
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec


©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

A Case Study 

Removing Server Based Trust Relationships 
 
 

GIAC-Security Essentials Certification (GSEC) 
Practical Assignment Version 1.4b  

Option 2 
 

Keith B. Gaughan 
February 23, 2004



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Removing Server Based Trust Relationships 

 Page i  
 

Table of Contents 

INTRODUCTION ..................................................................................................1 

ORIGINAL STATE OF THE ENVIRONMENT: THE BEFORE .............................1 

Environment and Infrastructure Overview .......................................................................1 
Figure 1:  Network Topology Overview ....................................................................................................2 
Figure 2:  Sample Trust Relationships........................................................................................................3 

Problem Identification...........................................................................................................4 
File Configurations .................................................................................................................4 
File Permissions and Ownership.............................................................................................. 6 
Auditing and Validating Established Trust ..............................................................................7 

Identified Vulnerabilities ......................................................................................................8 
Table 1A:  Explanation of Snoop command arguments ............................................................................8 
Table 1B:  More Snoop command arguments ............................................................................................8 

Identified Risks .................................................................................................................... 10 

Existing Controls ................................................................................................................. 11 

Self-Identified Gaps ............................................................................................................ 11 

CHANGING OF THE ENVIRONMENT: THE DURING ......................................12 

Plan of Attack....................................................................................................................... 12 

Identification of Trusted Hosts ......................................................................................... 12 
Table 2:  Explanation of Find command arguments ................................................................................13 

Assessment of Risks............................................................................................................. 13 

Development of Corrective Actions.................................................................................. 15 
Actions for Remediation ....................................................................................................... 15 
Actions for Mitigation........................................................................................................... 15 

Using Secure Shell (SSH) ................................................................................................... 16 

Development of Supporting Documentation................................................................... 17 
Highlights of Standard .......................................................................................................... 17 

Implementation of Corrective Actions ............................................................................. 18 
Remediation Phase................................................................................................................ 18 
Mitigation Phase ................................................................................................................... 19 

Compliancy Monitoring ..................................................................................................... 20 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Removing Server Based Trust Relationships 

 Page ii  
 

NEW STATE OF THE ENVIRONMENT: THE AFTER .......................................22 

Success or Failure................................................................................................................ 22 

Remaining Gaps and Risks ................................................................................................ 22 

Assessment of Remaining Gaps and Risks ...................................................................... 23 

APPENDIX A:  STANDARD FOR TRUST RELATIONSHIPS ...........................24 

WORKS CITED ..................................................................................................27 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Removing Server Based Trust Relationships 

 Page 1  
 

Introduction  
 

The goal of this project was to develop, implement and deploy solutions as well 
as supporting processes and standards to remediate and mitigate the risks that 
are inherent to utilizing UNIX server based trust relationships in a enterprise 
networked environment within 30 days. Server based trust relationships can be 
defined to grant different levels of authenticated or unauthenticated access. Trust 
between hosts can be established at the user level or globally at the server level. 
Corrective action is required to remediate and or mitigate the risks created by the 
currently established trust based relationships and the lack of controls to prevent 
their establishment.  In addition to the corrective actions, alternative approaches 
and solutions that have a greater emphasis on security and access accountability 
will be introduced and implemented.  
 
The completion of an internal audit assessment of the UNIX platform, with an 
emphasis on the Solaris operating system, revealed excessive use of 
configuration files that establish and govern trust based relationships between 
servers within the corporate production network.  The findings specifically 
targeted root level .rhosts and /etc/hosts.equiv files.  In response to the internal 
assessment the UNIX Engineering Services (UES) team, of which I was a 
member, and the Data Security (DS) team successfully identified corporate wide 
trusted hosts, assessed the level of risk posed by existing relationships, 
developed and implemented corrective actions that centered around the use of 
Secure Shell (SSH), established compliancy monitoring of deployed solutions 
and development of documented standards. 
 

Original State of the Environment: The Before 
 

Environment and Infrastructure Overview 
The current networked environment consists of servers and network devices that 
are typical of a large diverse organization. Technologies found throughout the 
enterprise include such platforms as Solaris, AIX, Linux, Windows and 
Mainframes in addition to a variety of network devices such as but not limited to 
routers and switches. Our efforts were targeted directly to the Solaris platform. 
The Solaris server base consisted of approximately 450 servers of various 
hardware architectures ranging from Enterprise 12Ks to Sparc 20s and 
accounted for over 90 percent of all deployed UNIX servers within the enterprise.  
 
The currently implemented network topology can be referred to as flat in nature 
with minimal separation between network segments.  In general, the network 
security architecture is poor because development and production systems are 
located on the same networks.  Additionally, management, operational and end-
user traffic flow over the same networks as production data.  A generic depiction 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Removing Server Based Trust Relationships 

 Page 2  
 

of the current network topology is illustrated in figure 1. The illustration shows 
that the only defined separation occurs in the demilitarized zone (DMZ), which 
supports a few servers for the purpose of email, external ftp and the isolated 
network where application servers provide services to external customers. The 
bulk of the core infrastructure resides in what is referred to as the CIN (Corporate 
Internal Network). Internal applications such as human resource systems, 
corporate finance systems, customer applications and general end-user traffic all 
reside within the CIN portion the network. 
 
Figure 1:  Network Topology Overview 

 
 
The current network topology greatly enhances the risks that result from the 
establishment and use of trust relationships because development and 
production servers, administrator workstations, end-user desktops and even 
servers within isolated networks can be setup to trust one another. The lack of 
segmentation allows unimpeded access to servers in both isolated networks and 
the CIN portion of the network.  In Figure 2, a more detailed version of the CIN 
an isolated portion of the network as shown in figure1, you will see examples of 
typical trust relationships that are a common occurrence between servers, 
workstations and desktops.  
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Removing Server Based Trust Relationships 

 Page 3  
 

Figure 2:  Sample Trust Relationships 

 
Figure 2 highlights three separate examples of trusted relationships. The first 
example “Trust Sample 1” (marked in red) highlights a system administrator as 
he logs onto a utility server from his workstation using rlogin, then hops to the 
trusted production server using rlogin again.  This process would be a very 
common occurrence because administrators would require local accounts on 
many servers and using rlogin provides the convenience of not having to 
continually enter username and passwords. The second example “Trust Sample 
2” (marked in green) illustrates a developer from a windows based desktop 
performing a telnet session to a development UNIX server. From the 
development server, an rcp (remote copy) is done to copy data files to a trusted 
production server located in the isolated network. This type of activity is common 
because developers do not typically have direct access to production serves. In 
this instance, the developers would telnet to the development UNIX server then 
assume the identity of an application user account that would be trusted by the 
production server in the isolated network. Finally, the third example “Trust 
Sample 3” (marked in blue) highlights a systems administrator as he logs onto a 
production server from his workstation using rlogin and performs a series of hops 
to a trusted production server in an isolated network.  The third example is very 
similar to the first example except that it shows that trusted relationships are 
being established between servers, even in isolated networks. The problem with 
the approach in example 3 is that trust relationships are being established in a 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Removing Server Based Trust Relationships 

 Page 4  
 

network that is supposed to have greater restrictions than the CIN portion of the 
network.  If a host in the isolated network were to be compromised, the 
established trust relationships could easily allow unauthorized access to hosts 
within the CIN portion of the network. 

Problem Identification 
As previously identified and determined by the internal audit team, excessive use 
of server based trust relationships have introduced an unnecessary level of risk 
that requires corrective action.  According to ITU-T X.509, Section 3.3.54 trust is 
defined as follows:  “Generally an entity can be said to trust a second entity when 
the first entity makes the assumption that the second entity will behave exactly as 
the first entity expects” (Andert, p2). 
 
