GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

Automation of Secure Debian/GNU Linux Installations with
Fully Automatic Installation

By
Mathew A. Chrystal

June 18, 2004
GSEC Practical (v.1.4b)
Option 2

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

ABSTRACT

A Linux implementation project was undertaken at an unnamed university college to
determine its feasibility for research computing. The project mandate was to explore a
Linux deployment solution from initial installation and configuration to ongoing
maintenance and security upgrades. Since university environments tend to be
somewhat less secure than non-academic concerns, security would necessarily be an
important component of the planned deployment. Because the computer network is
controlled at the university level and is inaccessible to college personnel, security
measures would need to be implemented at the host level. Due to the large number of
computers involved, an automated installation was developed to standardize
configurations for all installation clients. The results of the deployment seem to meet the
computing needs of the college research community with minimal installation and
maintenance overhead along with vastly improved security.

MOTIVATION

Shrinking operating budgets necessitated the exploration of Linux as a replacement for
traditionally expensive proprietary UNIX computers. A general feeling also existed that
advances to the UNIX platform were not keeping pace with rapidly improving commodity
computers. The growing number of scientific software applications becoming available
for Linux as well as it’s free and open licensing standards also impacted the decision.
Additionally the vast majority of Beowulf type compute clusters, which allow large and
computationally complex problems to be solved in a fraction of the time that would be
required by individual computers, are based on Linux.

Previous attempts to deploy Linux by the college were unsuccessful. Some of the
contributing factors to the unsuccessful implementation were proper Linux system
administration skills and the actual Linux distribution itself. Previous deployment was
attempted at a time when Linux had many dangerous services enabled by default.
Lacking rudimentary system administration skills these services were not secured
properly which resulted in numerous hacked computers. These computers were being
used to serve illegal software and for launching attacks on other computers and were
disconnected by the university. Due to these reasons, a properly planned deployment
was essential because these machines would be scrutinized very closely. During the
initial planning stages, Redhat Linux was the chosen distribution. The main reasons for
choosing Redhat were that it was the most common Linux distribution, many proprietary
software programs were certified for Redhat, and its ability to perform automated installs
using anaconda. In the interim between planning and deployment Redhat initiated short
end of life cycles with their ultimate purpose being to charge for future releases of free
software. Since cost was one of the main factors in the decision to try Linux, Redhat
was precluded from future consideration. Due to this immediate and drastic reversal of
policy a search was started to find another distribution for use in the deployment. This
change in policy by Redhat caused semi-commercial distributions to be dropped from
consideration. Finally debian was chosen as the distribution for deployment due to its
social contract stating that debian will remain 100% free software.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

PREPARATION

Hardware requirements for the computers were determined and a single machine was
purchased for testing purposes. Since the actual deployment would potentially include a
large number of publicly accessible computers, hardware and software security
concerns needed to be addressed. The large number of installations required
necessitated the development of an automated installation system to distribute and
configure the operating system and related software. Debian includes a package called
fai (fully automatic installation) which could perform the required automatic installations.

AUTOMATED INSTALLATIONS

Fai (fully automatic installation) is a collection of shell, perl, and cfengine scripts that
perform automated installation and configuration of debian Linux on client computers
(Lange, 2004). It is especially useful for environments which require large numbers of
identically or similarly configured computers. By using classes, which are basically text
configuration files defined in the installation process, fai maintains a high degree of
flexibility and is almost infinitely configurable.

An installation server is required for fai to perform automated installations. The server
must have debian as the operating system and packages fai and fai-kernels installed to
provide the needed components of fai. Additionally, the server must contain a mirror of
the debian distribution that is to be installed on the client computers. Two scripts
mkdebmirror and debmirror are needed to create the local debian mirror. While
debmirror is included in the debian distribution, the script mkdebmirror seems to have
problems interacting with this particular version of debmirror. To ensure properly
functioning scripts, both scripts should be downloaded from the fai website
http://www.informatik.uni-koeln.de/fai. After configuring mkdebmirror with the proper
parameters such as distribution, location of the debmirror script and preferred location
of the local mirror, simply executing ‘mkdebmirror —progress’ will make the local mirror
and print the progress to standard output. The next step is to configure the fai program.

