GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec



http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

© SANS Institute 2004,

Exploration of Computer Immune Systems

GIAC Security Essentials Certification (GSEC)
Practical Assignment - Option 1
Version 1.4b

Robert Berbeco

August 10, 2004

As part of GIAC practical repository.

Author retains full rights.



Exploration of Computer Immune Systems Robert Berbeco

Abstract

This paper explores the theory and implementation of computer immune
systems, and the related field of Distributed Autonomous Agents (DAAS). In
theory, a computer immune system is based on a biological immune system
model. | will show how the principles of a biological immune system can apply to
a computer immune system, and explain how a computer system could utilize
self-awareness to identify and protect itself from intrusion, virus, or other
anomalies. With self-awareness, a system could increase its basic knowledge
set, and adapt to ward off future threats it currently does not have knowledge of.
The theory and algorithms that exist to how a system can detect local system
changes will be explored, and Distributed Autonomous Agents are reviewed as a
method of sharing the information one system has with other nearby systems
through the network. To compliment the theory, | will introduce an example of an
experimental computer immune system, Cfengine. Cfengine actually has it roots
as administrative tool, but with modifications it can serve as the basis for a
rudimentary distributed computer immune system. In the concluding remarks |
will summarize the paper and its relevance to the security field.

Computer Immune Systems

Computer immune systems incorporate the fundamentals of various
Computer Science theories and implementations. Of the applicable theories, the
first and foremost is pattern matching. With pattern matching, a computer system
is able to differentiate between itself, normal activity, and a potential anomaly by
tracking the patterns generated from normal operating processes, user habits,
and system or access logs. Next, adaptation or system learning is necessary for
the system to function autonomously. Adaptation can be accomplished through
artificial intelligence, where much study has been done with fuzzy logic and
adaptive rule sets. Once a system is able to adapt as a self-aware entity, the next
logical step is for this system to share its knowledge with other neighboring
systems. This communication and coordination can be accomplished with
Distributed Autonomous Agents which could pass information from one system to
another based upon a pre-defined response to a situation or an activated rule
result. Once each individual system is able to effectively communicate with one
another and actively fight as a combined unit to attack anomalies, the entire
network of systems become an integrated unit acting as one computer immune
system warding off attacks (whether from hacking, viruses, etc.). Initially this
computer immune system will require human interaction for installation and
configuration, but once configuration is complete and an initial rule set has been
put in place it could autonomously handle threats.

The biological immune system is an extremely efficient protocol driven
system that is autonomous, and can adapt either immediately or over time to
deal with an external threat. Due to its effectiveness, fault tolerance, and
efficiency, a biological immune system would serve as an excellent theoretical
model for a computer immune system. Some questions would arise in attempting

-1-
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



Exploration of Computer Immune Systems Robert Berbeco

to apply the biological model to a computer immune system. What could be
adapted from biological immune systems in order to build a computer immune
system that is fault tolerant and fault correcting? Can the mechanisms of natural
selection and defensive counter attack be useful in computer immune systems?
Some potential answers to these questions will be explored in the next section.

Principles of Biological Immune Systems
Applied to Computer Immune Systems

Principles of the biological immune system that should be applied to a
computer immune system include: it must be specific and should actively
eliminate anomalies; it should be tolerable, distributable, adaptable, and able to
dynamically cover the entire system(s); it should be able to identify anomalies
systematically through their behavior; and should be mostly autonomous [1]. The
first step involves establishing a baseline of identifying normal processes or
habits on a system, so that detection of anomalies can be made possible. Once
the computer immune system is able to recognize itself, it would be better tuned
to recognizing and actively eliminating pathogens. Second, the computer immune
system must be tolerable to normally executed processes, but still able to detect
a normally executed process that has run amok. An example of this in a
biological organism is cancer. In an organism with cancer, cancerous cells
mutate from otherwise normal cells. The T cells, which serve as anomaly
detectors and destroyers in a biological organism, are ineffective against this
mutation since these mutated cells actually belong to the biological organism.
The T cells will not actively bind and destroy the cancerous cells, and with the
biological immune system ignoring the cancerous cells they are able to grow out
of control. Third, the individual systems in a computer immune system should be
able to distribute their detector sets throughout the system. Each computer
system could have its own set of detectors, but the systems should be allowed to
communicate with one another. In this way they can collectively ward off
anomalous agents and malicious attacks. Fourth, each computer immune
detector set should be dynamic and adaptable. Since it would be virtually
impossible to initialize a completely thorough detector set manually, each
computer system should be able to actively add to its repertoire when new
threats are detected. The true autonomy of a computer immune system will be
reached when it can proactively adapt to previously unknown threats without
human intervention (like adding a security patch, which is currently done with
most anti-virus programs).

