
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Security in a Microsoft Access Database
(is it possible?)

A Step-By-Step Tutorial

GIAC Certification
GIAC Security Essentials (GSEC)

Practical Assignment
Version 1.4b

Prepared By
Diana Ralston

Submitted
February 18, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 2

Abstract

Databases store information, and many types of information stored in databases
are of such a nature that they need to be kept secret from prying eyes. Financial
data, customer lists, proprietary product information, payroll, and human
resource records all fall within this category. One very popular, though
sometimes belittled, database management product is Microsoft Access
(referred to as MS Access hereafter).

While no security measures can ever be guaranteed 100 percent of the time, the
issue this paper will examine is the question of whether or not an MS Access
database can be configured in such a way that it could be trusted with
confidential data. Steps to improve MS Access security will be provided, along
with examples of how to retrieve and update the secured data (using Microsoft
Visual Basic code).

Overview

Several adjustments and methods can be applied to an MS Access database
which improve the security significantly:

1. Windows permissions
2. Password protection
3. File encryption
4. Creating an MDE file
5. Startup options
6. File-level changes
7. Hiding tables
8. Workgroup administration

Each of these adjustments will be explained, illustrated, and evaluated
separately. Since a complete tutorial on how to use MS Access is not within the
scope of this paper, only those aspects dealing with security and the data
residing in MS Access files will be included.

This paper is not intended to be an examination of reliability or robustness, nor is
it meant to convince anyone that they should use MS Access as their database
of choice. The sole focus of this paper is to present suggestions and techniques
for improving what security is available with MS Access, for those users who
have already made the choice. Also, this paper is not a tutorial on how to create
and program an MS Access database; a certain level of competence in this
subject is assumed, as is at least a working knowledge of programming
methodology (preferably using Microsoft Visual Basic version 6.0).

One word of explanation for a term that will be used repeatedly throughout this
paper – “Jet” is the term Microsoft uses for its version of what’s referred to as a

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 3

“database engine”, which is the software that performs the actual storage and
retrieval of data for a database management system (DBMS).

Windows Permissions

The best place to start in discussing database security is at the top. And that
means to secure data at the operating system level.

Within Windows 2000 and Windows XP (if the hard drive is an NTFS partition) is
a layer of security – folder permissions. What this means is that these operating
systems allow you to limit which users have access to a folder and its contents
and what exactly these users can do with the files in the folder. In this way, the
security built into Windows can be leveraged to strengthen a database file’s
security.

The way that folder permissions work in Windows is that users can be assigned
to groups. Once groups of users are established, they can be assigned to the
folder’s list of who has permission to read or write or modify files in the folder.
Assigning these permissions is a multi-step process which begins with setting up
a group of users to access the database file’s folder. Following is an illustration
of how this process might be performed on a Windows 2000 system.

First, establish a user group, by following these steps:

1. Right-click on the “My Computer” icon located on the desktop
2. Click on “Manage”
3. Click on “System Tools”
4. Click on “Local Users and Groups”
5. Click on “Groups”
6. Right-click in an empty portion of the “Groups” area (right-hand side)
7. Click on “New Group…” (see below)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 4

The next form that appears simply requires you to give the new group a name
and then to add appropriate users to the group. The procedure for adding users
to the new group is quite straightforward, requiring only that you click on the
“Add” button, and then select users from the list that appears.

After setting up a group with appropriate users, the next task to be performed is
to establish folder security and to add this newly-created group to the folder’s
permission list. In this example, the name of the folder being secured is
“Database Security”. Security setup is accomplished by doing the following:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 5

1. Right-click on the database file’s folder
2. Click on “Sharing…”
3. Click on the “Security” tab

When setting up folder security for the first time, a form similar to the one below
will appear. As shown, default access is set to allow all users to have full access
to the folder.

Before adding the appropriate user group to this folder’s permission list, the
current permissions need to be cleared. To do this, uncheck the “Allow
inheritable permissions to propagate to this object” option, which will cause the
following form to appear.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 6

Click on the “Remove” button to clear all permissions for the folder. Then at this
point, clicking on the “Add” button will allow addition of the new user group. The
default permissions for a new user group is to allow “Read & Execute”, “List
Folder Contents”, and “Read” access. Checking only the appropriate
permissions to achieve the desired level of security.

One item that should probably always be selected as “Deny” is the “List Folder
Contents” permission. If a user (or potential hacker) cannot see what files are in
a folder, unauthorized access becomes much more difficult.

