if not zero”) instruction. Immunity Debugger, in the small sub-pane 

immediately below the assembly instructions pane (“Pane 1”), is suggesting us that the 

Jump instruction will be taken (see the red box in Figure 4), because the instruction 

immediately preceding JNZ (CMP EAX, EDI) meets the requirement of the jump 

instruction. By clicking either “Step into” or “Step Over,” the cursor will move to offset 

0x7C862D22, which is still visible in Figure 4 (instruction: XOR ESI, ESI).  

In Figure 5, the “green line” cursor is on a CALL instruction, that it is not yet executed. 

The pane below hints that this instruction will call a block of instructions that is located at 

offset 0x77C0537C: 

 

 

 

Figure 5: “green line” cursor of Immunity Debugger 

By clicking “Step into,” the cursor will then move to offset 0x77C0537C, as seen for the 

jump instructions. By clicking “Step over,” the cursor will remain as it is, but all the 

instructions between offset 0x77C0537C and the next RETN instructions will be 



© 2016 The SANS Institute Author retains full rights. 

Basic Reverse Engineering with Immunity Debugger 8 
 

Roberto Nardella, Roberto.nardella@fastwebnet.it   

executed, and all the values for all the CPU registries will be updated regularly. After the 

RETN instruction is executed, the cursor will go on following the program execution. 

Another two quick things that it is worth mentioning about the Immunity Debugger 

environment are that functions are highlighted automatically with yellow brackets, as 

shown below in Figure 6 (exactly in between the offsets and the machine language 

instructions): 

Figure 6: functions highlighted by Immunity Debugger  

As we see, functions in Assembler usually start with a “PUSH EBP – MOV EBP, ESP” 

instructions, and end with a RETN instruction. Immunity Debugger automatically locates 

these instructions and highlights them with a yellow bracket. 

The last detail that it is worth showing is how Immunity Debugger can show “loops” 

(like “For” loops or “While” loops). According to the structure and flow of the loop 

itself, the equivalent Assembler code may remarkably vary but the simplest one is shown 

in Figure 7: 

 

Figure 7: loop highlighted by the user interface 

Loop start at offset 0x004010CE, and is indicated by an “arrow” symbol (or “greater 

than” bracket), “>”. 



© 2016 The SANS Institute Author retains full rights. 

Basic Reverse Engineering with Immunity Debugger 9 
 

Roberto Nardella, Roberto.nardella@fastwebnet.it   

The Assembler instruction on the line marked with a “>” symbol (the first line in Figure 

7) is an “INC” (“increment”) opcode, incrementing a value stored in an EAX register 

(“Accumulator”). Once this opcode is executed, the next assembler instruction is a 

“CMP” (“compare”) instruction, comparing a “zero” to the value obtained by calculating 

the expression shown at offset 0x004010CF. At the very last line, at offset 0x00400D3, 

the “JNZ” (“jump if not zero”) Assembler instruction will jump to the specified offset 

0x004010CE if the value obtained from the expression calculation is not zero, as also 

indicated by the little “arrow symbol” pointing upwards. Those two just described arrows 

are a graphical indicator of a loop. 

2. Example nr.1 
 
The code snippet below is a simple piece of C code that: 

• Renames a “notepad.txt” file, placed into a “Temp” folder, and renames it into 

a “notepad.txt” file; 

• If the renaming operation is successful, then “notepad.exe” file is run. 

Old malwares (Unitrix, to mention one [3]) used to be downloaded in the impacted 

machine in another file format (say, for example, jpeg) and then renamed into .EXE, with 

the intent of circumventing a possible rule that can detect the suspicious download of 

certain .EXE files. New malwares (ransomwares, like Cryptowall [4], etc.) also rename 

the extensions of the documents impacted by the malware (Word, Excel and so on), after 

they are encrypted. So, although a very basic example, it can be considered as a “real 

life” example. The example code is very easy to understand, and it is the following: 

#include <windows.h> 
#include <stdio.h> 
 
int main(void){ 
 
if (MoveFile ( "c:\\temp\\notepad.txt", "c:\\temp\\notepad.exe" )) { 
    ShellExecute( NULL, "open", "c:\\temp\\notepad.exe", "", NULL, SW_SHOW ); 
} else { 
  //  printf("Errato %d\n",GetLastError()); 
  return 0; 
                   } 
 } 
Figure 8: C code of Example nr. 1 



© 2016 The SANS Institute Author retains full rights. 

Basic Reverse Engineering with Immunity Debugger 10 
 

Roberto Nardella, Roberto.nardella@fastwebnet.it   

“MoveFile” and “ShellExecute” are two functions from the Windows API and, as such, 

they both require the “windows.h” header file [5]. “MoveFile” [6] is used to move or 

rename files (including extensions): “ShellExecute” [7] is used to perform several 

operations on a file or directory (opening the directory, searching into it, running a file 

and so on).  

Figure 9: Example nr. 1 opened in Immunity Debugger 

Once opened, the first observations of the compiled executable as seen by Immunity 

Debugger, is shown in Figure 9. Now we will look at specifics. 

