
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

© 2016 The SANS Institute Author retains full rights.

Introduction to Rundeck for Secure Script
Executions

GIAC (GSEC) Gold Certification

Author: John Becker, jbecker42@gmail.com
Advisor: Stephen Northcutt
Accepted: August 10, 2016

Abstract

Many organizations today support physical, virtual, and cloud-based systems across a wide range
of operating systems. Providing least privilege access to systems can be a complex mesh of
sudoers files, profiles, policies, and firewall rules. While configuration management tools such as
Puppet or Chef help ensure consistency, they do not inherently simplify the process for users or
administrators. Additionally, current DevOps teams are pushing changes faster than ever.
Keeping pace with new services and applications often force sysadmins to use more general
access rules and thus expose broader access than necessary. Rundeck is a web-based orchestration
platform with powerful ACLs and ssh-based connectivity to a wide range of operating systems
and devices. The simple user interface for Rundeck couples with DevOps-friendly REST APIs
and YAML or XML configuration files. Using Rundeck for server access improves security while
keeping pace with rapidly changing environments.

© 2016 The SANS Institute Author retains full rights.

Introduction to Rundeck for Secure Script Executions	 2
	

John	Becker,	jbecker42@gmail.com	 	 	

1. Introduction
Simplicity and least privilege access are two pillars of information security. A

complex system introduces more defects and is hard to test (Schneier, 1999). NIST

guidelines state "…organizations should base access control policy on the principle of

least privilege…” (Swanson & Guttman, 1996). However, simplicity and least privilege

can be at odds with each other in an organization supporting a disparate collection of

operating systems, network devices, and hybrid cloud environments. Each operating

system for these devices has a different access control implementation. Unix and Linux

have sudo and SELinux, Windows has Group Policies, and network devices have various

options. This system complexity combined with elastic cloud environments and DevOps

change velocity results in conflict with security policies and access controls (Lawler,

2015).

Least privilege access controls are often implemented with Role-Based Access

Controls (RBAC) but are "often difficult or costly to achieve because it is difficult to

tailor access based on various attributes or constraints” (Hu, Ferraiolo & Kuhn, 2006). It

is difficult for a single system to keep pace with automated configuration management

and dynamic virtual environments. There are still times when a user needs an interactive

session (e.g. SSH) to complete a task. However, the majority of commands can be

processed centrally, either interactively or scheduled, and outlier requests can be flagged

and granted temporary access. Although many tools enable configuration management

and remote access, Rundeck stands out as a robust solution for controlling access by

combining a user-friendly interface and granular access controls.

Rundeck is an open source orchestration, job scheduler, and runbook automation

platform written in Java (rundeck.org, 2016). The same tools and scripts DevOps,

SysAdmin, and Security teams use today can be implemented with granular access

controls in Rundeck. In turn, these scripts and tools can be safely delegated to different

groups in a controlled manner. This delegation of access can be version-controlled and

scripted to keep pace with DevOps teams. These scripted executions are logged centrally

in the Rundeck database. Operations and development teams maintain their release

© 2016 The SANS Institute Author retains full rights.

Introduction to Rundeck for Secure Script Executions	 3
	

John	Becker,	jbecker42@gmail.com	 	 	

velocity while security teams see least privilege access, improved logging, and a shared

tool for incident response.

2. Rundeck Basics
Some refer to Rundeck as “the Swiss army knife for ops” (rundeck.org, 2016). The

application’s principle function is to execute jobs (scripts or commands) on target nodes.

The web user interface, command line, API, and scheduler are all job triggers. Jobs can

be bundled together for tasks such as automated runbooks, software deployments, and

incident response.

2.1. Setup
Rundeck is available as a Java jar-based “launcher” install, Debian or Ubuntu

package, or an RPM package. The examples in this document will use Ubuntu 16.04.

Begin with installing Java:

sudo apt-get install openjdk-7-jdk

Then download the latest Rundeck Debian package and verify the SHA hash from

http://rundeck.org/downloads.html.

wget http://dl.bintray.com/rundeck/rundeck-deb/rundeck-2.6.8-1-GA.deb

shasum rundeck-2.6.8-1-GA.deb
865c669c8694a9b6fa595363c9906cf771818337 rundeck-2.6.8-1-GA.deb

Check the SHA hash matches what is posted on rundeck.org, then install the package

and start the rundeckd service.

sudo dpkg -i rundeck-2.6.8-1-GA.deb
sudo service rundeckd start

	

 By default, Rundeck runs as a non-privileged user “rundeck” on 0.0.0.0 (all

interfaces) on TCP port 4440. Users can login as “admin” for the default username and

password at http://<hostname>:4440. The built-in HSQLDB database suffices for small

instances, but most production use cases need a dedicated relational database (Rundeck

© 2016 The SANS Institute Author retains full rights.