The fai configuration file is located in /etc/fai/fai.conf and it must be edited to reflect your
particular situation. Parameters such as installserver, boot kernel-image, and
distribution can be defined in this file. The variable KERNELPACKAGE defines the
kernel that will be booted on the initial client installation. The default kernel in the fai-
kernels package as of this writing is kernel-image-2.4.24-fai_1_i386.deb which should
be satisfactory for most applications. If another kernel has to be compiled due to
missing drivers etc., it is important to note that CONFIG_NFS_ROOT option needs to
be compiled into the kernel. The required ethernet drivers also must be compiled into
the kernel and not compiled as kernel modules. Essentially everything needed for your
initial install has to be compiled into the kernel. Kernel options compiled as modules
generally will not work for the initial installation. It should be remembered that this kernel
is only used to boot the install client; a different kernel can be added during the install

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

process. It is also worth noting here that the /etc/fai/sources.list is the sources.list file
that will be copied to the install hosts.

The installation server must also act as an nfs server so the install clients have access
to the local debian mirror, nfsroot directory, and fai configuration files. Directories
containing these files have to be exported to enable access by the clients during
installation. Reasons for needing access to the installation distribution and fai
configuration files are quite obvious but some explanation might be required for the
nfsroot directory. Previously it was mentioned that one of the requirements of the
installation kernel was that it had to have support for nfs mounting of a root partition
(CONFIG_NFS_ROOQOT=y). This is required because the installation clients need to
mount this directory as their root directory for bootstrapping purposes.

The client installation space is located in /usr/local/share/fai. This directory contains
directories class, disk_config, files, hooks, package_config, and scripts which contain
the configuration files used during the installation process. The class directory contains
the initial scripts for detecting hardware, partitioning hard drives, and defining classes
that are read in alphabetical order. Defining classes during the installation process is
simply anything that gets sent to standard output during the execution of these scripts.
Also included in this directory are *.var files which set various parameters during the
install. Files that contain hard disk configuration parameters such as partition sizes,
formatting, and mount options are stored in the directory disk_config. The files directory
contains files that will be copied to the client computers. Additionally, files contains a
sub directory, packages, which houses a repository of custom packages that need to be
included in the installation. The hooks directory contains user defined programs. Finally,
package_config and scripts contain software packages from the distribution that will be
installed and local customization scripts, respectively. Examples of these configuration
space directories are included with the fai package. These files are quite generic and
should work for testing purposes.

After the server and client configurations are complete, executing the command fai-
setup will create the nfsroot directory and load the client configuration options. Fai-setup
will produce many error messages during configuration, but all can be ignored for the
most part. As long as “make-fai-nfsroot finished” and “Fai setup finished” are observed
the setup process should be fine. The last step is to make bootable media for the
clients.

For this particular installation, the client computers needed fixed ip addresses so a
bootfloppy was prepared. The command make-fai-bootfloppy creates a bootfloppy with
the proper configuration for a fixed ip address install. Actually make-fai-bootfloppy
makes a bootable disk for different boot methods such as dhcp, bootp, fixed-ip, and
rarp. Since we will be using the fixed ip method the actual network parameters need to
be set by sending the network parameters to the kernel in the following format:
ip=<client-ip>:<server-ip>:<gw-ip>:<netmask>:<hostname>:<device>:<auto>. These
parameters must be used as command line arguments to the make-fai-bootfloppy
command to properly configure bootable media for installing a fixed ip address client.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The following command configures the bootable floppy: make-fai-bootfloppy -g -df "ip=
(the above ip parameters) FAI_ACTION=install FAl_FLAGS=verbose, createvt, sshd"
where flags g=grub bootloader, -df=use fixed address as default boot image, ip=kernel
ip parameters (as above), FAl_ACTION=install=client installation, and
FAI_FLAGS=verbose, createvt, ssh=verbose install, create virtual terminals, and start
sshd for communication with the install server. The clients, when booted from this
floppy, will receive all needed information for a fully automated installation.