Password Protection

Once the database file’s folder has been secured at the operating system level,
the files themselves need to be secured as well. The simplest level of Access
database security is to set a password. To set a database password, open an
existing database file for “exclusive” use, then click on the following in the
toolbar: Tools → Security → Set Database Password. At this point, the screen
below appears:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 7

After entering a password for a database file, users will be prevented from
“directly opening” the file without supplying the correct password. The meaning
of “directly opening” (which also reveals the major weakness with exclusively
utilizing this security method) is that users are prevented from opening the file
and reading its contents “directly” in the MS Access program or from within a
higher-level programming language using normal database-access methods.

The weakness of relying solely upon passwords is that files can still be opened
and read using a text-editor program. Although data cannot always be directly
read in this manner, it can be interpreted with a bit of work. Fortunately, this
weakness can be overcome and will be explained in the next section.

As mentioned previously, opening a password-protected MS Access database
directly requires that the correct password be provided before a user will be
granted access. When opening a file from the MS Access program itself, the
user will be required, after selecting the file, to immediately enter the password
before proceeding any further.

Many times, however, rather than using the MS Access program to read and
write data in a database file, an actual program will be written to perform these
functions. The reason for creating a program is because a lot more can be done
in a program compared to what can be accomplished directly in MS Access.

Satisfying the password-requirement from within a true programming language
such as Visual Basic requires a bit more work. Two separate coding examples
will be provided to illustrate different techniques – one for ADO (ActiveX Data
Object and one for DAO (Data Access Object). As a short note of explanation for
the uninitiated, ADO and DAO provide the programming framework for directly
accessing and manipulating database objects.

Keep in mind that what these coding examples are meant to show is how to open
a password-protected MS Access database file from within a program, not how to
circumvent a database password (a simple text editor can accomplish that feat).
Visual Basic and other languages still require you to provide the correct
password in order to open a password-protected file, and the password must be
presented in a very specific way – these coding examples are meant to show
how to do that. Note: Sometimes the following coding methodologies can be
difficult to find. In fact, one book claimed that it’s actually impossible to open
password-protected files using ADO, which is not true.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 8

ADO (ActiveX Data Objects)
Dim db As ADODB.Connection
Dim ConnectString as String
On Error Resume Next
ConnectionString = "Provider=Microsoft.Jet.OLEDB.3.51” & _
 “;Data Source=filepath\filename.mdb;Jet OLEDB” & _
 “:Database password=password”
Set db = New ADODB.Connection
db.Open ConnectionString
If Err.Number > 0 then
 MsgBox “Unable to open database file”, vbExclamation
Else
 MsgBox “Database file was opened successfully”, vbInformation
End If
db.Close
Set db = Nothing

DAO (Data Access Object)
Dim db as Database
Dim ConnectString as String
On Error Resume Next
ConnectString = “;DATABASE=filepath\filename.mdb” & _
 “;PWD=password”
‘Open in non-exclusive mode and pass connection string
Set db = OpenDatabase(“ “, True, False, ConnectString)
If Err.Number > 0 then
 MsgBox “Unable to open database file”, vbExclamation
Else
 MsgBox “Database file was opened successfully”, vbInformation
End If
db.Close
Set db = Nothing

One final comment about using passwords, if you plan to store any passwords on
the computer, do NOT store them in plain text anywhere, not even the Registry.
A better solution is to encrypt the password before saving it on disk.

File Encryption

Which brings up the subject of encryption. Since an MS Access database can be
opened and read with a plain text editor even with the advantages of password
protection, another level of security should be added for truly sensitive data.
Fortunately, another helpful tool is provided within the MS Access program. This

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 9

second tool is for data encryption. As the name suggests, using this tool will
encrypt all data within an MS Access database.

To encrypt an existing database file click on the following in the toolbar: Tools →
Security → Encrypt/Decrypt Database. The next screen that appears allows you
to find and select the file you wish to encrypt. Once you select a file, another
screen will appear requesting that you enter a new name for the file. At this
point, you can either (a) enter a new file name, delete the old file, and rename
the new encrypted file to the old file’s name, or (b) you can enter the original
filename and the program will then ask if you want to replace the existing file.
Select “Yes” and your file will be encrypted.