Introduction to Rundeck for Secure Script Executions	 4
	

John	Becker,	jbecker42@gmail.com	 	 	

Administrator Guide, 2016). MySQL is the preferred database with support for MS-SQL

as well (Schueler, 2015). Scaling Rundeck is outside the scope of this paper.

2.2. User Authentication
Rundeck supports three types of authentication: PropertyFileLoginModule

(/etc/rundeck/realm.properties), LDAP, and PAM. Many organizations prefer LDAP for

centralized access. The PAM module works well in settings where users are managed

locally with configuration management (e.g. Puppet). PropertyFileLoginModule is the

default and sufficient for test instances of Rundeck. The PropertyFileLoginModule

supports three types of hashing or obfuscation for passwords: OBF, MD5, and CRYPT.

These are built-in to the Jetty project used by Rundeck.

Of the supported types, OBF is the least secure as it is a reversible obfuscation

method (Jetty, 2016). MD5 has been insecure for password hashing for nearly 20 years

(Dobbertin, 1996). CRYPT is the UnixCrypt Java Class (Jetty Source Code, 2016) that is

limited to a 56bit DES algorithm (Class UnixCrypt, 2016). Numerous superior tools exist

for encrypting, auditing, and managing LDAP and PAMPropertyFileLoginModule.

Therefore, LDAP and PAM are the recommended production authentication methods.

2.3. Hardening
A tool like Rundeck has keys to access a broad range of critical systems in an

organization. Rundeck servers should be placed in a protected enclave because of the

need for confidentiality and integrity (Rome, n.d.). Inbound connections are limited to

HTTPS for users and SSH for Rundeck administration. Outbound connections depend on

the node plugins used, but typically require SSH on port 22 at a minimum. After securing

network access to the Rundeck, care should be taken to configure and monitor the host

itself.

2.3.1. File System
Rundeck installs with file permissions for the directory /etc/rundeck set to 655 and

owned by root. Files inside of /etc/rundeck have ownership of "rundeck” and group

“rundeck" with 640 file permissions. These items are sensitive as they comprise Access

Control Lists (*.aclpolicy), user accounts (realm.properties), and core configuration files

that include passwords (*.properties). From an operating system perspective, this may be

© 2016 The SANS Institute Author retains full rights.

Introduction to Rundeck for Secure Script Executions	 5
	

John	Becker,	jbecker42@gmail.com	 	 	

acceptable as the “rundeck" user has no shell access. However, the Rundeck application

has a loophole wherein users can execute jobs locally as the “rundeck" user in Linux.

This access allows for non-privileged Rundeck users to read and modify critical items in

/etc/rundeck when executing jobs or ad-hoc commands against the “localhost" node.

Restricting "localhost" targets to Rundeck administrators prevents inadvertent access to

critical configurations. An additional layer of protection is to change the file ownership

inside /etc/rundeck to “root:rundeck". The 640 file permissions will allow the "rundeck"

user read access, but limit writes to the root user. Finally, files in /etc/rundeck should be

monitored closely for any changes with a Host IDS program such as Tripwire or OSSEC.

2.3.2. Remove Default Access

The first step for a production Rundeck instance setup should be to replace the

admin user login per CSC 5.3 (Critical Security Controls, 2015). The default account

resides in the last section of /etc/rundeck/realm.properties. Delete or comment out the

section below if using LDAP or PAM. If forced to use the PropertyFileLoginModule

authentication, change the ‘admin' username and password and store in MD5 format per

the instructions at http://rundeck.org/docs/administration/authenticating-users.html.

root@galactica:/etc/rundeck#	chown	root:rundeck	*	
root@galactica:/etc/rundeck#	ls	-al	
total	56	
drwxr-xr-x			3	root	root				4096	Jul	17	21:00	.	
drwxr-xr-x	102	root	root				4096	Jul	17	21:17	..	
-rw-r-----			1	root	rundeck		738	Jun	10	13:37	admin.aclpolicy	
-rw-r-----			1	root	rundeck	1104	Jun	10	13:37	apitoken.aclpolicy	
-rw-r-----			1	root	rundeck		511	Jun	10	13:37	cli-log4j.properties	
-rw-r-----			1	root	rundeck	1284	Jun	10	13:37	framework.properties	
-rw-r-----			1	root	rundeck		141	Jun	10	13:37	jaas-loginmodule.conf	
-rw-r-----			1	root	rundeck	7661	Jun	10	13:37	log4j.properties	
-rw-r-----			1	root	rundeck	1788	Jun	10	13:37	profile	
-rw-r-----			1	root	rundeck		549	Jun	10	13:37	project.properties	
-rw-r-----			1	root	rundeck		986	Jun	10	13:37	realm.properties	
-rw-r-----			1	root	rundeck		416	Jun	10	13:37	rundeck-config.properties	
drwxr-xr-x			2	root	rundeck	4096	Jul	17	21:00	ssl	

© 2016 The SANS Institute Author retains full rights.