SECURITY CONFIGURATION

Physical and Bios

A large number of installations will be required for public computing laboratories.
Therefore, bios and bootloader protection will be necessary. The bios (basic input
output system), a chip on the motherboard, is the interface between the computers
hardware and the operating system. The bios configuration settings are saved to the
cmos (complementary metal-oxide semiconductor), which is also a chip on the
motherboard. Since this cmos chip requires a small amount of power to retain the bios
settings, a battery on the motherboard is required. Removal of the cmos battery will
cause the bios settings to be lost, thus, in effect bypassing any bios security settings.

In light of this problem, each computer case must be locked to prevent resetting the bios
configuration. Each computer will have a lock inserted into the security tabs included on
the computer case. The bios will also be set to prohibit booting from removable media
such as cdrom or floppy disks. Unless restricted, removable media could be used to
bypass the security configuration of the operating system. Therefore, the bios must be
password protected to prevent unauthorized modification of the bios settings.

Bootloader

BIOS/CMOS security must be combined with protection of the bootloader to secure the
booting process. Upon booting, the BIOS reads the master boot record and loads
bootstrapping program known as the bootloader (Brouwer, 2001). The bootloader then
transfers control of the computer to the operating system. Protection of this process is
also essential to boot security.

Linux uses predominantly two bootloaders: lilo (LInux LOader) and grub (GRand Unified
Bootloader). Both of these bootloaders were available for the installations. Though grub
probably is the better bootloader, lilo was also needed for backward compatibility
issues. While the same security issues are present in both lilo and grub, the steps
involved in securing each bootloader is somewhat different.

When lilo is chosen for the bootloader, upon execution, a lilo prompt is displayed on the
computer screen. At this point certain keystrokes can halt the default boot process and
allow any user to pass arguments to the kernel. In some Linux distributions typing "linux
single" at the prompt boots the default kernel into single user mode and will produce a
command line prompt with root permissions without ever requiring the entry of a
password. Debian mitigates this problem somewhat by inserting the line

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

“~~:S:wait:/sbin/sulogin” into the file /etc/inittab. This command requires the entry of the
root password before allowing access to single user mode. Unfortunately, issuing the
command "linux rw init=/bin/bash" will bypass even this security measure and deposit
the user at a single user prompt with root privileges, no password required (Hatch,
2002). To prevent these types of exploits security options can be set in /etc/lilo.conf.
Setting the option password= [some password] will require that a password be entered
every time the system is booted. This is probably not quite what we want due to the
large number of computers involved as it would require the presence of a system
administrator at each of the computers for every reboot. This problem can be solved by
using the option restricted. Restricted only requires a password for booting when an
option is passed to the kernel, normal booting will not require a password, exactly what
is desired. The password chosen for the password command will be stored in
/etc/lilo.conf in clear text so it is essential that it is only readable by root (chmod 600).
After the configuration is set the command "lilo" must be issued to update the
bootloader. One other important point that is not covered by much (or any) of the lilo
documentation is after setting the password option and issuing the lilo command, the lilo
password shows up in the /boot/map file in clear text. Therefore, this file should only be
readable by root (chmod 600).

Grub exhibits essentially the same security problems as lilo. When the grub bootloader
is executed, the user is presented with a grub prompt or a menu of bootable kernels
listed in the /boot/menu.lst. If the menu.lIst file is not password protected, a user has
access to the actual boot commands. By highlighting a kernel in the boot menu and
entering a few keystrokes the previously mentioned kernel arguments can be entered,
thus effectively bypassing the operating system security. Basically, both bootloaders
exhibit the same security weaknesses resulting from unprotected configuration files.
Adding the option password --md5 [some password] to the menu.lst file will require
entry of the grub password to modify boot commands. As an added security measure
grub includes a utility grub-md5-crypt that will accept entry of a plaintext password and
output its md5 hash. This hash can then be pasted into the menu.lst file after password
--md5 thus eliminating the need to store a plaintext password (Free Software
Foundation, 2004). This is marginally more secure than lilo but if access is gained to the
menu.lst file the hash can be copied and entered into a password cracking program.
Therefore it is still essential the menu.lst file be only readable by root with a
recommended file mode of 600.