A trusted relationship is created when the normal standard password-based user 
authentication mechanism is bypassed.  A trusting server will allow users to 
access or run commands on the local server from a remote host without having 
to supply a password (Cole, p41).  The remote authentication procedure 
determines whether a user from a remote host should be allowed to access the 
local system with the identity of a local user.  Authentication is then granted or 
denied based upon policies explicitly set to allow users to use remote privileges 
without verifying their credentials (password).  
 
Within the UNIX platform there exists a set of commands know as the “r-
commands”. The name for these commands is derived from the fact that each of 
the commands begins with the letter “r”.  The list of commands is rcp (remote 
copy), rsh (remote shell), rexec (remote execute), rdist (remote distribution) and 
rlogin (remote login) (Gregory, p169-170). Trust for a server, using the “r-
commands”, is controlled by two files, the /etc/hosts.equiv and $HOME/.rhosts 
files. The /etc/hosts.equiv file controls trust behavior on a global or system level 
and may be superseded by the existence of a .rhosts file in the users home 
directory.  Entries in these files are of two forms, positive entries grant access 
while negative ones deny access. When a user first tries to connect to a trusted 
host, using one of the “r-commands”, the “r-command” checks the 
/etc/hosts.equiv file first then the local users .rhosts file, the exception being the 
root account which only checks the root .rhosts file (Cole, p41).  Authentication 
succeeds when a matching positive entry is found. Authentication fails when the 
first negative entry is found or if no matching entries are found in either file. 

File Configurations 
The .rhosts and /etc/hosts.equiv files are formatted as a list of one-line entries. 
Negative entries are differentiated from positive entries by a “-“ character 
preceding either the hostname or username field. The use of the special 
character plus “+” can be used in place of either the hostname or username fields 
or both.  The “+” entry acts a wild card character and would match any known 
hosts or users.  In general, the format for these files is: 

 
Syntax: hostname [username] 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Removing Server Based Trust Relationships 

 Page 5  
 

 
While the .rhosts and hosts.equiv files have the same file format, the same 
entries in each file have different effects.  The following sample of a hosts.equiv 
file, from the host spaceball2, will be used to demonstrate some typical entries 
and their impact to a system. In addition, the sample will be further explained to 
illustrate the differences between hosts.equiv and .rhosts files. (Authentication for 
Remote Logins, docs.sun.com): 
 

 
 
• A single entry for a host in the hosts.equiv file means that users from that host 

are considered trusted and will be granted access to the system with the 
same user name that they have on the remote system. In our example, the 
first statement creates trust for all users with local accounts coming from the 
remote host spaceball. If the user smith was doing an rlogin from the remote 
host spaceball and smith had a local account on the target host (spaceball2), 
that user would be granted access without supplying a password.  

 
The syntax and functionality for single host entries are the same for both 
hosts.equiv and .rhosts files. 

 
• If the user name is also specified along with the host name then the host is 

trusted only for the specified user. However, if the hostname/user format is 
used in the hosts.equiv file, the specified remote user will be allowed access 
as any local user on the system.  In our example, the second statement 
creates trust for the user barf from the host spaceball3.  In this example the 
user barf would be granted access to the target host (spaceball2) as any local 
user, including such accounts as sys, nobody and lp. 

 
The hostname/user format can also be used in .rhosts files. Unlike the 
hosts.equiv file, specifying a user name in a .rhosts file only allows the 
specified remote user access to the target system as the local user who has 
the entry in the .rhosts file. For example, if the user barf had a local .rhosts file 
in their home directory with an entry of “spaceball lonestar”, this would allow 
the user lonestar from the host spaceball access to the barf account.  



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Removing Server Based Trust Relationships 

 Page 6  
 

 
• The use of a plus “+” character can be used in place of the hostname and will 

act as a wild card that will match any known host. The third statement in our 
example uses the “+” character to allow the specified user lonestar access to 
the target host (spaceball2) as any local user and from any hosts. 

 
The syntax and functionality for using the “+” entries are the same for both 
hosts.equiv and .rhosts files. 

 
• If a netgroup name is preceded by a plus sign (+) then all the hosts or users 

in that netgroup are considered trusted. If the netgroup name is preceded by 
a minus sign (–) then all hosts or users in that netgroup are considered not to 
be trusted.  In the four statement of our example, trust is established for all 
hosts and all users who are a member of the admin netgroup.  In the fifth 
statement of our example, all users of the netgroup helpdesk would be denied 
access from all hosts. 
 
The syntax and functionality for using the netgroup entries are the same for 
both hosts.equiv and .rhosts files with one exception. Negative entries only 
apply to hosts.equiv files and may be superseded by .rhosts entries in users 
home directories. 
 

The above example demonstrates how individual statements can be configured 
to grant or deny access and the impact they have on a system. However, it is 
also important to consider the effect that the interaction of these statements can 
have on systems as a whole. The reality that multiple statements will exist in a 
single hosts.equiv file enforces the need to fully understand the interaction of 
these statements and the order in which they should be placed within the file. 
The order of the entries in the hosts.equiv file is important especially when both 
positive and negative entries exist. The search order is most critical when using 
the username field to specify one particular user, groups of users and especially 
when using the “+” sign (hosts.equiv(4), docs.sun.com). To further illustrate, take 
our original example of an /etc/hosts.equiv file and look at the second entry that 
reads “spaceball3 barf”. As we discussed earlier, this example allows the user 
barf to login as any local user to the host spaceball2 without out supplying a 
password. However, say the user barf is member of the helpdesk netgroup. As 
seen in our example, the last statement “+  -@helpdesk” should deny access 
from all hosts to all users that are a member of the helpdesk netgroup. However, 
due to the order of which the statements are found in the hosts.equiv file the user 
barf will not be restricted because a positive match for the user barf would occur 
before the entry denying access. 

File Permissions and Ownership 
Appropriate file permissions and ownership must be enforced on root .rhosts, 
/etc/hosts.equiv and .rhosts files in users home directories ($HOME/.rhosts). If 
appropriate permissions are not enforced it could allow unauthorized users to 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Removing Server Based Trust Relationships 

 Page 7  
 

view or modify these files to grant levels of unauthorized access. Permissions of 
root level .rhosts and /etc/hosts.equiv files are especially critical because of their 
ability to effect the system globally and grant the ability to gain access to the root 
account. Additionally, if a system were compromised, information contained 
within in these file would provide helpful information to an attacker about other 
systems and users that are trusted within the network. Ensuring correct file 
permissions and file ownership of root .rhosts and /etc/hosts.equiv files would at 
least ensure that an attacker would have to gain root level access to view or 
make modifications to these files.  For instance, the following example would not 
be an uncommon set of permissions for the /etc/hosts.equiv file. However, having 
the ability view the contents of this file by non-root users could reveal trusted 
user and system information to an attacker.   

 
Example:   -rw-r--r--   1 root other   64 Feb  7 15:22 hosts.equiv 

 
Permissions that would be better suited to ensure that root .rhosts and 
/etc/hosts.equiv files are not viewable by non-root users would be to ensure that 
the file is owned by the user root and set to read-only as in the following 
example. 
 

Example:   -r--------   1 root other   64 Feb  7 15:22 hosts.equiv 
 
File permissions of .rhosts files in users home directories are equally important in 
order for “-r-commands”, like rlogin, to work correctly. As a feature, the user who 
is attempting to perform the rlogin must own the .rhosts file. For example, if the 
user smith wanted to maintain a .rhosts file in his home directory that file would 
have to be owned by the user smith. 