Introduction to Rundeck for Secure Script Executions	 6
	

John	Becker,	jbecker42@gmail.com	 	 	

2.3.3. Enabling Security Transport

Rundeck listens in cleartext at http://<hostname>:4440. Cleartext HTTP transport is

a bad practice for system administration. CSC 3.4 states strong encryption (TLS) should

be used (Critical Security Controls, 2015). There are two options for providing HTTPS

transport security. The first choice is to enable SSL per the instructions at

http://rundeck.org/docs/administration/configuring-ssl.html. This configuration works

and results in the Rundeck service listening at https://<hostname>:4443. However, there

is another option to use a web proxy for SSL termination in front of Rundeck. Apache

has the added benefits of listening on the standard HTTPS port of 443, enabling support

for Multi-Factor Authentication, as well as providing options for additional logging and

web application firewalls.

The example below will focus on Apache for SSL termination, reverse-proxy, and

Google Authenticator. The first step is to install Apache and enable the required proxy

and SSL modules:

	
 sudo apt-get install apache2
 sudo a2enmod proxy

sudo a2enmod proxy_http
sudo a2enmod rewrite
sudo a2enmod deflate
sudo a2enmod headers
sudo a2enmod proxy_connect
sudo a2enmod proxy_html

 sudo a2enmod ssl

Next, configure the SSL certificate and private key used by Apache in /etc/ssl/certs

and /etc/ssl/private. A standard x.509 SSL certificate and key is available from providers

such as Verisign or Microsoft Certificate Services. For this paper, a private certificate

will be used:

#	This	sets	the	default	user	accounts	for	the	Rundeck	app	
#	
admin:admin,user,admin,architect,deploy,build	

© 2016 The SANS Institute Author retains full rights.

Introduction to Rundeck for Secure Script Executions	 7
	

John	Becker,	jbecker42@gmail.com	 	 	

 sudo openssl req -x509 -nodes -days 365 -newkey
rsa:2048 -keyout /etc/ssl/private/rundeck-apache.key -out
/etc/ssl/certs/rundeck-apache.crt

Once the certificate and key are ready, apply the configurations below for Apache to

redirect (mod_proxy) and terminate SSL connections (mod_ssl). These settings will force

HTTP requests to use HTTPS, terminate HTTPS connections with TLS and strong

ciphers, and connect to Rundeck at 127.0.0.1 instead of the public interface.

/etc/apache2/sites-available/rundeck-redirect-port80.conf

<VirtualHost	_default_:80>	
ServerName	rundeck-prod.galactica.test:80	
Redirect	permanent	/	https://rundeck-prod.galactica.test/	
</VirtualHost>	

© 2016 The SANS Institute Author retains full rights.

Introduction to Rundeck for Secure Script Executions	 8
	

John	Becker,	jbecker42@gmail.com	 	 	

/etc/apache2/sites-available/rundeck-ssl.conf

<VirtualHost	_default_:443>	
	
ServerName	rundeck-prod.galactica.test:443	
ServerAlias	*.galactica.test	
	
SSLProxyEngine	On	
SSLEngine	On	
ProxyPreserveHost	On	
SetEnv	proxy-sendchunked	
ProxyVia	On	
ProxyRequests	Off	
	
ErrorLog	${APACHE_LOG_DIR}/ssl_error_log	
TransferLog	${APACHE_LOG_DIR}/ssl_transfer_log	
	
LogLevel	warn	
	
SSLProtocol	TLSv1	
	
SSLCipherSuite	HIGH:!aNULL:!MD5	
SSLHonorCipherOrder	On	
	
SSLCertificateFile	/etc/ssl/certs/rundeck-apache.crt	
SSLCertificateKeyFile	/etc/ssl/private/rundeck-apache.key	
	
RequestHeader	set	Front-End-Https	"On"	
RequestHeader	set	X-Forwarded-Proto	"https"	
RequestHeader	set	X-Forwarded-Port	443	
Header	add	Strict-Transport-Security	"max-age=631138519;	includeSubdomains;	
preload"	
Header	add	X-Frame-Options	SAMEORIGIN	
Header	add	X-Content-Type-Options	nosniff	
Header	add	X-XSS-Protection	"1;	mode=block"	
	
ProxyPass	/	http://127.0.0.1:4440/		keepalive=On	
ProxyPassReverse	/	http://127.0.0.1:4440/	
	
</VirtualHost>	
	

© 2016 The SANS Institute Author retains full rights.