Operating System Security

With the BIOS/CMOS and bootloader security measures in place, the actual operating
system security needed consideration. The following discussion will include local (non-
network related issues) and network related security measures including communication
protocols.

Filesystem

The installation divided the hard drive into various partitions and formatted the partitions
using the ext3 filesystem. For all practical purposes partitions act as separate hard
drives and are mounted individually during the boot process. While Linux can be

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

installed to a single partition, separation of the disk into numerous partitions allows the
specification of mount options for each partition. Since each partition serves different
purposes, mount options can enhance security by limiting functionality according to
each patrtition's need. Partitions included in the install were /, /boot, /home, /opt, /usr,
/var, and /tmp. Directories /opt and /usr contain mostly software, / contains software,
device, and configuration files, /boot contains bootloaders and startup scripts, /home
contains user directories, /var contains most log files, and /tmp contains temporary files.
Numerous mount options exist in Linux but most distributions use defaults as the mount
options. The default mount options are rw (read-write), suid (set-user-identifier allowed),
dev (allow character or block devices), exec (allow binary execution), auto (auto detect
filesystem), nouser (ordinary users cannot mount file system), and async (asynchronous
i0). More detailed explanations of each option can be found in the mount manpage.
Mount options suid, exec, and dev along with their opposite’s nosuid, noexec, and
nodev are most important for securing the file system. The options nosuid, noexec, and
nodev obviously prohibit suid, exec, and dev on the partition. Only the root partition
should have the dev option enabled because it is the only partition where device files
should exist. Also /tmp, /var, /home, and /opt should have the nosuid option enabled
because there is no need to execute suid programs from these partitions. Following is
an illustration of how mount options can help foil attackers. Since many scripting
exploits install and execute files in the /tmp directory, using the mount option noexec will
minimize the danger of these types of attacks. If the operating system was installed to a
single partition, this type of security enhancement would not be possible.

Passwords

The debian package manager dpkg or if you prefer apt-get, requires user input for the
installation of various software packages. Since our installations were automated with
fai, input during the installs was not possible. Therefore, packages that need user input
are installed with the default dpkg or apt-get configuration. Surprisingly, the default
installation for the package passwd does not enable shadow passwords. This
configuration would have terrible security consequences. When shadow passwords are
not enabled, the encrypted passwords are stored in the /etc/passwd file which is world
readable. An attacker would simply have to make a copy of this file and use a password
cracking program like john the ripper to crack the passwords. Enabling shadow
passwords replaces the passwords in /etc/passwd with an x and stores the encrypted
passwords in the file /etc/shadow which is only readable by root (Fenzi, et. al., 2004).
Therefore unauthorized users cannot access the encrypted passwords. When
authentication is needed the program goes to the /etc/passwd file finds an x and then
looks in the /etc/shadow file for the password. Due to the quite large security
implications of shadow less passwords, they were turned on manually during the install
by issuing the command “shadowconfig on”. Debian sets password policy in two files
/etc/login.defs and /etc/pam.d/common/password. Maximum password length for a
default install is set to 8 in /etc/login.defs. A maximum password length of 8 would not
utilize the greater password lengths available when using an md5 encryption algorithm.
Since older debian versions still use the crypt algorithm, this setting seems to be some
kind of legacy setting. It actually has no effect on password length when md5 is the
chosen encryption algorithm, but its presence causes confusion. Minimum password

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

length is set at 4 which also seems quite short. For these installations minimum
password length was increased to 6.