Auditing and Validating Established Trust 
The problem with establishing trusted systems is that trusting another system 
has implications beyond the interactions between the local system and the 
trusted remote system. Inevitably, trust operates in a transitive fashion and 
auditing or validating the relationships that form between systems becomes 
difficult. The following example illustrates how trust is transitive.   
 
Example: Trust is Transitive 
If the administrator of server A trusts server C, and the administrator for server B trusts server C, 
then it is a reasonable assumption that server A trusts server B. 
  
 
 
 

        Server A Server CServer B  
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Removing Server Based Trust Relationships 

 Page 8  
 

It is critical to fully understand the extent to which trust has been granted both 
intentionally or unintentionally. Using the above example, the administrator of 
server A did not directly extend trust to server B. However, trust has been 
established indirectly because server B trust server C. 

Identified Vulnerabilities 
The establishing of trust-based relationships between servers should be 
discouraged and the “r-commands” that support them prohibited.  The use of the 
“r-commands” should be prevented because of the weak authentication 
mechanisms that they employ. The weak authentication mechanisms allow users 
the ability to gain access or run commands on remote servers without having to 
supply passwords.  In addition, even if all precautions and hardening techniques 
are applied, meaning users are forced to supply passwords, the “r-commands” 
them selves still transmit data via clear text protocols. The use of clear text 
protocols makes the data transmitted between the user and the server vulnerable 
to any one on the network who may be eavesdropping with something as simple 
as a network sniffer like snoop. Information obtained via these methods could be 
used to gain unauthorized access and control of hosts and user accounts, 
including root. 
 
The following examples illustrate the vulnerabilities that are associated with the 
use of “r-commands” and just how simple it is to gain user account information 
from the network.  The information in this example was captured during an rlogin 
attempt from the remote host 192.168.101 to the target host spaceball2 using the 
network sniffer snoop.  To ensure that the user attempting the rlogin was forced 
to enter a password no /etc/hosts.equiv or .rhosts entries existed. The exact 
command and an explanation of the arguments used to capture this information 
are as follows in examples 1 and 2: 
 

Example1: Capturing Network Traffic 
 

root# snoop -d elxl0 -o snoop.txt 
 

Table 1A:  Explanation of Snoop command arguments 
Argument Explanation 
-d Specifies the network interface to snoop on. In our case it is 

the interface elxl0 

-o Saves the output of the snoop command to a text file. In our 
example the output is sent to a file called snoop.txt 

 
Example2:  Read in Output from Text File 
 

  root#  snoop -i snoop.txt 
 

Table 1B:  More Snoop command arguments 
Argument Explanation 

-i Display the output from previously captured network traffic. In 
our example input is read from the text file snoop.txt 

  
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Removing Server Based Trust Relationships 

 Page 9  
 

 
 

Example3: Excerpt of output from snoop session: 
 
  5   0.76556 192.168.1.101 -> spaceball2   RLOGIN C port=1023  
  6   0.00038   spaceball2 -> 192.168.1.101 RLOGIN R port=1023  
  7   0.00010 192.168.1.101 -> spaceball2   RLOGIN C port=1023  
  8   0.00008 192.168.1.101 -> spaceball2   RLOGIN C port=1023  
  9   0.00012   spaceball2 -> 192.168.1.101 RLOGIN R port=1023  
 10   0.00008 192.168.1.101 -> spaceball2   RLOGIN C port=1023 root\0barf\0xterm/3840 
 11   0.00013   spaceball2 -> 192.168.1.101 RLOGIN R port=1023  
 12   0.02447   spaceball2 -> 192.168.1.101 RLOGIN R port=1023  
 13   0.00013 192.168.1.101 -> spaceball2   RLOGIN C port=1023  
 14   0.03829   spaceball2 -> 192.168.1.101 RLOGIN R port=1023  
 15   0.00007 192.168.1.101 -> spaceball2   RLOGIN C port=1023  
 16   0.00008 192.168.1.101 -> spaceball2   RLOGIN C port=1023  
 17   0.01968   spaceball2 -> 192.168.1.101 RLOGIN R port=1023 Password:  
 18   0.03943 192.168.1.101 -> spaceball2   RLOGIN C port=1023  
 23   0.07637 192.168.1.101 -> spaceball2   RLOGIN C port=1023 d 
 24   0.04240   spaceball2 -> 192.168.1.101 RLOGIN R port=1023  
 25   0.45594 192.168.1.101 -> spaceball2   RLOGIN C port=1023 o 
 26   0.04416   spaceball2 -> 192.168.1.101 RLOGIN R port=1023  
 27   0.07018 192.168.1.101 -> spaceball2   RLOGIN C port=1023 o 
 28   0.04969   spaceball2 -> 192.168.1.101 RLOGIN R port=1023  
 31   0.28337 192.168.1.101 -> spaceball2   RLOGIN C port=1023 r 
 32   0.04477   spaceball2 -> 192.168.1.101 RLOGIN R port=1023  
 33   0.40109 192.168.1.101 -> spaceball2   RLOGIN C port=1023 o 
 34   0.04892   spaceball2 -> 192.168.1.101 RLOGIN R port=1023  
 35   0.05546 192.168.1.101 -> spaceball2   RLOGIN C port=1023 p 
 36   0.04448   spaceball2 -> 192.168.1.101 RLOGIN R port=1023  
 39   0.02257 192.168.1.101 -> spaceball2   RLOGIN C port=1023 e 
 40   0.04545   spaceball2 -> 192.168.1.101 RLOGIN R port=1023  
 41   0.11066 192.168.1.101 -> spaceball2   RLOGIN C port=1023 n 
 42   0.04937   spaceball2 -> 192.168.1.101 RLOGIN R port=1023  
 43   0.53565 192.168.1.101 -> spaceball2   RLOGIN C port=1023  
 44   0.00076   spaceball2 -> 192.168.1.101 RLOGIN R port=1023  
 45   0.00011 192.168.1.101 -> spaceball2   RLOGIN C port=1023  
 46   0.03020   spaceball2 -> 192.168.1.101 RLOGIN R port=1023 Last login: Mon Jan  
 47   0.00014 192.168.1.101 -> spaceball2   RLOGIN C port=1023  
 48   0.04748   spaceball2 -> 192.168.1.101 RLOGIN R port=1023 Sun Microsystems 
 49   0.00013 192.168.1.101 -> spaceball2   RLOGIN C port=1023  
 50   0.05786   spaceball2 -> 192.168.1.101 RLOGIN R port=1023 barf@spaceball2$  
 51   0.00012 192.168.1.101 -> spaceball2   RLOGIN C port=1023  

 
The above example, example 3, has been broken into three parts to demonstrate 
the components of the rlogin attempt. In Part 1, you can see that an rlogin 
attempt to the user account barf was initiated from the source host at address 
192.168.1.101 to the target host spaceball2.  If the local user account barf exists 
on the hosts spaceball2 then a return prompt from the host spaceball2 will be 
sent to 192.168.1.101 requesting a password.  In Part 2 of this example, you can 
see the response from the user at hosts192.168.1.101 reply back with a 
password of dooropen for the user barf. If the password supplied by the user is 
correct then the rlogin will succeed for the user barf and the user will be 
presented with a prompt as seen in Part 3 of this example. 
 
This brief example was a simple depiction of the type of information that when 
transmitted via clear text protocols can be captured from the network. You can 
imagine the consequences and severity of the problem if information for the root 
account were captured and then used to gain unauthorized access to a host. The 
ability to gain root access combined with the establishment of trusted hosts 
further emphasizes the risks associated with establishing trust relationships and 
provides greater justification for discontinuing their use. 