Introduction to Rundeck for Secure Script Executions	 9
	

John	Becker,	jbecker42@gmail.com	 	 	

With the configuration files in /etc/apache2/sites-available, remove any defaults

from /etc/apache2/sites-enabled and copy over the new rundeck configs. Restart Apache

to load new configs.

cd /etc/apache2/sites-enabled
sudo rm 000-default.conf
sudo ln -s /etc/apache2/sites-available/rundeck-* .

Configure the “grails.serverURL” value in /etc/rundeck/rundeck-config.properties to

accept requests for the HTTPS URL. Restart Rundeck to load the config.

Finally, set the “-Drundeck.jetty.connector.forwarded=true” in /etc/rundeck/profile to

retain the XFF header information (see

http://rundeck.org/docs/administration/configuring-ssl.html#using-an-ssl-terminated-

proxy for more information). Rundeck now has TLS, strong-cipher termination in

Apache. Additional modules are available for multi-factor authentication (e.g. Google

Authenticator) and web application firewall protection (e.g. ModSecurity).

2.4. Node Definitions
Nodes are servers, VMs, instances, or devices that Rundeck can access via SSH or

connection plugins. The default option for node definitions is to use the built-in provider

that is managed by XML files. Small and relatively static environments function fine with

the default provider. Larger, dynamic networks benefit from node provider plugins such

as the AWS EC2 or PuppetDB plugins.

One of the more compelling features of Rundeck is how it handles metadata.

Rundeck nodes have attributes that describe the instance (e.g. Name, IP address,

operating system, etc.). The node provider manages attributes in a key value format (e.g.

the EC2 plugin will populate the AWS EC2 attribute "instanceId=i-389f2cdk" for a

corresponding Rundeck node). Tags are a type of attribute used for classifications or

categories (Rundeck User Guide, 2016). The combination of tags and attributes allow for

dynamic targeting of hosts for jobs and ad-hoc commands.

#	change	hostname	here	
grails.serverURL=https://rundeck-prod.galactica.test	

© 2016 The SANS Institute Author retains full rights.

Introduction to Rundeck for Secure Script Executions	 10
	

John	Becker,	jbecker42@gmail.com	 	 	

2.5. Connectivity
A wide range of plugins is available for Rundeck to expand access beyond the

default SSH connectivity (Rundeck.org, n.d.). The WinRM (Windows Remote

Management) plugin is available for native Windows commands. An alternative is to use

SSH on Windows with OpenSSH server or similar. In other cases, Rundeck functions as

a front-end for Puppet, Ansible, or Chef commands. Careful review is needed to

determine what connectivity and access Rundeck should have in an organization. On one

end of the spectrum, Rundeck could have root or admin-equivalent privileges on all

devices and rely exclusively on internal ACLs for controls. Other teams could use

multiple Rundeck instances with restricted service accounts to reduce the impact of a

Rundeck server compromise.

2.6. Key Management
Rundeck’s Key Storage system stores private keys as either local files or as BLOBS

in the attached database. Neither solution is encrypted unless using a Storage Converter

plugin (Rundeck Administrator Guide, 2016). Storing keys in an external database such

as MySQL makes them available for multiple Rundeck instances but also has an

increased attack surface. Use the Storage Converter plugin for encrypting keys kept in the

database.

Using the filesystem storage for the Rundeck Key Storage with the Storage

Converter for encryption is possible, but the tradeoff between security and availability

may not be worth it. Restarts of Rundeck would require reading the Storage Converter

password from a local source (file, dongle, etc.) or manually typed in at startup. Either

way, service startups are more complicated, and the encryption key is potentially

accessible in memory or on disk. A reasonable balance with confidentiality and

availability is to encrypt the local filesystem within the OS or Virtual Machine and keep

the Rundeck Key Storage in cleartext.

© 2016 The SANS Institute Author retains full rights.