The highlighted line at offset “0x00401040” is not the Main function of the program, but 

the entry point for the executable. Before the code created by the programmer is run, an 

executable does a lot of operations (checking the CPU architecture, setup Exception 

Handlers, and so on) [8] before the code intended by the programmer is run. 

The code represented in the screenshot above derives from an executable compiled with 

Pelles C. Pelles places (part of) the code created by the programmer at the very top (line 



© 2016 The SANS Institute Author retains full rights. 

Basic Reverse Engineering with Immunity Debugger 11 
 

Roberto Nardella, Roberto.nardella@fastwebnet.it   

at 0x00401000), so in this case, it is very easy to find what the programmer did. But, 

other compilers may create completely different Assembler code, so reality is always not 

obvious. 

One way to search for “programmer created” instructions is to look for “referenced text 

strings,” which is a searching feature that is obtainable from the popup menu appearing 

with a right click on the Assembler pane, as shown in Figure 10: 

 Figure 10: “Search for all referenced text strings” functionality 

The result that we would get is a list of all strings that are usually stored in the “.data” 

section of an executable, and shown in Immunity Debugger in a dedicated pane. Each of 

the lines containing the extracted strings listed is a hyperlink, leading to the 



© 2016 The SANS Institute Author retains full rights. 

Basic Reverse Engineering with Immunity Debugger 12 
 

Roberto Nardella, Roberto.nardella@fastwebnet.it   

corresponding Assembly instruction in the main window (“Assembly instructions” pane), 

using, or manipulating that string somehow. 

As shown in Figure 11, some of the strings (in this example: the “ASCII 

c:\temp\notepad.exe”) can be of interest, because usually the executable “notepad.exe” is 

not in the “temp” directory, nor a text file named “notepad.txt” is present in default 

windows installations: 

Figure 11: referenced strings in the analyzed executable 

Once the selected text string is followed in the disassembler, the “green line” cursor will 

be placed exactly on the selected string, within the main Immunity Debugger pane: 

Figure 12: argument passed to MoveFileA 

The first example code consists in one unique function (the Main function): from inside 

Main() , the other two mentioned functions “MoveFile” and “ShellExecute” are called. 

Apart from grouping these functions with the “yellow brackets” mentioned in the 



© 2016 The SANS Institute Author retains full rights. 

Basic Reverse Engineering with Immunity Debugger 13 
 

Roberto Nardella, Roberto.nardella@fastwebnet.it   

previous paragraph, it is possible to see that the order in which the arguments are passed 

to the functions is exactly the opposite order used in the developer created C source code, 

to pass said arguments to the functions. This is because the calling convention used to 

compile this executable (and the next ones in this paper) is “_cdecl.” See Appendix A for 

the various compiler options used. Microsoft MSDN explains that the “cdecl” calling 

convention is a “right to left” argument passing order [9]. 

In conclusion, from Figure 12, it appears clear that the program in question first executes 

a “MoveFile” instruction, which renames a “notepad.txt” file into “notepad.exe” (full 

paths passed as arguments to the MoveFile function). Then, the newly created 

“notepad.exe” is run through function “ShellExecute.” 

3. Example nr. 2 
 

The code below is another C code, a bit more complex than Example nr.1, that checks the 

existence of a directory "C:\\WINDOWS\\system456" and, if present, the program does 

nothing and quits. If not present, it executes other instructions that create a registry key, 

write a file and open a socket connection. 

In this case, the code is divided into more functions, called from the “Main()” function. In 

the source code in Figure 13, functions are all separated by a divider, highlighted in green 

font color for ease of read. Each function, in turn, will call several WinAPI functions, this 

time invoked not only through the “windows.h” header file, but also from the 

“winsock.h” [10] (for the socket) and “aclapi.h” [11] header files (since the creation of a 

registry key requires higher access level, obtained through the usage of the 

“SECURITY_ATTRIBUTES” data structure). 

Looking at the code, it “emulates” actions commonly done by a huge variety of malware. 

Before running the malicious code, many malware check for the presence of some 

specific antivirus (that may already know the signature of the malware that is it going to 

be downloaded), malware detection tools, dissectors and analysis tools by verifying if 

their specific installation files and folders are present in the impacted machine. If those 



© 2016 The SANS Institute Author retains full rights. 

Basic Reverse Engineering with Immunity Debugger 14 
 

Roberto Nardella, Roberto.nardella@fastwebnet.it   

files are not present and therefore the malicious code is “safe” to be downloaded and run 

on the impacted machine, the malware may carry out other actions like, for example, add 

a persistence mechanism by writing a registry value in common Autorun keys (like, for 

example: “HKEY_CURRENT_USER \ Microsoft\ Windows \ CurrentVersion \ Run “). 

Other common actions that malwares may do are downloading files, contacting C&C 

servers (so, starting sockets, HTTP sessions, etc.) and writing files on the disk.  