ParPart 1 

Part 2 

Part 3 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Removing Server Based Trust Relationships 

 Page 10  
 

Identified Risks 
The use of .rhosts files and hosts.equiv files in conjunction with the “r-
commands” creates a high level of risk because it could allow unauthorized 
access to user accounts including root, in addition to, allowing an attacker to gain 
unauthorized control of hosts within the enterprise. The risks that were identified 
are as follows: 
 
• Inappropriate file permissions on root .rhosts, /etc/hosts.equiv and .rhosts in 

users home directories ($HOME/.rhosts) could allow unauthorized users to 
view or modify these files to gain unauthorized access.  

 

• Incorrectly configured .rhosts and hosts.equiv files could grant excessive 
privileges (including root) to unauthorized users. 

 

• A user ultimately controls .rhosts files in their home directory and could create 
a .rhosts file that grants access to whomever the user chooses without the 
system administrator's knowledge. 

 

• Auditing and validating the trust relationships that exist and the extent of the 
privileges they grant is difficult because trust is transitive. 

 

• The protocols used by the “r-commands” transmit data across networks in 
clear text making it easy to capture and use to gain unauthorized access. 

 
The following examples give further illustration of the power and risks that trust 
configurations can introduce into an environment. The examples show how 
certain configurations combined with the use of wild cards, as previously 
discussed in the Problem Identification section, can easily create trust 
relationships that trust every host and user including root (Clayton, p1):  
 

Example 1: 
The remote host spaceball has just a sole “+” entry within its local root level rhosts file 
(/.rhosts). Anyone user who has access to the root account on any workstation can read 
and write with rcp to the trusted host. An intruder could pull the password file, edit it and 
put it back without leaving much of trace of the activity.  
 
Example 2: 
The remote host spaceball has  “+ +” contained within its local root level rhosts file 
(/.rhosts). This entry allows any user from any machine to login into the host spaceball as 
the user root without a supplying a password. 
 
Example 3: 
The remote host spaceball has within its /etc/hosts.equiv file has the entry ``lonestar +''. 
Here any user on the host lonestar can login as any other user on the host spaceball 
without having to supply a password. 
 

The risks of trusted hosts have been well documented and it is understood as an 
industry best practices that these configurations should be avoided. To further 
illustrate the point on the dangers of these configurations, it was the notorious 
hacker Kevin Mitnick who exploited the weaknesses of trust relationships and the 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Removing Server Based Trust Relationships 

 Page 11  
 

“r-commands” in a successful attack against NEC cooperation. In that attack 
Kevin Mitnick used the finger command to identify a logged on user. A phone 
number was give as contact information from the output of the finger command. 
Kevin then contacted that user and convinced him to create a .rhosts file for him 
as part of some testing that he was conducting. Once the user created the rhosts 
file Kevin was able access that host and others within the NEC network 
(Goodwin, p1).    

Existing Controls 
In the original state of the environment, there were no centralized or standardized 
controls to govern the usage, monitoring of file contents or creation of root level 
.rhosts and /etc/hosts.equiv files. Additionally, there were no automated methods 
to ensure that the file permissions of those files were sufficient to prevent 
unauthorized modification. System administrators were not held accountable for 
the entries that were added to those files or for the monitoring of the privileges 
that occurred as a result of those established trust relationships. 
 
Further complicating the situation was the division of responsibility for 
established trust relationships between two separate operational groups within 
the organization. The UNIX engineering team was tasked with the responsibility 
for configuration files that impacted a server at the global level (/etc/hosts.equiv) 
and the user files associated with the root account (/.rhosts).  A second 
operational group within the organization, Data Security, was tasked with the 
responsibility for managing all users accounts and associated user files at that 
level ($HOME/.rhosts). 

Self-Identified Gaps 
A quick self-assessment of current process and procedures revealed that current 
controls were not effectively mitigating any of the risks posed by trust 
relationships. In most cases there was a lack of documentation and general lack 
of awareness by administrators and end users to what was trusted, by whom and 
for what reason.  The absence of sufficient controls resulted in the following self-
identified gaps: 
 
• No accurate method for verifying and identifying all established trust 

relationships. 
 

• No controls exist to ensure correct file permission on existing hosts.equiv and 
.rhosts files. 

 

• No controls exist to validate the creation or deletion of hosts.equiv and .rhosts 
files. 

 

• No controls exist to validate or report the contents of hosts.equiv and .rhosts 
files. 

 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Removing Server Based Trust Relationships 

 Page 12  
 

• No documentation exists to govern and standardize the use or prohibit the 
use of hosts.equiv and .rhosts files. 

 

• No real time notification existed when one of these files is changed 
 

Changing of The Environment: The During  
 

Plan of Attack 
As a member of UNIX engineering team I was the lead engineer tasked with 
responding to the audit findings and self identified gaps. As a starting point, a 
brain storming session was held with other engineers from the UNIX engineering 
and data security teams. This session identified six objectives to address the 
trust relationships and the identified gaps. The objectives, to be addressed in a 
phased approach, include identification, assessment, documentation, 
development, implementation and monitoring. 

Identification of Trusted Hosts 
The first step towards remediation and mitigation is identification.  The scope of 
the problem had to be defined prior to us moving forward with any kind of 
corrective actions.  One of the greatest challenges, working in an environment 
this large, was how to leverage the existing resources, technology and people, to 
obtain the required information.  Ideally we wanted to avoid a situation where 
every systems administrator would have to log onto a server, look for specified 
conditions and send back a report.  That type of process would be inefficient 
because it would require large amounts of time on the part of the administrator in 
addition to wasted effort by myself to correlate that information into a meaning full 
report.  It was also reasonable to assume that this process would be repeated 
with regularity in the future, making it all the more important to develop an 
efficient mechanism from the beginning. 
 
To accomplish this data collection task a few lines of code were added to an 
existing Korn shell script, that serves as one piece of an already existing in house 
configuration management compliancy tool. This tool runs on all Solaris servers 
on a daily basis. The additions to this script included new statements that used 
the UNIX find command with various arguments to identify .rhosts and 
/etc/hosts.equiv files on a per server basis. Once the changes were added to the 
Korn shell script, the new version of the script was propagated out to all serves in 
the enterprise via a pre-existing automated distribution method using NFS and 
SSH.  After distributing the script throughout the environment, the script was run 
on all servers and the returned values were sent via an automated email to a 
centralized web server.  Once all reports were run on all servers and delivered to 
the web server another in house script automatically correlated the individual 
server reports into one large report that was sorted by server name (More details 
on the in house scripts and web server will be addressed in the implementation 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Removing Server Based Trust Relationships 

 Page 13  
 

section of this paper). The following statements are examples of what was used 
to identify all .rhosts and hosts.equiv files (Logging In to a Remote System, 
docs.sun.com): 
 
Example1:  #find / -name .rhosts -follow -exec ls -l{} >> $RESULTS     
Example2:  #find /etc -name hosts.equiv -follow -exec ls -l{} >> $RESULTS 

 
Table 2:  Explanation of Find command arguments 

Argument Explanation 
/ or /etc  Identifies the path to a directory where the search is to begin.  

-name  Identifies the filename to be searched for. In this case it is 
either .rhosts or hosts.equiv. 

-follow Causes the underlying file of a symbolic link to be checked 
rather than the symbolic link itself. 

-exec rm {} Tells the find command to apply the ls command to all files 
identified using the matching filename. 

>> Redirects the output of the find command and appends it to a 
file. 