Introduction to Rundeck for Secure Script Executions	 11
	

John	Becker,	jbecker42@gmail.com	 	 	

2.7. Jobs and Commands
Rundeck provides a user interface and API for executing and scheduling commands

or jobs. If something works over SSH, then it is most likely going to work as a Rundeck

job or command. Ad-hoc commands are singular executions shell commands against

target nodes. They can be as simple as ‘uptime’ or a complex string of piped commands.

Jobs are an ordered set of steps comprised of CLI commands, shell scripts, and other

Rundeck jobs. When sequenced into a job, these steps can perform complex

orchestrations such as load-balancer failovers, operating system patching, and test script

executions.

Jobs can take variable input with “options” that are entered via the UI or from

external option providers (e.g. Jenkins). Similarly, a job step script can be a remote file

accessed via a file path or URL. Remote options and scripts improve flexibility with

version control, but also introduce added complexity for securing the content. Instead of

just securing Rundeck, remote option and script providers are also in scope for hardening

and audit.

2.7.1. Scheduling

Many Rundeck users focus on the scheduling feature (Edwards, 2014). Scheduled

jobs execute at set times similar to cron services in Linux or schtasks in Windows. Using

Rundeck for scheduling centralizes visibility into the tasks and outputs running on a

network. Incident responders will look for scheduled tasks on hosts as possible logic

bombs or other signs of intrusion (Kral, 2011). Moving scheduled tasks to Rundeck

allows disabling cron and schtasks services. In turn, this makes detecting unauthorized

scheduled tasks easier on hosts.

2.7.2. Job Naming

Naming jobs may seem straightforward at first until an extensive collection of jobs

and roles exist in Rundeck. As the jobs and ACL policy files grow, the Rundeck

administrator becomes a bottleneck to align access controls with jobs. This bottleneck

leads to contention for group names and rigid rules for job creation. An alternative

method is to include the role names within the job name itself. A job called "Change

Password" would become "Change Password (basic_user, power_user”). The keywords

© 2016 The SANS Institute Author retains full rights.

Introduction to Rundeck for Secure Script Executions	 12
	

John	Becker,	jbecker42@gmail.com	 	 	

basic_user and power_user are in regex patterns inside ACLs. Anytime a job is added or

changed it need only include the correct role keyword to be usable. This layout

significantly reduces the overhead for managing ACL policies.

Below are screenshots of the same set of jobs but with ACLs limiting “read” access

for the basic_user role. In this situation, the power_user role can execute both jobs

directly, but the basic_user role can only view “Change Password

(basic_user,power_user).”

power_user View

basic_user View

2.7.3. Job Groups

A good starting point for grouping jobs is to separate out jobs by function. User

Management, Release, Patching are all examples of good top-level groups. A "Library"

group of jobs can be referenced by multiple other jobs while keeping the contents of the

scripts hidden. For example, a generic "Change Password" job can be created as a parent

job that is executed by users. This job will target a node and pass a "username" option to

a Library job that is typically not viewed directly by users. The Library job contains the

actual scripts for executing the commands. Basic user ACLs reference the Library group

for "run" but not "read" access. This approach enables execution while preventing most

users from viewing any sensitive information.

© 2016 The SANS Institute Author retains full rights.

Introduction to Rundeck for Secure Script Executions	 13
	

John	Becker,	jbecker42@gmail.com	 	 	

2.8. Access Control Lists
Access Control Lists (ACLs) in Rundeck permit role-based access with a high

degree of granularity. Resources in Rundeck are denied by default until explicitly

allowed by ACLs. ACL policies manage privileges at many levels within Rundeck

including projects, jobs, nodes, ad-hoc commands, key storage, and the Rundeck API

itself. Policy files are written in YAML and reside in the /etc/rundeck directory, but can

also be created using the System ACLs API and the Project ACLs API.

For a straight-forward and easily audited set of ACLs, start with standard .aclpolicy

files in the /etc/rundeck directory. Create one .aclpolicy file per group or role and name

the file to match (e.g. an ACL policy file for the group "operations" should be called

"operations.aclpolicy”). Test the resulting ACLs after any changes.

Roles for example ACLs

Role ACL File Name Project

Access

Node

Access

Job Access

Power User power_user.aclpolicy All All Create, update, run

Admin admin.aclpolicy All All All

Basic User basic_user.aclpolicy Support,

Network

Production “basic” jobs

© 2016 The SANS Institute Author retains full rights.

Introduction to Rundeck for Secure Script Executions	 14
	

John	Becker,	jbecker42@gmail.com	 	 	

2.8.1. ACL Breakdown

This is the default admin.aclpolicy from /etc/rundeck enables full access to

everything for any member of the “admin” group.