Inetd.conf

Since the main purpose of these installations were student and or faculty workstations,
the practice of minimizing running services was observed. Inetd is a daemon that
manages many types of incoming network connections. Incoming connections for each
service controlled by the inetd daemon is controlled by its corresponding entry in the
/etc/inetd.conf file. Entries for each service in the inetd.conf file consist of a single line
containing: service (name assigned by /etc/services file), socket-type (usually stream
(tcp) or dgram (udp)), protocol (usually tcp or udp), wait or nowait (only udp), user
(user the process runs under), server (path to the server executable), and cmdline
(command line options passed to the server). Traditionally, insecure daemons such
telnet, ftp, rsh, rexec, and rlogin were managed by the inetd daemon. Debian provides
additional security to the services managed by inetd by tricking the program to run tcp
wrappers before the actual server program. In this way access to the server can be
restricted and monitored. Tcp wrappers will be discussed in a following section.
Although tcp wrappers restricts access to these services, they remain a large security
liability because all passwords sent between the two computers are sent over the
network in clear text. Since this practice has such large security implications because
the passwords could be sniffed off the network, none of the aforementioned daemons
were installed. Additionally, the internal services echo, discard, daytime, and chargen
were all disabled because they are only used for debugging and testing purposes. The
service time was also disabled because ntp will be used to synchronize system times.
Rstatd (collection of kernel performance statistics) and rusersd (lists network users)
were likewise disabled. Simply commenting out the appropriate line in /etc/inetd.conf
and issuing the command kill -HUP pid of inetd disables the service. Debian has a
somewhat more elegant utility that will comment out the appropriate line in the
inetd.conf file and then restart inetd. For example, disabling rstatd and then restarting
the daemon with the updated configuration is achieved by the single command update-
inetd —disable rstatd (Pena, et. al., 2002). After final configuration, all services in
/etc/inetd.conf were disabled.

Openssh

Openssh was installed as a secure replacement for telnet, ftp, rsh, rexec, and rlogin. As
mentioned previously, communications with telnet, ftp, or the r-services transmitted
unencrypted passwords and data over the network and thus were vulnerable to network
sniffing, Openssh, encrypts all communications between client and server computers
which essentially eliminates password sniffing. Since this is a client — server type of
communication each computer needed to be both a client and server so data could be
exchanged in either direction. Configuration options for the sshd daemon are stored in
the file /etc/ssh/sshd_config. Some default configuration options that were changed to
enhance security were PermitRootLogin and default protocol. The PermitRootLogin
parameter determines if root logins are allowed through openssh. The default setting
allows root logins through ssh. Permitting root to login through openssh make it virtually
impossible to determine who is accessing the computer as root. This becomes

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

especially confusing if several people have root access. Therefore in these installs
PermitRootLogin will be turned off so these logging ambiguities do not arise. Root
access can still be granted by sshing into the computer with a users account and then
suing to obtain root permissions. This behavior affords system administrators a better
log trail of exactly who has been accessing the root account. Additionally the default
setting for configuration option Protocol is 2,1 which means that ssh will use ssh
protocol 2 to connect to the server if it is available and if not it will use protocol 1. This
setting was changed to use ssh protocol 2, protocol 1 will not be used under any
circumstances. Protocol 1 was not listed as an option because it contains many security
vulnerabilities.

Some other configuration options which were not changed from the debian default
values but merit some discussion due to their security implications were
UsePrivilegeSeparation, RhostsAuthentication, and IgnoreRhosts (Barrett, et. al., 2001).
The default value for UsePrivilegeSeparation was set to yes. After authentication, this
option allows ssh to spawn a child process with the authenticated users permissions to
handle the network connection. In this way if some vulnerability is exploited it will only
have the permissions of the authenticated user and not root. RhostsAuthentication and
IgnoreRhosts prevent .rhosts authentication and reading users .rhosts and .shosts files,
respectively.