$RESULTS A variable used to define a text file that is used to capture the 
output of these statements 

 
Note: These statements were part of a larger script which checked for more conditions 
than were related to this project. The overall contents of the file defined by the 
$RESULTS variable were sent to the centralized web server using mail. 

 
The initial run of the security script revealed the full scope of the problem by 
identifying in excess of 500 instances of .rhosts and /etc/hosts.equiv files. 

Assessment of Risks 
The responsibility for the assessment of risks and vulnerabilities of previously 
identified .rhosts and hosts.equiv files will be divided between the two operational 
divisions in the organization.  The assessment by the UNIX engineering services 
teams determined that the level of risks posed by currently established trust 
relationships at the systems and root level to be high. The data security team, 
responsible for user level configuration files and access, also determined the 
level of risk for user level .rhosts files ($HOME/.rhosts) to be high. The risk rating 
of high was determined from the following risks and vulnerabilities that could 
allow unauthorized access and control of hosts and user accounts, including root, 
within the corporate network. 
 
• Inappropriate file permissions on root .rhosts and /etc/hosts.equiv files could 

allow unauthorized users to view or modify these files to gain  unauthorized 
access. As detailed in the File Permissions and Ownership part of the 
Problem Identification section, correct permissions and ownership of .rhosts 
and /etc/hosts.equiv files are essential to limiting the amount of information 
that can be obtained by non privileged users. The ease in which excessive 
privilege can be granted system wide, to non-authorized users or systems, 
based simply on incorrect file permissions contributed to risk rating of high. 

 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Removing Server Based Trust Relationships 

 Page 14  
 

• Incorrectly configured .rhosts and /etc/hosts.equiv files could grant excessive 
privileges to unauthorized hosts and users including root. As discussed in 
detail in the File Configurations part of the Problem Identification section, 
proper file entries are critical to ensure that desired levels of privilege are 
being granted or denied.  The ability to use the wild card character “+” to grant 
broad levels of systems wide access with a single entry in combination with 
incorrectly configured files contributed to the risk rating of high. 

 

• Users ultimately have the control to create and modify .rhosts files in their 
home directory.  With that control users are able to grant access to their local 
account to other users without the system administrator's knowledge or 
consent.  Appropriate file permission, as discussed in File Permissions and 
Ownership part of the Problem Identification section, are essential for the “r-
commands” to operate successfully. The ability of a user to grant privileges to 
other users without prior approval contributed the risk rating of high. 

 

• The fact that trust operates in a transitive fashion means that privileges can 
be indirectly granted to systems and users that were not intentionally desired. 
As described in the Auditing and Validating Established Trust part of the 
Problem Identification section, the impact that directly trusted hosts can have 
on other non-trusted hosts contributed to the risk rating of high. 

 

• The protocols used by the “r-commands” transmit data across networks, in 
clear text, which can be easily captured and used to gain unauthorized 
access and control of hosts and users including root. As previously 
demonstrated, in the Identified Vulnerabilities section, user login information 
is easily captured and could be used by an attacker. The information gathered 
from the network could be used to exploit other hosts and users including 
root. The ability to capture user login information directly of the network 
contributed the risk rating of high. 

 
The data security team conceded that even though risks do exist, they were 
willing to accept those risks and permit .rhosts files at the user level in a limited 
capacity.  The decision to continue to allow limited usage of user level .rhosts 
files was made because no immediate alternative solution for end users existed 
or would not be readily available within the time constrains of this project.  Trust 
functionality needs to exist for certain application and user accounts that utilize 
the “r-commands” for functions such as batch processing jobs and application 
management tasks, similar to Trust Sample 2 in Figure2:  Example Trust 
Relationships.  Additional process and procedures will be put into place to assist 
in mitigating the risks that will continue to exist.  A risk assessment report was 
drafted outlying the identified risks. Management with the understating that an 
alternative solution would be fully adopted in the future accepted the identified 
risks.  



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Removing Server Based Trust Relationships 

 Page 15  
 

Development of Corrective Actions 
Corrective actions were divided into two critical areas, remediation and mitigation 
with an emphasis on using Secure Shell as the desirable replacement for the “r-
commands”.  The role that Secure Shell will serve along with its inherent benefits 
will be addressed in the next sections Using Secure Shell and Implementation of 
Corrective Actions. 

Actions for Remediation 
The goal of remediation was to remove the risks that resulted from trust 
relationships that were established, at the root and systems level, as a means of 
convenience for systems administrators, application owners and end users that 
were not required for valid business operations.  As part of the remediation 
process the following corrective actions will be taken: 
 
• Usage of root level .rhosts files (/.rhosts) and hosts.equiv (/etc/hosts.equiv) 

files will be prohibited. The files must exist and remain null (file size of zero) 
with the files being owned by root and permissions set to 400 (read only by 
root). 
 

Example: -r--------   1 root     other          0 Sep 27 10:25 .rhosts 
 

Example: -r--------   1 root     other          0 Sep 27 1 0:25 /etc/hosts.equiv 
 

The decision to maintain these files as opposed to there out right removal 
was based on trying to ensure that a user other than root could not create 
these files. While it was understood that the file permissions of the underlying 
file system should prevent the creation of these file by non-privileged users, 
the solution that generated the most support by management and by the 
system auditors was to maintain these file and enforce t he above-mentioned 
restrictions in addition to monitoring for variances to the new standard 
 

• Implementation of a documented standard outlying the restrictions that 
systems will need to comply too. 

 
If any of the previously defined trust relationships cannot be removed and must 
exist in some capacity to fulfill a business need it will be addressed as part of the 
mitigation process. However, the level of privilege still cannot exist at the root 
level or at the systems level.  The privilege must be reduced to the user level by 
replacing the /etc/hosts.equiv and root .rhosts entries with equivalent entries in 
users .rhosts files within their own home directories.  

Actions for Mitigation 
The goal of mitigation was to reduce the risk of trust relationships that continued 
to exist after the remediation phase had completed. The following courses of 
action will be taken as part of the mitigation process.   
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Removing Server Based Trust Relationships 

 Page 16  
 

• Provide education and general awareness to the systems administrators, 
application owners and end users of the risks that these configurations 
create. 

  
• Provide alternative solutions using Secure Shell (SSH) to achieve the same 

type of functionality that the original “r-commands provided”.  Additionally, 
provide assistance in configuring SSH and help with explanations as to how 
and why SSH is a better solution. Further details on the benefits and features 
of Secure Shell will be discussed in the next section, Using Secure Shell. 

 

• Data Security acknowledges that risk will continue to exist if user level .rhosts 
files are still to be permitted, even in a limited capacity. To mitigate those risks 
data security will enforce strict permissions on .rhosts files, monitor the 
contents of those files by looking for “+” characters and server names that are 
not fully qualified. Data security will also create a follow up process for 
contacting users when deviations are detected and provide assistance for 
correcting or finding alternative solutions. Data Security will also retain the 
authority to remove or enforce standards on entries as needed without user 
consent. 

Using Secure Shell (SSH) 
SSH is software approach to network security that is based upon the client/server 
architecture.  SSH allows users to securely access remote hosts by providing 
transparent end-to-end encryption between the client and the server without 
interaction from the end user.  Although the name would suggest that SSH is a 
shell, like Bourne or C shell, it actually is not a shell at all.  SSH is a protocol that 
specifies how to conduct secure communication over a network. SSH creates a 
tunnel, using client and server programs, for running a shell on a remote 
computer and works in a similar manner to the UNIX command rsh. The distinct 
difference between rsh and SSH is that SSH provides the end-to-end encryption. 
In addition to the secure transmission of network traffic, SSH also provides 
authentication using passwords and public keys (Barrett, p2-4).  
 