Rundeck ACL policy files define what actions (read, create, update, delete, admin,

enable_executions, disable_executions, configure, import, export) apply to resources

(project, system, system_acl, user, job, storage, job, node, ad-hoc, or event). The full

description:	Admin,	all	access.	
context:	
		project:	'.*'	#	all	projects	
for:	
		resource:	
				-	allow:	'*'	#	allow	read/create	all	kinds	
		adhoc:	
				-	allow:	'*'	#	allow	read/running/killing	adhoc	jobs	
		job:	
				-	allow:	'*'	#	allow	read/write/delete/run/kill	of	all	jobs	
		node:	
				-	allow:	'*'	#	allow	read/run	for	all	nodes	
by:	
		group:	admin	

description:	Admin,	all	access.	
context:	
		application:	'rundeck'	
for:	
		resource:	
				-	allow:	'*'	#	allow	create	of	projects	
		project:	
				-	allow:	'*'	#	allow	view/admin	of	all	projects	
		project_acl:	
				-	allow:	'*'	#	allow	admin	of	all	project-level	ACL	policies	
		storage:	
				-	allow:	'*'	#	allow	read/create/update/delete	for	all	/keys/*	storage	content	
by:	
		group:	admin	

© 2016 The SANS Institute Author retains full rights.

Introduction to Rundeck for Secure Script Executions	 15
	

John	Becker,	jbecker42@gmail.com	 	 	

options for resources and actions are available at

http://rundeck.org/docs/administration/access-control-policy.html. Options available

within ACLs make for accurate, if not complicated, rulesets. Structuring the ACL policy

files for flexibility can prevent frustration in job management. The approach

recommended in this paper is as follows:

Deny Rundeck server access. By default, this is "localhost” and can be referenced in the

ACL with the “nodename” node resource property.

Limit Rundeck administration functions to a single role (Admin in the example below).

Admin access includes the ability to create/modify projects, modify project ACLs, and

modify key storage. The "application: ‘rundeck'" code blocks are more restrictive for

non-Admin roles.

 Admin Access

		node:	
				-	match:	
								nodename:	'localhost'	
						deny:	'*'	
				-	match:	
								nodename:	'.*'	
						allow:	'*'	

description:	Admin,	all	access.	
context:	
		application:	'rundeck'	
for:	
		resource:	
				-	allow:	'*'	#	allow	create	of	projects	
		project:	
				-	allow:	'*'	#	allow	view/admin	of	all	projects	
		project_acl:	
				-	allow:	'*'	#	allow	admin	of	all	project-level	ACL	policies	
		storage:	
				-	allow:	'*'	#	allow	read/create/update/delete	for	all	/keys/*	storage	content	
by:	
		group:	admin	
	

© 2016 The SANS Institute Author retains full rights.

Introduction to Rundeck for Secure Script Executions	 16
	

John	Becker,	jbecker42@gmail.com	 	 	

Basic User Access

Use regular expressions to target specific access to keywords in Job names. Deny read

access to prevent users from viewing jobs and projects they should not access. Their

user interface will be cleaner, and there are fewer chances for accidental privilege

escalation. The example below will enable the basic_user role to run any job with the

keyword “basic_user” in the name as well as prevent viewing of jobs in the Library

group.

	

description:	Basic	User,	restricted	access.	
context:	
		application:	'rundeck'	
for:	
		resource:	
				-	equals:	
								kind:	system	
						allow:	[read]	#	allow	read	of	resources	
		project:	
				-	match:	
								name:	['Support','Network']	
						allow:	[read]	#	Allow	read	access	to	specific	projects	
		storage:	
				-	allow:	[read]	#	Allow	allow	read	access	for	using	ssh	keys	
by:	
		group:	basic_user	

© 2016 The SANS Institute Author retains full rights.

Introduction to Rundeck for Secure Script Executions	 17
	

John	Becker,	jbecker42@gmail.com	 	 	

Basic_user ACL

2.9. Logging and Execution History
Rundeck has excellent history and full output logging features (Oyster.com Tech

Blog, 2016). Standard output from commands is available as "activity" along with the

time, date, and user who executed the job or ad-hoc command. Activity history resides in

the database and is searchable via the Rundeck user interface.

Rundeck uses log.4j and logs write to /var/log/rundeck in the package distribution.

Key logs for security review are rundeck.audit.log (ACL decisions), rundeck.jobs.log

(changes to jobs), rundeck.log (general application messages included execution activity).

Full details on Rundeck logging and formatting are available at

http://rundeck.org/docs/administration/logging.html.