Tcpwrappers

Although tcpwrappers were previously mentioned as an access control mechanism for
server programs managed by the inetd daemon, discussion about the actual program
was postponed to the present section. Tcpwrappers are actually a server program,
/usr/sbin/tcpd that is executed in place of the desired server daemon that provides
logging and access control capabilities. If the connection passes the authentication tests
the request is passed to the target server program. . It can be used by programs
managed by inetd or standalone daemons such as ssh which are compiled against the
libwrap library. Access and logging by the tcpd daemon is controlled by two files,
/etc/hosts.allow and /etc/hosts.deny. When a network connection request is received by
tcpd the hosts.allow file is checked first and if authorized the connection is allowed and
tcpd forwards the request to the appropriate daemon. If none of the rules allow access
in the hosts.allow file the hosts.deny file is queried. If the hosts.deny file denies the
connection, it is refused (Frisch, 1995). Both of these files use the same syntax which
is: <daemon_list> : <Client_list>: [<option>:<option>..]. The configuration of the
hosts.deny file for the installations was ALL: ALL : DENY which means that all daemon
access is refused to all hosts. Therefore, if the connection is not explicitly allowed in the
hosts.allow file access is denied. The last entry in the hosts.deny file, DENY, is not
strictly needed but makes it easier to quickly determine the rules purpose. The
hosts.allow file contained an entry that allowed unlimited access to localhost: ALL:
127.0.0.1: ALLOW. This entry is needed for some local programs to work properly.
There will also be an entry for unlimited access for administrator machines: ALL:

XXX XXX XXX XXX: ALLOW. Finally there will be an entry for the sshd daemon: sshd:
XXX.Xxx. :spawn (/usr/bin/safe_finger — @%h |/usr/bin/mail —s “ALLOWED %s from %c”
admin@somewhere.com) & : ALLOW. This entry allows ssh access to the sshd

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

daemon from the university class B subnet. Additionally, it utilizes the logging
capabilities of tcpwrappers. Explained briefly, it only allows ssh connections from the
university subnets, not internet access. A small number of computers with internet
accessible ssh daemons are available to users. If a person is outside the university
subnets, one of these computers can to be connected to and then one can ssh to any of
the installation computers. The minimal number of computers running world accessible
ssh daemons make it easier to keep track of potentially hostile entry attempts. Upon
connecting to the computer the tcpwrapper program safe_finger, a safe form of finger,
runs a reverse finger probe to the connecting computer to determine its address and
sends mail to an administrator with the daemon accessed, the ip address of the server
and the ip address of the connecting computer. Once the hosts.allow and hosts.deny
files were configured they were checked with two other utilities provided with the
tcpwrapper package. First, tcpdchk was executed to check the syntax of each file:
tcpdchk -v which sends output to stdout. Finally tcpdmatch was executed: tcpdmatch
ssh xxx.xxx.xxx.xxx which prints out if the connection is allowed or denied according to
the rules in each file (Anonymous, 2000).

Sysctl and Iptables

The Linux command sysctl allows the modification of kernel runtime parameters stored
in the /proc/sys directory. These parameters can be set in the /etc/sysctl.conf file which
will be applied at bootup or they can be set manually. In many cases, for purposes of
this discussion, the settings are just entering a 0 (disable) or 1 (enable) into the
appropriate file. Networking parameters with security implications are located in the net
directory. Some of the parameters set due to security concerns were
icmp_echo_ignore_broadcasts, accept_source_route, tcp_syncookies,
accept_redirects, send_redirects, rp_filter, and log_martians. Icmp_echo_ignore_
broadcasts were disabled so icmp echo requests were ignored to broadcast/multicast
addresses. Source routed packets are packets that specify the exact route taken to a
host which could potentially bypass security, therefore, accept_source_route was
disabled. Disabling tcp_syncookies protects against flooding the syn backlog queue
(Lechnyr, 2002). Since these computers do not act as routers accept_redirects and
send_redirects were disabled. Rp_filter was enabled to prevent access from spoofed
addresses and log_martians was enabled so packets with impossible addresses would
be logged. More information can be found in the kernel source tree in the
documentation directory, more precisely, in the file networking/ipsysctl.txt.