The code below starts by checking the presence of a “C:\ WINDOWS\ system456”, 

through function “Controlla.” If the path is present, the code execution will stop. But, 

since this path does not exist on default Windows installation, it will do the following: 

• Write a registry key named “Provadiscrittura” (through function named 

“scriviregistro”); 

• Writes a text file in the C:\ path (through function “scrivifile”); 

• Starts a socket to Google, on port 80 (through function “connetti”); 

Different from the previous source code (where only two APIs were called, and there is 

only a single  function “Main”), in this second example the code has a main() function 

and several additional functions, is divided into more functions, so the program flow is 

more complex and dynamic, especially when seen in the debugger.   

#include <stdio.h> 
#include <windows.h> 
#include <strings.h> 
#include <stdbool.h> 
#include <aclapi.h> 
#include <winsock.h> 
#pragma comment(lib,"ws2_32.lib") 
 
 
int controlla(const char *); 
void scrivifile(void); 
void scriviregistro(void); 
void connetti(void); 
 
int valore; 
HANDLE hFile; 
BOOL bRet = FALSE; 
char* bBuffer; 
DWORD bytesdascrivere; 
DWORD dwWritten; 
 



© 2016 The SANS Institute Author retains full rights. 

Basic Reverse Engineering with Immunity Debugger 15 
 

Roberto Nardella, Roberto.nardella@fastwebnet.it   

//**********************************************************************   
 
 
int main(void){ 
    valore = controlla("C:\\WINDOWS\\system456"); 
 if (valore == 1){ 
 printf(" valore trovato : %d\n", valore); 
    exit(0); 
 } 
    If (valore == 0) { 
              scrivifile(); 
 scriviregistro(); 
 connetti(); 
 exit(0); 
 } 
 else  
 exit(0); 
} 
 
 
//**********************************************************************   
 
int controlla(const char* percorso){ 
  DWORD var = GetFileAttributesA(percorso); 
  if (var == INVALID_FILE_ATTRIBUTES) 
    return false; 
 
  if (var & FILE_ATTRIBUTE_DIRECTORY) 
    return true;  
  return false; 
} 
 
//**********************************************************************   
 
void scrivifile(void){ 
  hFile = CreateFile ("C:\\txtdiprova.txt", GENERIC_WRITE, 0, NULL, CREATE_NEW, 
FILE_ATTRIBUTE_NORMAL, NULL); 
 
    bBuffer = "Scrivi qualcosa."; 
    bytesdascrivere = (DWORD)strlen(bBuffer); 
    bRet = WriteFile (hFile, bBuffer, bytesdascrivere, &dwWritten, NULL); 
} 
 
//**********************************************************************   
 
void scriviregistro(void){ 
 PSECURITY_DESCRIPTOR secdesc = NULL; 
 DWORD dwDisposition; 
 SECURITY_ATTRIBUTES sa; 
               LONG lRes; 
               HKEY hkSub = NULL; 
 
    sa.nLength = sizeof(SECURITY_ATTRIBUTES); 
    sa.lpSecurityDescriptor = secdesc; 
    sa.bInheritHandle = FALSE;  
 
    char cName[] = "Provadiscrittura";   
    HKEY hKey = HKEY_CURRENT_USER;  
    lRes = RegCreateKeyEx(hKey, cName, 0, "", 0, KEY_ALL_ACCESS, &sa, &hkSub, &dwDisposition);  
 
} 
 



© 2016 The SANS Institute Author retains full rights. 

Basic Reverse Engineering with Immunity Debugger 16 
 

Roberto Nardella, Roberto.nardella@fastwebnet.it   

//**********************************************************************   
 
void connetti(void){ 
 
    WSADATA wsa; 
    SOCKET s; 
    struct sockaddr_in server; 
    WSAStartup(MAKEWORD(2,2),&wsa); 
    s = socket(AF_INET , SOCK_STREAM , 0 ); 
 
    server.sin_addr.s_addr = inet_addr("74.125.235.20"); 
    server.sin_family = AF_INET; 
    server.sin_port = htons( 80 ); 
    connect(s , (struct sockaddr *)&server , sizeof(server)); 
 exit(0); 
}   
 
Figure 13: C code of Example nr. 2 
 

Once opened the compiled executable into Immunity Debugger, the first step carried out 

this time was to check for all the WinAPI – Function calls done by the program. This was 

achieved by right clicking on the main pane and selecting “search for – all intermodular 

calls,” as shown in Figure 14. 

 

 

 

 

 

 

 

 

 

Figure 14: “Search for all intermodular calls” functionality 

The obtained result was a list of all API calls for the program. Note that Immunity 

Debugger indicates the respective DLL for each of the called API. This is shown in 

Figure 15. 



© 2016 The SANS Institute Author retains full rights. 