The type of encryption used by MS Access is an RC4-encryption algorithm with a
32-bit key from RSA Data Security Incorporated. The probable reason that
Microsoft chose such a short key was to comply with United States export laws,
which allow a key length of less than 40 bits. Because of this less-than-ideal key
length, however, MS Access encryption has been cracked numerous times. With
that said, it is still sufficiently secure against all but a determined and
experienced individual. Nonetheless, following are some recommendations and
cautionary characteristics of using MS Access encryption:

• Since the Jet database engine will automatically decrypt data, whether a
file is opened directly in MS Access or whether it’s opened in a program,
encryption should always be used in conjunction with a file-level
password. This combination will, for most uses, alleviate the weaknesses
associated with each method used separately.

• To protect extremely sensitive data such as social security and credit card
numbers, a more robust encryption method could be used to encrypt
individual data fields before submitting the data to Jet. This technique can
even be used along with file-level passwords and MS Access-native
encryption to provide an additional layer of security. One especially useful
benefit of this technique is that these doubly-encrypted fields cannot even
be read by opening the file in MS Access, even with the file-level
password. In order to add this level of security, programming is required.
Again, using a Visual Basic coding example, the following two lines show
an example of how to programmatically encrypt then decrypt a single field:

rs!CreditCardNumber = EncryptStr(ReadableCCNumber)
ReadableCCNumber = DecryptStr(rs!CreditCardNumber)

In this example, EncryptStr() and DecryptStr() represent programmer-
created functions in which the appropriate code for performing the chosen
procedures would be included (see Appendix A for an example of how
these functions might be created).

• To explain why it would be beneficial to write a program to access data
and manually encrypt data, rather than just using the MS Access program,
consider these advantages for doing so:
a) You can completely control the level and method of access because

it’s all determined by how you write your program.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 10

b) You can choose the encryption technique which provides the degree of
security you desire, rather than accepting what Microsoft provides.

Unfortunately, in spite of the benefits, there is also one small problem with
encrypting individual database fields – it becomes more difficult to sort
records based upon the contents of those fields. What this means is if, for
example, you encrypted a payroll file’s social security number in the
manner just described, you wouldn’t be able to use SQL to easily sort and
display records in order by social security number. This type of deficiency
can become more of a problem with large tables.

• Even though encryption is a valuable tool in the MS Access database
security model, three drawbacks exist:
a) Encrypted database files will be slower to open, read, and write (15

percent according to MS Access help).
b) The file created will be larger, making a larger footprint on the disk.
c) One final problem with MS Access’ native encryption is the inability to

compress the data using a tool such as WinZip.

Creating an MDE file

The subject of this section doesn’t deal directly with protecting MS Access-stored
data, although some articles and books seem to indicate otherwise. But since
MDE files do have an impact on the overall concept of MS Access security, a
brief explanation will be provided. An MDE file is, in essence, a compiled version
of the database, or more specifically the source code portion of the database
(i.e., forms, reports, and modules). Through the process of creating an MDE file
the source code is converted to what’s referred to as Pcode, which is a
computer-readable set of instructions. Also during this process, the VBA (Visual
Basic for Applications) which comprises the user-readable source code is then
removed, which prevents users from modifying forms, reports, and modules.

To convert an existing database file to the MDE format click on the following in
the toolbar: Tools → Database Utilities → Make MDE File. The next screen that
appears allows you to find and select the file you wish to convert. Once you
select a file, another screen will appear requesting that you specify the name for
the converted file.

As previously mentioned, converting a database file to the MDE format does
nothing to improve security for the underlying data in a file. But since it does
“hide” any included functions to manipulate and display that data, it may have
some worth as part of the overall security changes. If your database does not
include any forms, reports, or modules, however, do not bother with this
modification.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 11

Startup Options

Before leaving the subject of MDE files, if you choose to allow users to access
and update data through an MDE file, several additional steps should be taken to
prevent those users from venturing into areas that would be dangerous. The way
to stop these types of intrusions is to set the MS Access startup options so that
users are forced into a specific area and denied access to other areas. Several
steps are necessary to set startup options:

1) From the main database window in MS Access, click on the “Modules” tab,

the “New” button, then enter the following code in the module window that
appears:

Option Compare Database
Option Explicit

Function SetStartupProperties()
 ChangeProperty "AllowBypassKey", dbBoolean, False
End Function