Netfilter/Iptables is the packet filter (firewall) for Linux kernels 2.4.x and 2.6.x. It replaces
the older packet filter ipchains from the 2.2.x series kernels. Iptables main advantage
over ipchains is in its connection tracking capabilities (stateful packet filtering). Stateful
packet filtering is the ability to maintain state information in memory, such as source and
destination ip address, port number pairs, protocol types, connection state and timeouts
(Stephens, 2004). This property is very useful when writing packet filtering rules
because it greatly reduces the number of rules needed for each type of connection.
Ipchains, on the other hand, had no connection tracking abilities and writing packet
filtering rules was quite a complicated process, especially if the firewalls default rules
were to deny all traffic. Each client service had to have both incoming and outgoing

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

rules for the connection to take place. In contrast iptables only requires outbound rules
due to its connection tracking abilities; inbound traffic related to the outbound
connection is allowed automatically.

Iptables allows the filtering of incoming, outgoing, and forwarded connections to the
local computer by adding rules to the INPUT, OUTPUT, and FORWARD chains. The
firewall configuration will use a default deny policy. Since none of these computers
perform NAT (network address translation) for other machines the FORWARD chain will
not be discussed further other than it is set to DENY by the default policy. A default
deny policy is very restrictive, difficult to configure, and can cause many problems if it is
not tested thoroughly but provides maximum protection. It is important for the script to
include commands to load the desired kernel modules. Of particular importance is the
module ip_conntrack_ftp which allows connection tracking for an ftp client. During an ftp
session a control channel is opened between the client and the ftp server. When
commands are issued another channel is opened to carry the data. If the
ip_conntrack_ftp module is not loaded the firewall will not know what port this data is
destined for and refuse the connection, thus rendering ftp unusable. Therefore the
command modprobe ip_conntrack_ftp should be explicitly issued within the firewall
script. Modprobe should be used instead of insmod because modprobe will load
ip_conntrack_ftp and any other modules that it depends on, insmod will only load the
requested module and if there are dependency conflicts the module will not load. While
there are many internet sites with sample iptables scripts, (Ziegler, 2004) has example
scripts that are easily understandable. Although many of these sites are a good starting
point for packet filtering ideas, more complicated networking environments will require
writing rules for services not found in any of these scripts. As an example, this university
uses the AFS (Andrew File System) and custom rules had to be developed to access
the file system. These rules are listed in Appendix 1.

Logging

Selected computers on each subnet had their log files sent to a logging server. Not all
computers will send their log files to the server because this would create huge log files
that would take an inordinate amount of time to check. Experience has shown that if
these files become so large that it requires a considerable time investment to read them
they will not get read. Of course if these files do not get analyzed there is no reason to
keep them. Logging a few computers per subnet should be sufficient to pick up activity
that otherwise might not be noticed. For example, a single computers log file will show
that someone has scanned that particular machine and it might be missed or attributed
to innocent error. On the other hand, since the logging host combines logs from
numerous computers on different subnets it will be easy to see if scans are a systematic
scan of the network. Logchecker was installed on the logging server to cull suspicious
events from the log files and send them in an email to an administrator every hour. This
greatly reduces the lines of log files that need to be read dalily.

Security Updates

One of the major strengths of the debian Linux distribution is the ease with which it can
be kept up-to-date. The package apt-get handles the installation and updates required

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

for each system. It is especially nice because it not only downloads and installs the
desired packages but also solves any dependencies that might arise during this task.
Apt-get can be configured to use many different types of file acquisition methods such
as nfs mounted directories, cdrom, ftp, or http. Configuration options are located in
letc/apt/sources.list which direct apt-get where to look for the needed updates. It is
important that /etc/apt/sources.list contains an entry for security updates so any newly
discovered security vulnerabilities can be updated. Simply issuing the commands: ‘Apt-
get update’ followed by ‘apt-get upgrade’ will keep each system up-to-date. All security
updates are applied to a test computer first to see that no problems arise and if not all
machines are then updated.

CONCLUSION

The proposed automated installation fulfilled the college’s research computing needs
and proved quite cost effective. Since debian is a free distribution, money could be
spent on more high performance hardware. Installation and maintenance overhead for
administrators remain quite low compared to many other operating systems. The
security practices described in this paper have eased the security concerns about Linux
in the college which is in stark contract to previous efforts to deploy Linux. Some minor
problems have arisen which are directly attributable to the very restrictive firewall put in
place on each computer that did not allow legitimate connections, but additional rules to
the firewall script solved the problem. Overall the automatic installation and deployment
have performed quite well.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

REFERENCES
1) Anonymous. 2000. Maximum Linux Security. Sams Publishing. pp. 492-499.