Basic Reverse Engineering with Immunity Debugger 17 
 

Roberto Nardella, Roberto.nardella@fastwebnet.it   

 

 
Figure 15: list of DLL and respective called functions 
 

In Figure 15 it is possible to see that, above the program entry point (offset 0x004012C0, 

highlighted in red) there are some possibly interesting “GetFileAttributesA,” 

“CreateFileA” and “WriteFile” WinAPI, imported from “KERNEL32.DLL.” Then, a 

“RegCreateKeyExA” WinAPI, imported from “ADVAPI32.DLL,” and several functions 

for socket creation (a “Berkeley” socket, in this example), were imported from 

“WS2_32.DLL.” These are already some indications on what the program may do: obtain 

some info on a file, create a file, write content in a file, create a registry key and start a 

socket.  

In this case, Immunity Debugger was able to recognize the 100% of the functions and 

APIs imported from the “Kernel32.DLL,” “ADVAPI32.DLL” and “WS2_32.DLL” 

library files, since those are fundamental, widely used DLL. So, the name of the involved 

WinAPIs is automatically detected and returned in either the “Destination” column of the 

above screenshot, and in the first column from the right of the main pane (in red font 

color). 

For informational purposes, it is useful to know that Immunity Debugger offers the 

possibility to load the Microsoft Debugging Symbols Table similarly to Microsoft’ 

WinDBG debugger, by choosing the “Debug – Debugging Symbols Options” from the 

drop down menu at the very top of the GUI [12]. 

Different from the famous GDB debugger, Immunity Debugger does not have the 

capability for identifying the Main() function offered by the GDB command “disas 

main.” However, a tutorial named “Finding Main() – Compiler Code vs. Developer 

Code” [13] shows a way to locate the main function by following the logic of the 

program itself. 



© 2016 The SANS Institute Author retains full rights. 

Basic Reverse Engineering with Immunity Debugger 18 
 

Roberto Nardella, Roberto.nardella@fastwebnet.it   

Proceeding to analyze the program, the program’s entry point (indicated in the main 

assembly instruction pane as “Initial CPU selection”, and also visible in Figure 15) does 

not correspond to the program’s Main() function, so the first big challenge is identifying 

the program’s starting point, from a programmer’s perspective. Thus, differentiating 

between programmer generated code and compiler generated code may be challenging.  

A way that can help understanding the logic of the program is following the procedure 

explained in the tutorial from Heffner by also combining that modus operandi with the 

usage of the “LABEL” functionality of Immunity Debugger, and in conjunction with the 

“Display Graph” one. 

To do this, once one of the functions with the “search for all intermodular calls” or 

“search for all referenced text strings” functionalities is located, we can add an arbitrary 

name to the function just found by setting up a “label” (right click on the first instruction 

line of the function, and then choose “Label”: 

 

 
Figure 16: adding a label to an instruction line 
 

For this exercise, the author has chosen “CHECK” as Label name. Then, by repeating 

this step for every string or intermodular call of interest that the author has located using 

these methods, the author can label them as “GET FILE ATTRIBUTE”, “WRITEFILE”, 

“REGISTRYKEY” and “SOCKET.” Then, once activated the “Display graph” 

functionality, we see that the entry point of the program calls a block of instructions at 

offset 0x00401302, containing four CALL instructions: 

 



© 2016 The SANS Institute Author retains full rights. 

Basic Reverse Engineering with Immunity Debugger 19 
 

Roberto Nardella, Roberto.nardella@fastwebnet.it   

 
Figure 17: flow chart for Example nr.2, program entry point 

By examining the code pointed by the four CALL opcodes, one by one, we can say that 

none of them is the Main() of the program because: 

• 0x00401560 contains the CPUID instruction, which is an Assembly opcode that 

collects more info on the processor; 

• 0x00401D20 contains GetFileSystemAsTime, which Is another API usually 

called to initialize an executable; 

• 0x00401D70 contains opcodes corresponding to APIs GetStartupInfoA, 

GetFileType, GetStdHandle (same considerations as above); 

• 0x00402180 contains a reference to API GetCommandLineA, so it could be a 

possible equivalent of the “int main(void)” C instruction; 



© 2016 The SANS Institute Author retains full rights. 

Basic Reverse Engineering with Immunity Debugger 20 
 

Roberto Nardella, Roberto.nardella@fastwebnet.it   

• 0x00402220 contains a reference to the “GetEnvironmentStrings” API, so same 

considerations as above. 

In the flow chart shown in Figure 17, we see that the block just reviewed leads to another 

block of instructions where there is another call of possible interest (highlighted in a red 

box as well), we can see that the offset for that instruction block has been replaced with 

the Label name that we have provided before (“<CALL checkdir.CHECK>”). This 

makes the flow chart a bit more readable and, at the same time, hinting us that we may be 

close to the code written by the programmer. 

If the “Display graph” functionality is invoked by highlighting the starting instruction 

line of “checkdir.CHECK” (with the “green line cursor”, in the main pane) instead of the 

program entry point (“Initial CPU Selection”), we will get a different flow chart, starting 

from the line that we have just highlighted: 

 

 
Figure 18: flow chart of Example nr. 2 from “checkdir.CHECK” 

This shows a much a clearer logic of the program. 