Function ChangeProperty(strPropName As String, varPropType As Variant,
varPropValue As Variant) As Integer
 Dim dbs As Database, prp As Property
 Const conPropNotFoundError = 3270
 Set dbs = CurrentDb
 On Error GoTo Change_Err
 dbs.Properties(strPropName) = varPropValue
 ChangeProperty = True
Change_Bye:
 Exit Function
Change_Err:
 If Err = conPropNotFoundError Then ' Property not found.
 Set prp = dbs.CreateProperty(strPropName, varPropType, varPropValue)
 dbs.Properties.Append prp
 Resume Next
 Else
 'Unknown error.
 ChangeProperty = False
 Resume Change_Bye
 End If
End Function

What the above does is to prevent users from utilizing the old Windows trick
of holding down the Shift key while the program (MS Access in this case) is
loading, which would override the program startup security we’re going to
establish. Once the code is entered click on the “X” button in the upper right-
hand corner of the module window, click on the “Yes” button when asked if

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 12

you want to save the changes, click on the “OK” button in the “Save As”
window. Then you’ll see a new module of code called “Module1” in the list.

2) The next step is to tell MS Access that there’s a set of code to run when the
database is first opened. This is accomplished by clicking on the “Macros”
tab, clicking on the “New” button, clicking on the down arrow that appears on
the first line of “Action” column. Once you do that, a drop-down list will
appear; scroll down to find the action “RunCode” and click on it. At this point,
an entry for “Function Name” will appear at the bottom of the current window
– enter “SetStartupProperties()” in the “Function Name” entry field. This will
tell MS Access to call the function shown above when the database first
opens. Now, click on the “X” button in the upper right-hand corner of the
Macro window, click on the “Yes” button when asked if you want to save the
changes, enter a macro name of “AutoExec” on the “Save As” window, then
click on the “OK” button. Then you’ll see a new macro called “AutoExec” in
the list.

3) The final step in defining the startup process is to indicate to MS Access
which actions you wish to prevent users from being able to perform. To set
the startup options: click on Tools → Startup… When the Startup window
appears, click on the “Advanced>>” button so that all options are visible.
Enter an application title, select a display form, then uncheck the following
options:
a) Allow Full Menus
b) Allow Default Shortcut Menus
c) Display Database Window
d) Allow Built-in Toolbars
e) Allow Toolbar/Menu Changes
f) Use Access Special Keys
Click on the “OK” button.

After completing these three steps, and creating an MDE file for the database, an
application will exist which, when run, will only allow users to enter data in the
form you provide. In addition, these users will be unable to perform more
intrusive actions on the database.

File-Level Changes

This next suggestion is one designed to thwart only a very casual hacker, but can
be a useful in concert with other recommendations. Changing filenames is not
an incredibly effective security measure and perhaps could be better categorized
as a form of subterfuge. The thrust of this idea is to change a file’s extension
from the standard “.mdb” to almost anything else. For example, if your database
file is named “file1.mdb”, you could rename it to “file1.xxx”. What this one
change will accomplish is that it will not be readily apparent for someone looking
at the file in Windows Explorer that the file is an MS Access file. This is
important for two reasons:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 13

1. Potential hackers who are confident in their MS Access-cracking abilities
may not notice your renamed file and may therefore never attempt to
exploit it.

2. Double clicking on the file will no longer open the MS Access program.
Not only can consideration be give to changing a file extension, care should be
taken in choosing entire file names. In other words, if your database file is called
“EverythingYouWantToKnowAboutPayroll.mdb”, it’s going to attract attention.
Perhaps choosing a more innocuous name would be advisable.

In addition to changing a file’s extension, a file or the folder it resides in can be
marked to the system as hidden. To “hide” a file or folder, right-click on it, click
on “Properties”, check the option for “Hidden”, and click on “OK” or “Apply”. This
procedure is somewhat misnamed, however, because hidden files can still be
viewed simply by selecting the folder option to “show hidden files and folders”.

Hiding Tables and Files

A technique similar to marking a file as hidden can be employed to hide tables
(or queries or reports) from being viewed within the MS Access program itself.
This process is similar to hiding a file or a folder on disk. And just like files and
folders, hidden tables can still be viewed by selecting the appropriate option
within MS Access, but a casual snoop might not know how to do that. To hide an
MS Access table, open the database file in MS Access, select the “Tables” tab,
right-click on the table to be hidden, click on “Properties”, check “Hidden”, then
click OK. The table will then disappear from the database window viewer. This
may seem like a very effective technique until it becomes apparent how easy it is
to view these hidden tables — click on the following in the toolbar: Tools →
Options, then select the View tab and check the option to show “Hidden Objects”.