2) Barrett, Daniel J. and Richard E. Silverman. 2001. SSH The Secure Shell,
The Definitive Guide. O’Reilly & Associates. pp. 506-515.

3) Brouwer, Andries. 2001. “Large Disk HOWTO”. URL.:
http://www.linuxdocs.org/HOWTOs/Large-Disk-HOWTO-5.html

4) Fenzi, Kevin and Dave Wreski. 2004. “Linux Security Howto”. URL:
http://tldp.org/HOWTO/Security-HOWTO/

5) Free Software Foundation. 2004. “GRUB manual”’. URL:
http://www.gnu.org/software/grub/manual/grub.html#Security

6) Frisch, AEleen. 1995. Essential System Administration, 2" Edition. O'reilly &
Associates. pp. 625-626.

7 Hatch, Brian. 2002. “Another Backdoor to Root Access”. URL:
http://www.hackinglinuxexposed.com/articles/20020702.html

8) Lange, Thomas. 2004. “FAI Guide (Fully Automatic Installation)”. URL:
http://www.informatik.uni-koeln.de/fai/fai-quide.html/

9) Lechnyr, David. 2002. “Network Security with /proc/sys/net/ipv4”. Linux
Gazette:76. URL: http://www.linuxgazette.com/issue77/lechnyr.html

10) Pena, Javier Fernando-Sanguino, et al. 2002. “Securing Debian Manual”.
URL: http://www.linuxsecurity.com/docs/harden-doc/html/securing-debian-
howto

11) Stephens, James C. 2004. Iptables. URL:
http://www.sns.ias.edu/~jns/security/iptables/iptables conntrack.html

12) Ziegler, Robert L. 2004. “Linux Firewall and Security Site”. URL:
http://www.linux-firewall-tools.com/linux

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

APPENDIX 1

Iptables rules to enable afs access
--ship
#AFS Authentication(udp)
for PROTOCOL in $PROTOCOLS; do
if ["$CONNECTION_TRACKING" = "1"]; then
Isbin/iptables -A OUTPUT -0 $INTERNET -p $PROTOCOL \
-s $IPADDR --sport $SUNPRIVPORTS \
-d SLOCALNETS3 --dport SAFSPORTS \
-m state --state NEW -] ACCEPT
fi

Isbin/iptables -A OUTPUT -0 $SINTERNET -p $PROTOCOL \
-s $IPADDR --sport SUNPRIVPORTS \
-d SLOCALNETS --dport $AFSPORTS -j ACCEPT

/sbin/iptables -A INPUT -i SINTERNET -p $PROTOCOL \
-s $LOCALNET3 --sport SAFSPORTS \
-d $IPADDR --dport SUNPRIVPORTS -j ACCEPT

#AFS Minimum services
for PROTOCOL in $PROTOCOLS; do
if ["SCONNECTION_TRACKING" ="1"]; then
Isbin/iptables -A OUTPUT -0 $INTERNET -p $PROTOCOL \
-s $IPADDR --sport $AFSPORTS \
-d SLOCALNET3 --dport SAFSPORTS \
-m state --state NEW -] ACCEPT
fi

Isbin/iptables -A OUTPUT -0 $SINTERNET -p $PROTOCOL \
-s $IPADDR --sport $AFSPORTS \
-d SLOCALNETS --dport $AFSPORTS -j ACCEPT

/sbin/iptables -A INPUT -i SINTERNET -p $PROTOCOL \
-s $LOCALNET3 --sport SAFSPORTS \
-d $IPADDR --dport $AFSPORTS -j ACCEPT

--snip

where: PROTOCOLS="tcp udp”
CONNECTION_TRACKING="1" (connection tracking enabled)
INTERNET="eth0” (Ethernet card with internet access)
IPADDR="ip address of the local computer”
AFSPORTS="7000:7009"

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