At this stage, it is worth showing additional details concerning how the arguments 

involved in the “Socket” instruction block are passed to the functions. In the socket data 



© 2016 The SANS Institute Author retains full rights. 

Basic Reverse Engineering with Immunity Debugger 21 
 

Roberto Nardella, Roberto.nardella@fastwebnet.it   

structure of the example C code, we have specified a Port 80 by using the “htons” ("host 

to network short") function. But, in the debugger, we see that this parameter is passed to 

the data structure via a “ntohs” ("network to host short") function, and the argument is a 

“50”. “50” is the Hex equivalent for the decimal “80,” and the explanation on why this 

function substitution occurred is explained in another paper [14].  

 

 
Figure 19: passing arguments to a socket 
 

Therefore, according to the processor running the program, “these functions convert from 

your native byte order to network byte order and back again.” Another detail highlighted 

in the screenshot above is that, although the IP address is passed as an “ASCII string” 

argument, it is not shown in the comment column for unknown reasons, although it is 

easy to be found by using the already shown “search for all referenced text strings” 

functionality. However, we can see the offset where this string is located, which is at 

offset 0x00407000. Immunity Debugger does not show the content of the “.data” section 

in the four main panes of its GUI: it lists the opcodes containing in the “.text” section of 

the executable (which, for this program, range from 0x00401000 to 0x00406FFF), and 

copies the referenced data from the “.data” section exactly in the comment column.  

A way to see how this argument is passed, and to see it in clear, is toggling a breakpoint 

(“F2” key) for each instruction comprised in the “socket” block of instructions. Once the 

program is run from within the debugger, we can see the IP address appearing in clear in 

the memory stack pane, at offset 0x0012FDD8, with a clear reference to its offset, 

0x00407000: 



© 2016 The SANS Institute Author retains full rights. 

Basic Reverse Engineering with Immunity Debugger 22 
 

Roberto Nardella, Roberto.nardella@fastwebnet.it   

 
Figure 20: IP Address loaded in memory stack  
 

After that, the IP address is moved to the EAX registry (accumulator), as shown in Figure 

21: this registry is a general-purpose register, and in case of need, it may act as a kind of 

“temporary storage” register.  

 
 
 
 
 
 
 

Figure 21: reference to the ASCII string moved in EAX 
 

EAX was used to contain the IP address from the stack because one of the modules (DLL 

linked to the executable, in this case “WS32_2.DLL”) called by the executable was 

responsible for this operation. In Figure 22, we can first notice three details:  

a) the first one is that the title for the main window of the GUI changed into 

“CPU – Main thread, module WS2_32.DLL”; 

b) The second one is that the offset range has changed. As we just said, the offset 

range for the .text section of this program is from 0x00401000 to 

0x00406FFF, but in Figure 22 we can see that the current offset is 

0x71A32C00; 

c) In Figure 22 we can see (highlighted in green by the cursor) that a MOV 

instruction is copying a value contained in the Stack Segment (SS) , beginning 

at a location which is equal to the value of the Base Pointer (0x0012FDD0, in 

this specific case) , incremented by 8 (so, giving 0x0012FDD8). 

If we go back to Figure 20 (the memory stack pane), we can see that, in fact, the IP 

address is located exactly at memory stack offset so, giving 0x0012FDD8. 

 



© 2016 The SANS Institute Author retains full rights. 

Basic Reverse Engineering with Immunity Debugger 23 
 

Roberto Nardella, Roberto.nardella@fastwebnet.it   

 

 

 

 

Figure 22: how reference to ASCII string is moved to EAX 

After that, just before a socket connection is effectively created, we can see that the EAX 

registry has been used to pass this IP address to a function “RtlIpv4StringToAddress,” 

which is a function imported from module “NTDLL.DLL” [15]. See Figure 23a for more 

information. 

 

Figure 23a: arguments passed to “RtlIpv4StringToAddress” function 

This function has not been invoked by the code of the programmer, but automatically 

added by the compiler to the program; it converts a String IPV4 address into an Ipv4 

address in binary format. According to the MSDN documentation, this function takes 

four arguments, and the link to the full documentation for this function is in the 

References section of this paper. 

In Figure 23b (showing the memory stack pane again) it is possible to see the four 

arguments in question being passed to this function: 

 
 
 
 
 
 
 
 
 
 
 

Figure 23b: arguments passed to “RtlIpv4StringToAddress” function 



© 2016 The SANS Institute Author retains full rights. 

Basic Reverse Engineering with Immunity Debugger 24 
 

Roberto Nardella, Roberto.nardella@fastwebnet.it   

4. Example nr. 3 

In Example nr.2 we have seen how a socket is invoked, in order to establish a sort of 

connection to an external infrastructure: a Berkeley socket has been chosen just for mere 

demonstration purposes, to show how arguments to socket functions may be passed to the 

function itself. However, most  malware coded to run on Windows systems uses the 

“Windows native” API and more easy to handle “Wininet” APIs, which are defined in 

the “wininet.h” header file instead of the Berkeley socket [16]. 