3. Example Use Case for Incident Response
While Rundeck supports many different use cases, incident response is a good

example for security teams. Incident handling has 6 phases: Preparation, Identification,

description:	Basic	User,	restricted	access.	
context:	
		project:	'.*'	#	all	projects	
for:	
		resource:	
				-	allow:	'*'	#	allow	read/create	all	kinds	
		adhoc:	
				-	allow:	'*'	#	allow	read/running/killing	adhoc	jobs	
		job:	
				-	match:	
								name:	'.*basic_user.*'	
						allow:	[read,run,kill]	#	allow	read/run/kill	of	jobs	
				-	match:	
								group:	'Library.*'	
						allow:	[run,kill]	#	allow	read/run/kill	of	all	jobs	
		node:	
				-	allow:	'*'	#	allow	read/run	for	all	nodes	
by:	
		group:	'basic_user'	

© 2016 The SANS Institute Author retains full rights.

Introduction to Rundeck for Secure Script Executions	 18
	

John	Becker,	jbecker42@gmail.com	 	 	

Containment, Eradication, Recovery, and Lessons Learned (Kral, 2011). Rundeck fits

within the Preparation (Access Control and Tools), Identification (Event gathering), and

Containment (Short-term Isolation, Backup, Long-term Isolation) phases. Rundeck could

also prove useful in the Eradication and Recovery phases as a Build/Deployment/Release

tool. For this example, Rundeck is used for accessing, finding, containing, and removing

intruders.

3.1.1. Preparation

The Preparation phase focuses on team readiness for handling an incident with little

or no notice (Kral, 2011). Rundeck is a useful tool to access and review systems

remotely. Incident response teams can build regular jobs to retrieve logs, hash critical

files, check permissions, as well as make changes such as update firewall rules or apply

patches. Many scripts used for hunting and investigations work well as Rundeck jobs.

3.1.2. Identification
A responder can use the Rundeck jobs created in the Preparation phase to determine

whether an incident has occurred. These jobs are helpful for any systems or patterns not

included in IDS systems. Ad-hoc commands are useful for hunting for specific patterns

across many devices. For example, the ad-hoc command below will return the hostname,

md5sum for /etc/init/ssh.conf, and the number of files in /etc/init in a CSV format. Copy

and save the output as a CSV file for analysis.

3.1.3. Containment

The Containment phase goal is to prevent further damage and to preserve evidence

(Kral, 2011). Compromised nodes tagged with a unique identifier, such as the Incident ID

"inc50298" in this example, are easy to group in Rundeck. Containment jobs can then be

© 2016 The SANS Institute Author retains full rights.

Introduction to Rundeck for Secure Script Executions	 19
	

John	Becker,	jbecker42@gmail.com	 	 	

targeted against nodes by Incident ID when “tags: ${option.Incident_ID}” is set for the

node target. Short-term containment can be as simple as updating firewalls or network

devices to stop traffic to a given host. Preservation can take the form of a snapshot or

backup of a compromised host. Finally, long-term containment step is to remove any

backdoors or malware to return the device to production use. Below is an example

Rundeck containment job:

1. Step 1 is a Library job reference. The target node's IP address passes to the

Library job "Library/IR/Isolate Node". The Isolate Node job will update the

firewall rules to block traffic to the IP address.

2. Step 2 performs a snapshot of the node from the backup server. The Library job

“Library/IR/Snapshot Node” runs a snapshot script for the given hostname.

3. Step 3 uses a script path "file:///ir/cleanup/${option.Incident_ID}.sh" to reference

a unique script for this incident cleanup. The path will expand to the filesystem

location on Rundeck as “/ir/cleanup/inc50298.sh". In this script are containment

commands unique for this incident. Running the job with an empty script is fine if

full cleanup steps are not ready.

© 2016 The SANS Institute Author retains full rights.

Introduction to Rundeck for Secure Script Executions	 20
	

John	Becker,	jbecker42@gmail.com	 	 	

4. Conclusion
Rundeck provides a user-friendly interface for scheduling and executing commands

against a dynamic inventory of devices. Central, agentless access to network devices,

Windows servers, Linux VMs, and cloud instances is very powerful for developers,

admins, and security teams alike. All teams benefit from increased visibility to execution

history, logging, and centralized task scheduling. The coordination between security

teams and DevOps teams have improved collaboration with access control and key

management.

However, a single point of access for systems is also a key target for intruders.

Protecting this access begins with hardening Rundeck itself using TLS and permission

changes. A common approach to job and ACL layout ensures correct access, but is still

agile, for modern environments. Maintaining clear roles and ACL mappings results in

low-stress least privilege access.