Workgroup Administration

Workgroup administration is a subject similar to Windows permissions in that it
describes a process of assigning usage permissions for MS Access database
files. The main difference between these two usage assignment methods is that
with workgroup administration, permissions are stored in a separate file over
which greater control is available. This file, referred to as a workgroup file and
created with an extension of “.MDW”, is itself an encrypted MS Access
database.

As will be discussed further in the next section, MS Access encryption and
password protection is far from unbreakable, so it’s not unreasonable to expect
that workgroup files can be cracked in the same manner. In fact, several
programs are available which purport to do exactly that. Nevertheless, assigning
file access permissions with a workgroup file adds yet another layer of security to

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 14

the mix, in the hopes of creating enough hurdles to prevent all but the most
determined and experienced hackers.

The following list, taken from a Microsoft support document, explains how to set
up a workgroup file:

1. Use the Workgroup Administrator program (Wrkgadm.exe) to create a
new workgroup information file. Write down the Name, Organization, and
WorkGroup ID strings that you will be prompted for when you create your
new workgroup information file and store them in a safe place. If your
workgroup information file ever becomes lost or corrupted, you can
reconstruct it by using these identical strings, which are then encrypted to
create a unique token. Without a valid workgroup information file, you
could conceivably be locked out of your database forever. Another reason
to save this information is for upgrading an encrypted Access database to
a newer version of Access. The recommended path for upgrading
databases is to re-create the workgroup file in the new version of Access
before upgrading the database itself.

2. The Workgroup Administrator automatically switches you to the new
workgroup information file. Start Access, and open any database.

3. You will be logged on as a user named Admin. Use the Security menu
options to add a password for the Admin user. The Admin user is the
default account, and setting its password is what causes Access to prompt
for a logon Name and Password the next time that you start Access.

4. Create a new user, which is the account you will use to help protect the
database. Add this new user to the Admins group. Write down the strings
that you use for the name and PID in case you ever need to re-create your
workgroup information file. The PID is not the password-the string used for
PID is encrypted, along with the string used for the Name, to create a
unique token (SID, or system identifier) identifying the user.

5. Quit Microsoft Access and log back on as the new user account that you
created in step 4. You will not have a password for this account yet, (the
PID you typed with the name in step 4 is not the password), so now is a
good time to set one.

6. Remove the Admin user from the Admins group so that Admin is a
member only of the Users group. The Admin user account has no
administrative powers built into it; they are derived from membership in the
Admins group, which does. Although you cannot delete any of the built-in
users or groups (Admin, Admins, and Users), you can move users to and
from the Admins group and restrict permissions to the Users group.

7. Open the database that you want to help protect and run the Security
Wizard. Select the objects that you want to help protect (it makes sense to
select them all). The wizard will then create a new database owned by
your new user, and will import all of the objects and relationships into it. It
will also remove all permissions from the Admin user and the Users group

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 15

and encrypt the new database. The original database will not be altered.
Note that the Access 2000 security wizard does not create a new
database-it simply creates a backup copy of the original. One flaw with
this arrangement is that not all permissions to open the database are
removed from the Admin user and Users group to open the database,
even though they appear to have been removed.

8. Open the new database. Because the Security Wizard removed all
permissions from the Users group for the security-enhanced objects, you
need to create your own custom groups and assign the level of
permissions needed to these groups. Every user is required to be a
member of the Users group (otherwise, a user would not be able to start
Microsoft Access), so only grant permissions to Users that you want
everyone to have. Members of the Admins group have irrevocable power
to administer database objects, so make sure to limit membership in the
Admins group to only those users who are administrators.

9. Create your own users and assign them to the groups that reflect the level
of permissions that you want them to have. Do not assign permissions
directly to users because that is extremely hard to administer. Users
inherit permissions from the groups they are members of, and keeping
track of the permissions assigned to a group is much easier than keeping
track of the separate permissions of individuals. If a user is a member of
multiple groups, then that user will have all of the permissions granted to
any of those groups plus any permissions assigned specifically to the user
(this is known as the "least restrictive" rule). There is no way to deny
permissions to a user if that user is a member of a group that has been
granted those permissions. If you need to create specific permissions for
only a single user, create a group for that user and assign the permissions
to the group; then, add the user to the group. The reason for this becomes
clear when you consider that the user may quit, and you may have to set
up permissions for the replacement on short notice.