Moreover, the URL address that a socket may receive as argument may not be “in the 

clear” as shown in the above example, but could be encoded for various reasons (e.g., to 

avoid detection or simply to make an eventual analysis a bit more complicated, etc.). 

The sample C Code shown below in Figure 24: 

a) Stores an encoded URL (“http://www.evil-website.it/main.html”) in a variable 

named “percorso.” The URL is ROT13 encoded in a resulting string 

“uggc122jjj4rivy3jrofvgr4vg2znva4ugzy”; 

b) Calls function “decodifica,” which contains a routine to decode a string from 

Rot13. Other than decoding, there are some character replacements (“/”, “:”, 

“-“) to compose the URL in the correct way. The decoded URL is then passed 

to variable “finale”; 

c) Calls function “scarica” to download the content of “main.html” by using 

several APIs from the Wininet library (“InternetOpenURL”, 

“InternetReadFile” etc). The URL “in clear”, decoded with function 

“decodifica”, is passed as argument through variable “finale.” 

 
#include <windows.h> 
#include <wininet.h> 
#include <stdbool.h> 
#include <stdio.h> 
 
LPSTR decodifica(LPSTR); 
BOOL scarica (LPSTR); 
 
int main (void) { 
              BOOL bRet; 
 LPSTR percorso = "uggc122jjj4rivy3jrofvgr4vg2znva4ugzy"; 



© 2016 The SANS Institute Author retains full rights. 

Basic Reverse Engineering with Immunity Debugger 25 
 

Roberto Nardella, Roberto.nardella@fastwebnet.it   

 LPSTR finale; 
 finale = decodifica(percorso); 
// printf("%s\n", finale); 
 bRet = scarica (finale);  
return 0; 
} 
 
//**********************************************************************   
 
 
BOOL scarica (LPSTR lpszUrl) { 
 HINTERNET hInternet; 
 HINTERNET hInternetUrl; 
 BYTE bBuffer[1024]; 
 DWORD dwRead; 
 BOOL bRet = FALSE; 
 
hInternet = InternetOpen ("MyAgent/1.0", INTERNET_OPEN_TYPE_DIRECT, NULL, NULL, 0); 
 
if (hInternet != NULL) { 
   hInternetUrl = InternetOpenUrl (hInternet, lpszUrl, NULL, 0, 0, 0); 
 
if (hInternetUrl != NULL) { 
 do { 
 bRet = InternetReadFile (hInternetUrl, bBuffer, sizeof (bBuffer), &dwRead); 
    printf(bBuffer); 
    printf("\n"); 
 } while (bRet && dwRead == sizeof (bBuffer)); 
 
  InternetCloseHandle (hInternetUrl); 
  } 
 InternetCloseHandle (hInternet); 
 } 
return bRet; 
} 
 
//**********************************************************************   
 
LPSTR decodifica(LPSTR input) { 
    int cont; 
char *buffertemp; 
buffertemp = (char*)malloc(sizeof(char) * (strlen(input)+1)); 
 
for (cont = 0; cont<strlen(input); cont++) { 
   //     else  
     buffertemp[cont] = (((input[cont]-97)+13)%26+97); 
   if (buffertemp[cont] == 'X') buffertemp[cont] = 58; 
 if (buffertemp[cont] == 'Y') buffertemp[cont] = 47; 
 if (buffertemp[cont] == 'Z') buffertemp[cont] = 45; 
 if (buffertemp[cont] == '[') buffertemp[cont] = 46;  
  
  } 
  buffertemp[strlen(input)] = '\0'; 
 return buffertemp; 
} 
 
 
Figure 24: C code for Example nr. 3 

 



© 2016 The SANS Institute Author retains full rights. 

Basic Reverse Engineering with Immunity Debugger 26 
 

Roberto Nardella, Roberto.nardella@fastwebnet.it   

To examine this executable, steps already seen in example nr.1 and nr.2 (“search for all 

referenced text strings” and “search for all intermodular calls”) have been followed, and 

some APIs and functions of possible interest have been located, by also using the 

“Display graph” function. Instruction blocks have been “delimited” by using labels, 

comments and by toggling breakpoints. Although this provided with a clearer idea on the 

actions done by the executable, the problem of the “encoded URL” remains. 

During an observation of the program execution, at offset 0x004010CE there is an 

interesting loop, parsing each character of the encoded string (Figure 25).  

 

Figure 25: Loop parsing each character of the encoded string 

In the subpane below, it is possible to see that the instruction highlighted in green (the 

“Compare” instruction, CMP” is comparing the current value contained in the Data 

Segment (“DS”), at offset 0x00407012, with a “zero.” 

In this particular case, we are seeing the fifth loop, so corresponding to a “1,” which is 

the fifth character of the string “uggc122jjj4rivy3jrofvgr4vg2znva4ugzy.” 



© 2016 The SANS Institute Author retains full rights. 