© 2016 The SANS Institute Author retains full rights.

Introduction to Rundeck for Secure Script Executions	 21
	

John	Becker,	jbecker42@gmail.com	 	 	

As teams adopt Rundeck for everyday tasks, the history of those tasks becomes more

valuable for auditors and incident responders. Furthermore, executions outside of

Rundeck are highlighted for possible investigation. Rundeck itself is useful during

incident response for gathering information and containment. Security teams can quickly

tag compromised nodes and run targeted discovery and containment jobs. This approach

works with other tools and scripts. However, the built-in features in Rundeck make for a

simple solution without requiring extensive customization.	 	

© 2016 The SANS Institute Author retains full rights.

Introduction to Rundeck for Secure Script Executions	 22
	

John	Becker,	jbecker42@gmail.com	 	 	

References
	
Oyster.com Tech Blog. (2016, March 7). Rundeck vs. Crontab: Why Rundeck won.

Retrieved July 29, 2016, from http://tech.oyster.com/rundeck-vs-crontab-why-

rundeck-won/

Class UnixCrypt. (2013, January 7). Retrieved July 28, 2016, from

https://commons.apache.org/proper/commons-

codec/apidocs/org/apache/commons/codec/digest/UnixCrypt.html

Critical Security Controls for Effective Cyber Defense. (2015, October 15). The Center

for Internet Security, 6.0. Retrieved March 12, 2016, from

https://www.cisecurity.org/critical-controls/

Dobbertin, H. (1996). The Status of MD5 After a Recent Attack. CryptoBytes, 2(2), 1-6.

Retrieved from ftp://ftp.arnes.si/packages/crypto-

tools/rsa.com/cryptobytes/crypto2n2.pdf.gz.

Edwards, D. (2014, August 29). Growing popularity of Rundeck's job scheduler features.

Retrieved July 21, 2016, from http://rundeck.org/news/2014/08/29/Rundeck-job-

scheduler.html

Hu, V. C., Ferraiolo, D. F., & Kuhn, D. R. (2006, September). Assessment of Access

Control Systems. Retrieved July 29, 2016, from

http://csrc.nist.gov/publications/nistir/7316/NISTIR-7316.pdf

Jetty, Secure Password Obfuscation. (2016, July 27). Retrieved July 28, 2016, from

https://www.eclipse.org/jetty/documentation/9.3.x/configuring-security-secure-

passwords.html

Jetty Source Code, Password.java. (2016, February 9). Retrieved July 28, 2016, from

https://github.com/eclipse/jetty.project/blob/c99c02e2f59cc4c65cc9b893710e48ee

eb3bef0b/jetty-util/src/main/java/org/eclipse/jetty/util/security/Password.java

Kral, P. (2011, December 5). The Incident Handlers Handbook. Retrieved July 14, 2016,

from https://www.sans.org/reading-room/whitepapers/incident/incident-handlers-

handbook-33901

Lawler, E. (2015, April). Is DevOps Breaking Your Company? Retrieved July 15, 2016,

from https://www.rsaconference.com/writable/presentations/file_upload/asd-w02-

is-devops-breaking-your-company.pdf

© 2016 The SANS Institute Author retains full rights.

Introduction to Rundeck for Secure Script Executions	 23
	

John	Becker,	jbecker42@gmail.com	 	 	

Rome, J. (n.d.). Enclaves and Collaborative Domains. Retrieved July 29, 2016, from

http://web.ornl.gov/~webworks/cppr/y2001/pres/117259.pdf

Rundeck Administrator Guide. (2016, June 10). Retrieved July 28, 2016, from

http://rundeck.org/docs/administration/index.html

Rundeck User Guide. (2016, August 3). Retrieved August 8, 2016, from

http://rundeck.org/docs/manual/index.html

Rundeck.org. (n.d.). Retrieved July 11, 2016, from http://rundeck.org/

Schneier, B. (1999, November 19). A Plea for Simplicity. Retrieved July 28, 2016, from

https://www.schneier.com/essays/archives/1999/11/a_plea_for_simplicit.html

Schueler, G. (2015, April 16). Preferred database backend for Rundeck. Retrieved July

31, 2016, from https://groups.google.com/forum/#!topic/rundeck-

discuss/zK4CYRYGTVA

Swanson, M., & Guttman, B. (1996, September). Generally Accepted Principles and

Practices for Securing Information Technology Systems. Retrieved July 12, 2016,

from http://csrc.nist.gov/publications/nistpubs/800-14/800-14.pdf