10. Additionally, you may need manually to remove the Open/Run permission
from the database container for the Users group through the security
menus or through code. This will prevent someone from opening the
database by using another workgroup information file or the default
System.mda/mdw. In Microsoft Access 97, the User Level Security Wizard
is supposed to remove the Open/Run database permissions for the Users
group, but fails to do so. The Access 2000 Security Wizard removes
permissions to the point where they are not visible on the security menus,
but testing has revealed that in Access 2000 it is possible to open a
database by using the default workgroup information file regardless of the
menu settings. The cure for both versions of Access is to create a new,
empty database while logged on as a member of the Admins group and
import all of the objects from the security-enhanced database. You should
take this step before spending too much time helping protect objects

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 16

because Access considers imported objects to be "new" and loses the
permission information that was stored in the source database. 1

Exploits

So far, several methods have been described to enhance MS Access data
security. Unfortunately, several exploits are already available to circumvent most
of these measures.

Passwords, while an important element of database security, are always stored
in the same location in an MS Access database file; so even though they’re
encrypted, MS Access passwords have proven easy to extract. Several
programs have already been written which will quickly and easily extract the
password from any MS Access database file. One of these programs is free, so
even cost isn’t an issue for a potential hacker. Following are the web links of four
programs which claim to be able to extract MS Access passwords. The only one
I personally tested was the first (free) one, and it does work.
http://www.shatterock.com/products/software/dbpwd/
http://lastbit.com/access/default.asp
http://www.lostpassword.com/access.htm
http://www.ozgrid.com/Services/access-password-recover.htm

As could probably be expected, methods of cracking the encryption used in MS
Access have also been devised. Reportedly, MS Access uses a very simple
algorithm, behaving as a stream cipher where the stream is XORed with the
database. With this knowledge available, following is one theoretical method of
solving the MS Access encryption puzzle:

• Create a known database which is at least as large as the database you
are trying to break

• Encrypt it
• Find the XOR between the known database and its encryption. This is the

key stream.
• XOR the key stream against the target database you are trying to break2

Keep in mind, however, what was stated previously about encryption not being a
huge impediment, as long as you know the password. Therefore, this latest
exploit, while informative, is probably unnecessary if a potential hacker can use
one of the password-hacks listed previously to open up the database file
completely.

1 Chipman, Mary, et.al.
2 Rosen, Mark.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 17

In Appendix A is a program example showing how XOR encryption and
decryption work. This section of code could be used as a simple stand-alone
encryption mechanism, as a means to perform the first step in double encrypting
data (as mentioned previously), to learn how this form of encryption works, or as
a starting point to write an improved encryption function.

In Appendix B is an explanation of and an example showing how to use a free
RC4 encryption library which can be downloaded from the Internet
(http://www.rdg.mirror.ac.uk/sites/ftp.wiretapped.net/pub/security/cryptography/al
gorithms/rc4/RC4Lib.zip/RC4.dll?extract=true). The RC4 library is a variable
key-size cipher written by Ron Rivest for RSA. Variable key size means that, by
using the RC4 library, you can choose a larger key size than the 32-bit key
selected by Microsoft for Access. Doubtless, other encryption utilities (some
probably more secure than RC4) are available for the do-it-yourselfers who want
to try encrypting or double encrypting data. This particular library was chosen (a)
because it’s easy to use and (b) it’s free.

Conclusions

Several strategies have been presented to make the best of an imperfect
situation, which is to superimpose some measure of security onto a database
manager that is not ideally suited for that purpose. Even if all the techniques
which have been explained are used, a skillful and determined hacker could
probably view everything you’re trying to protect.

In situations where data security is an absolute priority, MS Access is not the
best choice. Other products are available which can provide much higher levels
of security. However, for those who have already made a commitment to using
MS Access, the steps outlined in this article can significantly improve your
chances of keeping private information hidden.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 18