Basic Reverse Engineering with Immunity Debugger 27 
 

Roberto Nardella, Roberto.nardella@fastwebnet.it   

 
Figure 26: Locating the encoded string in the .data section 

The “DS” register is invoked because the string in question is in the .data section of the 

executable. In order to locate that string in the .data section, the “follow in dump” 

functionality (right click on the assembly instructions pane) can be of help. “Immediate 

constant” is the option leading to the string, as the “Selection” option will lead to the 

“PUSH” instruction (so, in the .text section of the executable). Once “Immediate 

Constant” is chosen, we can see in the dump that the character “1” is in fact as offset 

0x00407012 (highlighted in green, in Figure 27): 

 

 
Figure 27: Locating the encoded string in the .data dump 

It is then worth observing the instruction “CMP BYTE PTR DS: [EDX+EAX], 0”. 

The condition here is comparing “null” (represented with a “0”) because the “null” 

character (represented in ANSI C as a ‘\0’) is the string terminator. So, in other words, 

this instruction is comparing each character of the string to null, if the result is “not zero” 

(=if is a string character), the loop will continue because of the Jump instruction “JNZ” 

(jump if not zero).   

Why the expression “[EDX+EAX]” was used? 



© 2016 The SANS Institute Author retains full rights. 

Basic Reverse Engineering with Immunity Debugger 28 
 

Roberto Nardella, Roberto.nardella@fastwebnet.it   

We said that EAX is a kind of temporary container that may contain many different kinds 

of data. In this case, it is used to store the element number of the array which is currently 

under examination (the fifth character, because the first element of an array is 0). EDX, 

which is another general-purpose register, in this case is containing the offset of the 

initial, first character of the string, which is 0x0070700E. By adding “4” to this offset, we 

then get 0x00407012. On each loop, EAX is incremented by one. This is visible in Figure 

27: 

 

 
Figure 27: Current values of EAX and EDX 
 

We saw, at table 2, that pointers ESI and EDI are pointer registers used to manipulate 

arrays and strings, and in particular to contain strings (ESI) and to copy strings in (EDI) 

after eventual manipulation. In addition, we know that strings are arrays of characters. 

After having identified the decoding routine and closely observed it running by using the 

“step into” functionality, we can see the decoded string “appearing character by 

character” in the ESI register, whilst keeping F7 pressed (Figure 28): 

 

 
Figure 28: Decoded URL being created in the ESI register 

 
Then, in Figure 29, we can see that the instruction “MOV EAX, ESI” (highlighted in 

green) copied the decoded URL from ESI to EAX, the temporary container. The reason 

why the decoded URL was copied to EAX is the same reason already seen in example 

nr.2 (passing arguments to the socket data structure): after these operations, this URL is 

processed by the APIs of the WININET.DLL module, and passed to this module as 

argument by using the EAX register: 



© 2016 The SANS Institute Author retains full rights. 

Basic Reverse Engineering with Immunity Debugger 29 
 

Roberto Nardella, Roberto.nardella@fastwebnet.it   

 

Figure 29: String in the ESI register copied to the EAX register 

5. Conclusion 
 
The three shown example codes, although safe to run, tend to simulate some of the 

actions commonly done by malware with the intent to provide some real world 

simulation of basic reverse engineering. The scope of this paper is to show a general 

overview of Immunity Debugger, as well as showing very easy and practice checks that 

may return useful information on an (unpacked) executable under analysis. Whenever a C 

code is converted into Assembler with a Debugger, the total number of instruction lines is 

huge, and examining them all would be a huge (and very often useless) effort, especially 

during a real malware analysis, where time is of great importance. Therefore, the art of 

Reverse Engineering consists also in developing the ability of identifying the key actions 

that the executable (or the DLL, or the attached process) does. Of course, an advanced 

knowledge of Assembly language and C programming language are highly recommended 

skills. The case studies shown in this paper represent only the beginning of an amazing 

but difficult field like reverse engineering, where the learning curve is very steep. 



© 2016 The SANS Institute Author retains full rights. 

Basic Reverse Engineering with Immunity Debugger 30 
 

Roberto Nardella, Roberto.nardella@fastwebnet.it   

6. Appendix A 
 

All the source codes shown in the above examples have been compiled with Pelles C 

Compiler, version 8.00.11, 32-bit edition. 

6.1. Pelles Projects options 
The Pelles compiler options used are shown in the below screenshots: 

6.1.1. Compiler options: 
The chosen C standard is “C 2011”, and the calling convention is “cdecl”: 

 

6.1.2. Linker options: 
The screenshot below shows the linker settings. In particular , it shows the options 

for “Library and object files” for the code of “Example nr.3”.  



© 2016 The SANS Institute Author retains full rights. 

Basic Reverse Engineering with Immunity Debugger 31 
 

Roberto Nardella, Roberto.nardella@fastwebnet.it   

Make sure that, in order to recreate the examples correctly, the libraries and object files 

that have to be chosen for the compilation of the executables are the following: 

Example 1: kernel32.lib, advapi32.lib, delayimp.lib, shell32.lib 

Example 2: kernel32.lib, advapi32.lib, delayimp.lib, WS32_2.lib 

Example 3: kernel32.lib, advapi32.lib, delayimp.lib, wininet.lib 

 



© 2016 The SANS Institute Author retains full rights. 