Secure Shell, for the purposes of this project, will be used as the desired tool for 
the replacement of the UNIX “r-commands”. SSH provides several direct 
replacements for the “r-commands” that will allow for secure remote logins, 
securely coping files between two hosts and running remote commands securely 
on a remote host.  The SSH alternatives to rsh, rlogin and rcp are ssh, slogin, 
and scp respectively and use very similar syntax to the original “r-commands”. 
The use of similar syntax will further help to ease the learning curve for the new 
secure commands.   
 
The authentication mechanisms supported by SSH are also of particular interest 
for this project. SSH supports authentication in two forms: password and public 
keys. If password authentication is used, it works in the same manner as the 
conventional “r-commands” except that user name and password information is 
encrypted prior to sending it across the network.  The second method of 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Removing Server Based Trust Relationships 

 Page 17  
 

authentication, public keys, provides the very usefully benefit of not having to 
supply a password and would eliminate the need for the .rhosts and 
/etc/hosts.equiv files.  A key is a digital identity that is composed of a unique 
string of binary data (Barrett, p26). The use of public keys allows for remote 
logins or execution of commands on a remote host with out having to supply a 
password while still being able to verify the identity of the user making the 
request. To verify identity SSH uses two parts, the private key and the public key 
to create what is referred to as a key pair (Barrett, p204). The private key is very 
important and should never be disclosed because an attacker who obtains your 
private key can gain access to systems using your identity. The private key is 
used by your SSH clients to prove your identity to an SSH server.  The public 
key, on the other hand, does not need to be kept a secret and can be freely 
distributed into your user accounts for the systems you wish to access remotely. 
If an attacker were to obtain your public key, unlike the private key, they would be 
unable to access systems with your identity. Before using key based 
authentication the key pair must first be generated using the ssh-keygen program 
(Please see the note at the end of this section for references on SSH and key 
generation). Once the private key, your identity that resides on your client, and 
the public key, which resides on the server machine, have been generated you 
are then ready to do authentication via public keys.  
 

Note: Additional reference for SSH can be found using the book “SSH The 
Secure Shell” by O’Reilly. Also, additional information on the configuration of 
public and private keys can be found at: 
http://www.unixpeople.com/HOWTO/configuring.ssh.html  

Development of Supporting Documentation 
A new documented standard was developed to govern the usage of the files that 
establish trust-based relationships. Using templates and information found on 
SANS website (http://www.sans.org/resources/policies/) a new standard was 
written to govern the usage of trust-based relationships and the files that support 
them.  

Highlights of Standard 
• No use of .rhosts files should be found at the root level (/.rhosts) and no use 

of hosts.equiv files should be found in the /etc/ directory. These files should 
exist and be null with file permissions of 400 and owned by the user root. 

 

• Monitoring procedures will be implemented to monitor for any usage of  
/.rhosts and /etc/hosts.equiv files on a daily basis. Results of the monitoring 
will be made available to system administrators daily with a summary report 
listing any findings being generated and reviewed monthly by management.   

 

• If an occurrence is identified, the systems administrators will be notified by 
means of the configuration compliancy tool, responsible for providing the 
explanation for its use and for discontinuing its use or converting to one of the 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Removing Server Based Trust Relationships 

 Page 18  
 

two acceptable solutions (SSH or local user level rhosts files, 
$HOME/.rhosts). 
 
Note:  Although the original standard could not be used in this article, a 
sanitized copy of the original is located in Appendix A . 

Implementation of Corrective Actions 
To identify trusted hosts we settled on the idea of using existing automated home 
grown tools to identify and report on a per host basis the information on root level 
.rhosts and  /etc/hosts.equiv files.  Within the current environment every server 
deployed will have a mounted static copy of a filesystem that is common to all 
servers.  The static filesystem is then updated on a regular basis through a 
combination of rsysnc and Secure Shell.  Within this common file system, there 
exist a compilation of scripts and programs that constitutes a homegrown 
compliancy monitoring systems that reports to an internal web page. This internal 
web page is the primary interface between a systems administrator and the 
servers that they manage. The web page reports on log events, running 
processes, overall system health and deviations against imposed configuration 
standards. It is because of this functionality that we choose this existing tool to 
assist in our risk remediation and mitigation efforts. 

Remediation Phase 
The first phase of implementing corrective actions was the remediation phase in 
which all entries were removed from root level .rhosts files and /etc/hosts.equiv 
files. Systems administrators were given notice by email of all the established 
trust relationships on the servers they were responsible for managing.  Also, 
appropriate change control requests were requested and approved by the 
enterprise change management board. The change control approval was 
required before systems administrators could begin making the required 
changes. A timetable of two weeks was allotted to have the changes completed 
for all 450 plus servers in the environment. During the two-week interval the 
following actions were conducted: 
 
• A documented standard was implemented and communicated to 

administrators, business areas and end users. The information was presented 
in the form of email and by communicating the new changes during weekly 
team meetings. The documented standard was also published on an internal 
web site along with other documented standards, procedures and polices.  

 

• Systems administrators made the necessary configuration changes, removing 
entries in root .rhosts and /etc/hosts.equiv files, during approved maintenance 
windows. Assistance was provided to administrators who required assistance 
with the alternative solution Secure Shell and configuring user level rhosts 
files.  Secure Shell as a solution offers similar functionally to the UNIX          
“r-commands” and provides transparent end-to-end encryption of network 
traffic between hosts. In addition, the convenience that “r-commands” 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Removing Server Based Trust Relationships 

 Page 19  
 

provided by not having to supply passwords can be achieved in a more 
secure fashion with the use of SSH and host-based keys. For more details on 
how SSH works as a solution and the benefits it provides, consult the Using 
Secure Shell section of this paper.  

 
At the end of the two-week time period a report was run, equivalent to the one 
used in the identification phase, and the results reviewed.  Analysis of the report 
showed less than five servers out of the approximated 450, to be out of 
compliance. Those remaining servers were addressed on an individual basis to 
achieve compliance.  

Mitigation Phase 
The second phase of implementing corrective actions was the mitigation phase in 
which all-remaining .rhosts files, only user level .rhosts should be left, were 
addressed. The efforts of data security were mostly directed in the area of user 
.rhosts files.  Not being a member of the data security, I was not as involved in 
the details or the actual “hands-on” portion of this phase. However, the details of 
the actions that were taken are outlined here: 
 
• Provide education and general awareness to the systems administrators, 

application owners and end users of the risks that these configurations create 
in a manner similar to what was done in the remediation phase. 

  
• Provided alternative solutions using SSH to achieve the same type of 

functionality that the original “r-commands provided”. In addition, provide 
assistance in configuring SSH and help with explanations as to how and why 
SSH is a better solution. 
 

• New user accounts that get created will have a .rhosts file created with the 
permissions set to read-only (400) and null (file size of zero). 

 

• Data security will enforce strict permissions on .rhosts files by monitoring for 
any .rhosts file that is readable by “other” (read-only for the owner and group). 

 

• The contents of .rhosts files will also be monitored for occurrences of “+” 
characters and server names that are not fully qualified. 

 

• Data security also created a follow up process for contacting users when 
deviations are detected and to provide assistance for correcting or finding 
alternative solutions.  

 

• Data Security retains the authority to remove or enforce standards on entries 
as needed without user consent.  