Appendix A

Public Function EncryptStr(strInData As String, strPassKey As String) As String
' --
' Routine only encrypts data. To decrypt data, call the DecryptStr
' routine using the same PassKey you used here. The data returned
' contains only printable Hex characters.
' --
 Dim strHexChar As String, strNewDataStr As String, strAscPassKey As String
 Dim intPassKeyChar As Integer, intInDataChar As Integer
 Dim intNewAscChar As Integer
 Dim i As Long ' Used to parse the incoming data string
 Dim j As Integer ' used to parse the converted password key
 ' Initialize variables
 j = 0
 strAscPassKey = ""
 strNewDataStr = ""
 ' If pass key is empty then use the password in reverse
 If Len(strPassKey) = 0 Then
 For i = Len(strInData) To 1 Step -1
 strPassKey = strPassKey & Mid(strInData, i, 1)
 Next
 End If
 ' Parse the password key and convert each character to its
 ' ASCII decimal value and append to a new string
 For i = 1 To Len(strPassKey)
 strAscPassKey = strAscPassKey & Asc(Mid(strPassKey, i, 1))
 Next
 ' Start parsing the incoming data string and encrypting it
 For i = 1 To Len(strInData)
 ' Increment the parsing counter
 j = j + 1
 ' Parse thru the new password key string and convert one char
 ' at a time in the input string to its ASCII decimal value
 intPassKeyChar = Asc(Mid(strAscPassKey, j, 1))
 'If password counter equals or exceeds the length of the temp
 ' password string then reset the counter back to start at the
 ' beginning of the string again
 If j >= Len(strAscPassKey) Then j = 0
 ' Convert one char at a time in the input string to its ASCII decimal value
 intInDataChar = Asc(Mid(strInData, i, 1))
 ' Use the Xor operator to perform logical exclusion on two expressions. The
 ' Xor operator performs as both a logical and bitwise operator. A bit-wise
 ' comparison of two expressions using exclusive-or logic to form the result,

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 19

 ' as shown in the following example:
 ' x = 1000 XoR 1110
 ' 1000
 ' 1110
 ' --------
 ' x = 0110 Same values become "0" else become "1"
 intNewAscChar = intPassKeyChar Xor intInDataChar
 ' Convert the new value to Hexidecimal string
 strHexChar = Hex(intNewAscChar)
 ' If after hex conversion the length is only one
 ' char then prefix it with a zero
 If Len(strHexChar) < 2 Then strHexChar = "0" & strHexChar
 ' Append the new character to the newly encrypted string
 strNewDataStr = strNewDataStr & strHexChar
 Next
 ' Return the newly encrypted string
 EncryptStr = strNewDataStr
End Function

Public Function DecryptStr(strInData As String, strPassKey As String) As String
' ---
' Routine only Decrypts data. Use the same PassKey as in EncryptStr.
' ---
 Dim strTmp As String, strHexChar As String
 Dim strNewDataStr As String, strAscPassKey As String
 Dim intPassKeyChar As Integer, intInDataChar As Integer
 Dim intNewAscChar As Integer
 Dim i As Long 'Used to parse the incoming data string
 Dim j As Integer 'used to parse the converted password key
 ' Initialize variables
 j = 0
 strAscPassKey = ""
 strNewDataStr = ""
 ' If pass key is empty then use the password in reverse
 If Len(strPassKey) = 0 Then
 For i = Len(strInData) To 1 Step -1
 strPassKey = strPassKey & Mid(strInData, i, 1)
 Next
 End If
 ' Parse the password key and convert each character to its
 ' ASCII decimal value (numeric) and append to a new string
 For i = 1 To Len(strPassKey)
 strAscPassKey = strAscPassKey & Asc(Mid(strPassKey, i, 1))
 Next

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 20

 ' Start parsing the incoming data string and decrypting it
 For i = 1 To Len(strInData) Step 2
 ' Increment the parsing counter
 j = j + 1
 ' Parse thru the new password key string and convert one char
 ' at a time to its ASCII decimal value
 intPassKeyChar = Asc(Mid(strAscPassKey, j, 1))
 ' If password counter equals or exceeds the length of the temp
 ' password string then reset the counter back to start at the
 ' beginning of the string again
 If j >= Len(strAscPassKey) Then j = 0
 ' Convert one char at a time in the input string to its ASCII decimal value
 strHexChar = Mid(strInData, i, 2)
 ' Convert the Hexidecimal string into an integer
 intNewAscChar = CInt("&H" & strHexChar)
 ' Use the Xor operator to perform logical exclusion on two expressions. The
 ' Xor operator performs as both a logical and bitwise operator. A bit-wise
 ' comparison of two expressions using exclusive-or logic to form the result,
 ' as shown in the following example:
 ' x = 1000 XoR 1110
 ' 1000
 ' 1110
 ' -------
 ' x = 0110 Same values become "0" else become "1"
 intInDataChar = intPassKeyChar Xor intNewAscChar
 ' Append the new character to the newly decrypted string
 strNewDataStr = strNewDataStr & Chr(intInDataChar)
 Next
 ' Return the newly decrypted string
 DecryptStr = strNewDataStr
End Function

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 21

Appendix B

After installing RC4.dll on your system, open a new project in Visual Basic, click
on the following in the toolbar: Project → Reference, then select “RC4 Stream
Cipher Library” from the list.