Basic Reverse Engineering with Immunity Debugger 32 
 

Roberto Nardella, Roberto.nardella@fastwebnet.it   

7. References 
 

[1] Novkovic, Igor. Immunity Debugger basics, part 1. Blog. Student blog sgros-

students.blogspot.ca. May 22, 2014. Retrieved Feb 15th, 2015.  

http://sgros-students.blogspot.ca/2014/05/immunity-debugger-basics-part-1.html. 

[2] Intel x86 JUMP quick reference, (n.d.), retrieved 04/25/2016, from the Steve Friedl’s 

Unixwiz.Net Tech Tips: 

http://unixwiz.net/techtips/x86-jumps.html  

[3] Frink, Lyle, “Unpacking” the Unitrix Malware, Avast! Blog, Sept. 7th, 2011, 

Retrieved Feb. 9th, 2016,  

https://blog.avast.com/2011/09/07/unpacking-the-unitrix-malware/ 

[4] CryptoWall .aaa Extension Ransomware Removal Guide , Blog. 

Deletemalware.blogspot.co.uk, Aug. 6th, 2015, Retrieved Mar. 1st, 2016,  

http://deletemalware.blogspot.co.uk/2015/08/cryptowall-aaa-extension-ransomware.html 

[5] Steane, Andrew M, Quick introduction to Windows API, Exeter College, Oxford 

University and Centre for Quantum Computing , 2009, Retrieved Mar. 2nd, 2016, 

https://users.physics.ox.ac.uk/~Steane/cpp_help/winapi_intro.htm 

[6] MoveFile Function, (n.d.), retrieved 04/25/2016, from Microsoft MSDN: 

https://msdn.microsoft.com/it-

it/library/windows/desktop/aa365239%28v=vs.85%29.aspx 

[7] ShellExecute Function, (n.d.), retrieved 04/25/2016, from Microsoft MSDN: 

https://msdn.microsoft.com/en-

us/library/windows/desktop/bb762153%28v=vs.85%29.aspx 

[8] Crt0, Wikipedia, (n.d.), retrieved Mar 4th, 2016,  

https://en.wikipedia.org/wiki/Crt0 



© 2016 The SANS Institute Author retains full rights. 

Basic Reverse Engineering with Immunity Debugger 33 
 

Roberto Nardella, Roberto.nardella@fastwebnet.it   

[9] Cdecl calling convention, (n.d.), retrieved 04/25/2016, from Microsoft MSDN: 

https://msdn.microsoft.com/en-us/library/zkwh89ks.aspx 

[10] Creating a Basic Winsock Application, (n.d.), retrieved 04/25/2016, from Microsoft 

MSDN:  

https://msdn.microsoft.com/it-it/library/windows/desktop/ms737629(v=vs.85).aspx 

[11] Taking Object Ownership in C++,  retrieved 04/25/2016, from Microsoft MSDN: 

https://msdn.microsoft.com/it-it/library/windows/desktop/aa379620(v=vs.85).aspx 

[12] Load IE Symbols in Immunity Debugger, (May 28th, 2015), retrieved 04/25/2016, 

from ReverseEngineering – Stackexchange.com: 

http://reverseengineering.stackexchange.com/questions/9006/load-ie-symbols-in-

immunity-debugger 

[13] Finding Main() – Compiler Code vs. Developer Code, (October 18th, 2007), 

retrieved 04/15/2016, from the Ethical Hacker Network: 

https://www.ethicalhacker.net/columns/heffner/intro-to-reverse-engineering-part-

2#findingmain  

[14] Htons() function description, (n.d.), retrieved 04/25/2016, from the Beej's Guide to 

Network Programming: 

http://beej.us/guide/bgnet/output/html/multipage/htonsman.html 

[15] Wininet Reference, (n.d.), retrieved 04/25/2016, from Microsoft MSDN,  

https://msdn.microsoft.com/en-us/library/windows/desktop/aa385483(v=vs.85).aspx 

[16] RtlIpv4StringToAddress Function, (n.d.), retrieved 04/25/2016, from Microsoft 

MSDN: 

https://msdn.microsoft.com/it-

it/library/windows/desktop/aa814458%28v=vs.85%29.aspx 



© 2016 The SANS Institute Author retains full rights. 

Basic Reverse Engineering with Immunity Debugger 34 
 

Roberto Nardella, Roberto.nardella@fastwebnet.it   

8. Bibliography 
 
Petzold, Charles (2011), Programming Windows – 5th Edition, The Definitive Guide to 

programming Windows API, Microsoft Press; 

Eilam, Eldad (2005), Reversing – Secrets of Reverse Engineering, Wiley Publishing; 

M. Sikorski, A. Honig (2012), Practical Malware Analysis, No Starch Press;  

 

 