 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Removing Server Based Trust Relationships 

 Page 20  
 

Compliancy Monitoring  
Upon completion of the remediation and mitigation phases the environment now 
possessed less risks than prior to the corrective actions. It is important to realize 
that our efforts did not end after all the corrective actions had been completed. In 
actuality a new living breathing process had been born that will continually need 
to be addressed.  Monitoring for compliancy of the newly imposed standard is a 
very crucial step towards achieving long-term success. Management will use the 
reports that are generated as a tool to gauge effectiveness of administrators and 
to measure corporate wide compliancy to the newly defined standard. In addition, 
effective compliancy monitoring is required to demonstrate to any follow up audit 
teams the state of the environment at any given point in time. 
 
The tool chosen for compliancy monitoring is an in house homegrown application 
that is the central management tool used by systems administrators and 
management to administer serves and to report on server statistics and 
compliancy to standard configurations. The homegrown tool centers on an 
apache web server and a compilation of shell scripts (Korn, Bourne and Perl) that 
gather information from all the servers in the environment and provides that 
information in a graphical representation to the web server. The details and 
intricacies of this tool are too vast to go into detail for the purposes of this paper.  
 
Compliancy for trust relationships at the root and systems level will be checked 
daily on a per server basis as required to fulfill imposed corporate reporting 
requirements.  Administrators will be alerted, via an online notification, of any 
deviations from the imposed standard and will be tasked with the appropriate 
corrective actions as outlined in the standard.  Failure to correct any deviations 
will be reflected in monthly summary reports, required by management, that 
outline compliancy to all imposed standards. The reports sent to management 
will be used as a tool to measure success in achieving compliance to imposed 
standards and the effectiveness of administrators in resolving any deviations.  
 
As part of the daily monitoring process a new routine was added to an already 
existing shell script to ensure that permissions on root .rhosts files and 
/etc/hosts.equiv files were correct. The new routine ensures the user root with a 
group of other always owns these files. The shell script also ensures that the files 
permissions are set to read-only by the root user (permission of 400). In addition, 
a software check was put into place to make sure that the file size is always zero 
(null). If any one of the files has a size other than zero it is reported and a 
notification is sent to the applicable systems administrator noting that follow up 
action is required. An excerpt of the compliancy shell script that deals with trust 
files and an explanation of the statements within the routine are shown in the 
following example: 
 
 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Removing Server Based Trust Relationships 

 Page 21  
 

Example1: Excerpt from Compliancy Shell Script 
#---------------------------------------------- 
#        Security Checks for Trust Files 
#---------------------------------------------- 
for FILE in ~/.rhosts /etc/hosts.equiv 

do 
 

       if [ ! -f $FILE ] 
            then 
             /usr/bin/touch $FILE 
            fi  
 
            /usr/bin/chown root $FILE >/dev/null 2>&1 
            /usr/bin/chgrp other $FILE >/dev/null 2>&1 
            /usr/bin/chmod 400 $FILE >/dev/null 2>&1 
 
 
            if [ -s $FILE ] 
            then 
             echo "\n$FILE should be empty:" >> $RESULTS 
             /usr/bin/ls -lL $FILE  >> $RESULTS 
            fi  

 
done 

 
The for loop routine in this example is just one part of a much larger script 
that checks for more conditions then related to this project. The structure 
of the for statement will allow for each of the statements contained within it 
to be executed for each of the specified files. Part 1 of this example 
checks to ensure that the files .rhosts and hosts.equiv exist. If the file does 
not exist it is created. In the second part of this routine, Part 2, The UNIX 
commands, chown, chgrp and chmod will be used to ensure proper file 
permissions and file ownership with any output and standard error being 
directed to /dev/null. Part 3 of the example checks to make sure the files 
.rhosts and hosts.equiv have a file size of zero (null).  If the file is not 
empty a notification is sent to the systems administrator indicating 
corrective action is required. 
 
Note: These statements were part of a larger script which checked for more conditions 
than were related to this project. The overall contents of the file defined by the 
$RESULTS variable were sent to the centralized web server using mail. 

 
Compliancy for trust relationships at the user level will be checked monthly on a 
per server basis by a script written by the data security team.  A member of the 
data security team will notify users who are found to be in violation of the 
imposed standard. Users will be responsible for correcting the problem or 
requesting assistance, if needed, from data security. Monthly summary reports, 
as required by data security management, will outline compliancy to all imposed 
standards and will be used to track compliancy over time. 
 

Part 2 

Part 1 

Part 3 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Removing Server Based Trust Relationships 

 Page 22  
 

New State of The Environment: The After 
 

Success or Failure 
The project was a success as we addressed the deficiencies identified by the 
internal audit team and the gaps from the self-assessment in the time that was 
allotted for this project. The original state of the environment had approximately 
500 wrongfully configured or misused .rhosts and .hosts.equiv files. As a result of 
our efforts and addressing the project in a phased approach we were able to 
identify and assess the risks, determine the full scope of the problem, develop 
and implement solutions that allowed us to successfully eliminate root level 
.rhosts and /etc/hosts.equiv entries to the extent that only about a half dozen 
remained that would have to be addressed on an individual basis.  We were 
equally successful in leveraging existing tools and processes to implement 
effective compliancy monitoring procedures to ensure long-term compliancy to 
the new standards. The removal of unnecessary entries, about 90 percent of total 
number, dramatically reduced the level of risk to the environment prior to our 
efforts. Pushing the level of privilege of trusted relationships to the user level and 
or using alternative solution like Secure Shell further reduced the level of risk. 
The use of SSH will ultimately allow for the complete elimination of user level 
.rhosts files and the eventual disablement of the “r-commands”. 

Remaining Gaps and Risks 
Upon completion of this project some gaps and risks continued to exist even after 
corrective actions were completed. The remaining gaps and risks were identified 
as: 
 
• Users are still permitted to use and control .rhosts files in their home 

directories ($HOME/.rhosts) 
 

• No method for receiving real-time alerts when a change is made to .rhosts or 
hosts.equiv files. Some form of event based notification solution will have to 
be evaluated in the future. 

 

• Secure Shell (SSH) is not fully adopted throughout the environment. Without 
having SSH fully adopted throughout the enterprise it was not feasible to fully 
prohibit users from using “r-commands” and their need for .rhosts files. The 
complexity of the environment will make it difficult to ensure SSH is available 
for all platforms and versions. 

 

• The “r-commands” are still available for use even if .rhosts and hosts.equiv 
files are not used. The risk that this present is that although users are forced 
to supply a password the information is still transmitted via clear text 
protocols. SSH is a suitable replacement for this situation. 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Removing Server Based Trust Relationships 

 Page 23  
 

Assessment of Remaining Gaps and Risks 
Although risks and some gaps still existed after completion of the corrective 
actions a follow up by the internal audit team concluded that the level of risks to 
the environment had been reduce to a sufficient level and that satisfactory risk 
remediation and mitigation had been done to improve the overall security posture 
of the environment. 
 
The only way to fully mitigate the risks posed by trusted relationships and the “r-
commands” would be to not permit their use. However, that is easier said then 
done and in most cases improving the security of an environment becomes a 
balancing act of required functionality and the time and cost it takes to implement 
improved security measures.  In our particular instance the ideal solution would 
be the full adoption of Secure Shell. Secure Shell would take the place of the “r-
commands” and would allow them to be disabled through the plugable 
authentication module (PAM) or completely removed from the operating system. 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Removing Server Based Trust Relationships 

 Page 24  
 

Appendix A:  Standard for Trust Relationships 
 

Company Confidential  
Computer & Network Operations  

Definition of Standard 
Standard: CNO-SD001 

Trust Relationships 
Policy Ref#: SEC-PL001 

Last Revision April 24, 2003 

 
 
Purpose 
The purpose of this standard is to establish guidelines and procedures for the base configuration of 
internal server equipment that is owned and or operated by Acme Corporation. Effective 
implementation of this standard will minimize unauthorized access to Acme Corporate proprietary 
information and technology and ensure compliance with established Acme Corporate policy. 
 