Dim RC4 As New RC4
Dim EncryptString as String, KeyString as String
EncryptString = “This is a sample string to encrypt and decrypt”
KeyString = “My test key string”
‘ Example of encrypting the characters in EncryptString
EncryptString = RC4.Encrypt(EncryptString, KeyString)
‘ Example of decrypting the string we just encrypted
EncryptString = RC4.Decrypt(EncryptString, KeyString)
Set RC4 = Nothing

To explain further what the above-listed code is doing:
1. All program definitions, including one to execute the RC4 library are defined
2. The variable EncryptString is loaded with text that the program will encrypt

and then decrypt
3. The variable KeyString is loaded with a value that will be XORed against

EncryptString to create encrypted text (note: and this is VERY important, the
same KeyString value that was used to encrypt the text must be used to
decrypt it again

4. Next, the text is encrypted. After encryption, examining the contents of
EncryptString would show the following gibberish string of characters:

OÇÐ›H½Y‰aø òaùÍôC h³ Kk€3h,QÚ¬ÃÍ+ s¶4HD&ÚÝk ßÄ
5. After encryption, the gibberish text string is decrypted back to the original

value
6. Finally, to clean up, our newly created RC4 object is destroyed

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 22

Bibliography

Chipman, Mary, Baron, Andy, Bell, Chris, Kaplan, Michael, Litwin, Paul, Torrico,
Rudy. “Access Security FAQ.” Version 2.42. Oct 2000. URL:
http://support.microsoft.com/default.aspx?scid=/support/access/content/secfaq.a
sp (17 Feb 2004).

Gearhart, Bill. The ASP Emporium. “Nine Reasons NOT To Use MS Access To
Power A DB-Driven Website.” No date. URL:
http://www.aspemporium.com/aspemporium/tutorials/dontusemsaccess.asp (17
Feb 2004).

Hope, Mary H., Sawkins, Julian. University of Derby, Computing Services, Policy
and Strategies. “Microsoft Access, when to use it and when not to use it.” 19
Jun 2003. URL:
http://www.derby.ac.uk/computing-services/AccessSharedApps.doc (17 Feb
2004).

McManus, Jeffrey P. Database Access with Visual Basic 6. Indianapolis: Sams
Publishing, January 1999.

No author. “ACC: How Microsoft Access Uses Encryption.” Version 2.0. 07
May 2003. URL:
http://support.microsoft.com/default.aspx?scid=http://support.microsoft.com:80/su
pport/kb/articles/q140/4/06.asp&NoWebContent=1 (17 Feb 2004).

No author. “Chapter 14: Securing Your Application.” 16 Jan 1997. URL:
http://www.microsoft.com/accessdev/articles/bapp97/chapters/ba14_1.htm (18
Feb 2004).

No Author. “Gauging your security needs, alternatives to Access/JET security.”
No date. URL: http://www.tek-tips.com/gfaqs.cfm/pid/181/fid/3893 (17 Feb
2004).

No author. “Why Choose Microsoft Access database for your office automation
needs?” No date. URL:
http://www.blueclaw-db.com/microsoft_access.htm (17 Feb 2004).

No author. “Database Engine.” No date. URL:
http://www.webopedia.com/TERM/D/database_engine.html (17 Feb 2004).

Redondo, Alvaro. “RC4 Stream Cipher Library 1.00.” No date. URL:
http://www.rdg.mirror.ac.uk/sites/ftp.wiretapped.net/pub/security/cryptography/alg
orithms/rc4/RC4Lib.zip%5Bpeek%5D (17 Feb 2004).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 23

Robinson, Garry. “Real World Microsoft Access Database Protection and
Security.” New York, New York: Apress, 2004.

Rosen, Mark. “Thoughts on the Next Target.” 06 Jul 1997. URL:
http://www.privacy.nb.ca/cryptography/archives/cryptography/html/1997-
07/0033.html (17 Feb 2004).