Established Acme Corporate policy governing this standard can be obtained from the internal Acme 
website. Located at http://www.acme.com/iss 
 
Scope  
This standard applies to server equipment owned and or operated by Acme Corporation, In addition to 
any servers registered under any Acme Corporation owned internal network domain.  
 
Definition of Trust Relationship 
A trusted relationship is created when the normal standard password-based user authentication 
mechanism is bypassed.  The remote authentication procedure determines whether a user from a 
remote host should be allowed to access the local system with the identity of a local user.  
Authentication is then granted or denied based upon policies explicitly set to allow users remote 
privileges with out verifying their credentials. 
 
Standard 
 
Restrictions for /.rhosts files at the root level 
Usage of any of the remote services (rlogin, rsh, rpc, etc) at the root level will be strictly forbidden. No 
usage of /.rhosts files should found at the root level (/.rhosts). 
 
Monitoring procedures will be implemented to monitor for any usage of  /.rhosts files.  A report listing 
any findings will be generated and reviewed monthly.  If an occurrence is identified the following actions 
will be taken: 

1. The applicable system administrator will be notified of the occurrence by management 
2. The systems administrator will be responsible for providing justification for its usage. 
3. The systems administrator will be responsible for providing a time frame for discontinuing      

usage or for the conversion to a better practice. 
 
Functionality for authentication of any of the existing remote services (rlogin, rsh, rpc, etc) should be 
removed.  There are two acceptable courses of action that need to be taken: 
 

1. If the functionality is not required by the business area or the customer, then perform the 
following (Preferred Course of Action): 

 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Removing Server Based Trust Relationships 

 Page 25  
 

Remove all entries within the /. rhosts file. 
Ensure that the ownership of /.rhosts file is root:other 
Ensure that the permissions of the /.rhosts file is 400 (read by root only) 
 
Example: -r--------   1 root     other          0 Sep 27 10:25 .rhosts 

 
2. If the functionality provided by remote services is required by the business area or customer, 

then one of the following courses of action must be taken:  
 

An alternative solution must be implemented to replace the use of the remote services. SSH 
may be a valid solution for meeting both the security requirements while at the same time 
providing necessary functionality to the customer. 

  
Reduce the level of privilege of the remote services by replacing the root level /. rhosts file with 
an equal entry in the applicable users home directory. This solution should be used only if the 
remote service is a business or customer requirement. 
 

Restrictions for hosts.equiv files 
Usage of /etc/hosts.equiv files will be strictly forbidden. No usage of /etc/hosts.equiv files should found 
at the system level. 

 
Monitoring procedures will be implemented to monitor for any usage of  /etc/hosts.equiv files.  A report 
listing any findings will be generated and reviewed monthly.  If an occurrence is identified the following 
actions will be taken: 

 
1. The applicable system administrator will be notified of the occurrence by management. 
2. The systems administrator will be responsible for providing justification for its usage. 
3. The systems administrator will be responsible for providing a time frame for discontinuing 

usage or for the conversion to a better practice. 
 
Functionality for authenticating any of the existing remote services (rlogin, rsh, rpc, etc) should be 
removed.  There are two acceptable courses of action that need to be taken: 

 
1. If the functionality is not required by the business area or the customer, then perform the 

following (Preferred Course of Action): 
 

Remove all entries within the /etc/hosts.equiv file. 
Ensure that the ownership of /etc/hosts.equiv file is root:other 
Ensure that the permissions of the /etc/hosts.equiv file is 400 (read by root only) 
 
Example: -r--------   1 root     other          0 Sep 27 10:25 /etc/hosts .equiv 

 
If the functionality provided by remote services is required by the business area or customer, then one 
of the following courses of action must be taken:  

 
1. An alternative solution must be implemented to replace the use of the remote services. SSH 

may be a valid solution for meeting both the security requirements while at the same time 
providing necessary functionality to the customers. 

2. Reduce the level of privilege of the remote services by replacing the  /etc/hosts.equiv with a 
.rhosts entry in the applicable users home directory.  This solution should be used only if the 
remote service is a business or customer requirement 

 
 
 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Removing Server Based Trust Relationships 

 Page 26  
 

Monitoring 
Monitoring for compliancy as well as violations of this standard will be accomplished by means of our 
standard monitoring procedures and compliancy process. 
 
Enforcement 
Any employee found to have violated or not adhered to the established standard and guidelines might 
be subject to disciplinary action as mandated by established Acme policy.  
 
Definitions 

TERM DEFINITION/EXPLANATION 
SSH Secure Shell 
  

 
Revision History 

REVISED BY REVISION 
DATE 

EXPLANATION OF CHANGE 

John Doe April 23, 2003 Finial Revision 
 
Acme Corporation -2-  
CNO-Standard_TrustRelationships_v1.0.doc 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Removing Server Based Trust Relationships 

 Page 27  
 

Works Cited 
 

 
 
Andert, Donna, Wakefield, Robin and Weise, Joel.  “Trust Modeling for Security 

Architecture Development.” Sun BluePrints OnLine December 2002: 2.   
URL:  <http://www.sun.com/solutions/blueprints/1202/817-0775.pdf>. 

 
“Authentication for Remote Logins.” Solaris 9 System Administrator Collection:  

System Administration Guide: Resource Management and Network 
 Services. Sun Microsystems, Inc: http://docs.sun.com 2002. URL: 
<http://docs.sun.com/db/doc/806-4076/6jd6amrd7?a=view>. 

 
Barclay, Andy. “Configuring SSH”. http://www.UnixPeople 2002. URL:  

<http://www.unixpeople.com/HOWTO/configuring.ssh.html>. 
 
Barrett J, Daniel and Silverman E, Richard. SSH The Secure Shell. Sebastopol:   

O’Reilly & Associates, Inc., 2001. 
 

Clayton A, C. “Starlink System Note 37.1.” Starlink Security. Starlink Project: 
http://www.starlink.rl.ac.uk May 1996. 1-2. URL:  
<http://www.starlink.rl.ac.uk/star/docs/ssn37.htx/node24.html>. 

 
Cole, Eric, Millican M, John and Newfield, Mathew. GSEC Security Essentials  

Toolkit. Indianapolis:  Que Publishing, 2002. 41-42. 
 
Goodwin, Bill. “Hacker Mitnick gives it to you straight”.  

http://www.computerweekly.com January 23 2003. 1. URL:  
<http://www.computerweekly.com/Article118786.htm>. 

 
Gregory H, Peter. Solaris Security. Upper Saddle River: Prentice Hall PTR, 2000.  

169-170. 
 
“Hosts.equiv(4).” Solaris 9 Reference Manual Collection: man pages section 4:  

File Formats: hosts.equiv(4) - trusted remote hosts and users . Sun 
Microsystems, Inc: http://docs.sun.com  June 23,1997. URL: 
<http://docs.sun.com/db/doc/816-0219/6m6njqb8i?q=hosts.equiv&a=view 

 
 “Logging In to a Remote System.” Solaris 2.6 System Administrator Collection 

 Vol 1 : System Administration Guide:  Part XI Working With Remote 
 Systems. Sun Microsystems, Inc: http://docs.sun.com 1997. URL:  
<http://docs.sun.com/db/doc/802-5750/6i9g464od?a=view>. 