Establishing a Sense of Identity/Self
How a Computer Can Identify Itself

Process level detection

In addition to the biological immune system model, applying pattern
recognition to a computer immune system would be useful. Pattern recognition in
a program code could be applied to individual binaries and be used to detect
harmful processes. Some processes that could be detected would include user

-2
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



Exploration of Computer Immune Systems Robert Berbeco

initiated deletions of system files, or services which attempt to conceal
themselves like malicious root kits. In order to determine processes to allow or
reject, a rule set must be created to detect strings which can lead to dangerous
behavior.

Program code stored on a disk inertly is very unlikely to cause damage to
a system. When the code is executed, the potential for system damage comes
from the system calls initiated by the running process. In applying this logic,
attention would be restricted to system calls in running privileged processes.
Since a heterogeneous environment typically exists in how individual systems
are configured, patched, and used, one way to deal with process detection would
be by using process databases on each system [2]. Once a stable database is
constructed for a given process, the database can be used to monitor the
process’ ongoing behavior; then sequences of system calls would form the
baseline of normal patterns for the database. After the baseline is established,
abnormal sequences could indicate anomalies. This method would have two
main steps: first, scan traces of normal behavior and build up a database of
normal patterns; second, scan new traces that might contain abnormal behavior,
looking for patterns not present in the normal database [2]. To build the
database, a window will be slid of size i+1 across a trace of system calls to
record which calls follow which within the sliding window. As an example, in the
below table where i=3, the sequence of system calls are open, read, nmap,
nmap. As the window is slid across the sequence of system calls, each call that

follows it is recorded at position 1, 2,...,i. So for this example, the following table
would exist:

call position 1 position 2 position 3

open read nmap nmap

read nmap nmap

nmap nmap

When the database of normal patterns is completed, a check can be done
by using the same i+1 method to test for the presence of legal sequences. Once
the normal process database is created, new behavior can be determined normal
or anomalous by counting the number of mismatches between a new trace and
the database; and comparing that information against a predetermined threshold
value. Below the threshold would be normal, and above the threshold would be
considered anomalous or potentially malicious. The normal database should
initially be created with a standard set of artificial messages. Then as new local
user processes are scanned these can be added to the database dynamically.
Each computer system would individually generate its own normal database,
based on local software/hardware and usage patterns. Since configuration time
is necessary for initializing the self database, the downside is that this would
have to be mostly completed prior to a computer system being on-line. This
method would be the start of a computer establishing its identity to itself.

System call level detection

-3-
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



Exploration of Computer Immune Systems Robert Berbeco

There are many ways in which system call data can be used to determine
normal behavior of programs, and all of these would involve building a model
using traces of normal processes. There are three main methods of detecting
intrusion detection through system calls: frequency-based methods, data mining,
and finite state machine.

Frequency-based methods model the frequency distributions of various
events. A frequency-based method proposed by Helman & Bhangoo [3] involves
ranking each sequence by comparing how often the sequence is known to occur
in normal traces with how often it is expected to occur in intrusions. Sequences
occurring frequently in intrusions and/or infrequently in normal traces are
considered to be more suspicious. Unfortunately, this method makes several
assumptions that are problematic for the system-call application: it assumes that
data is independent and stationary, and it does not characterize the frequencies
of abnormal sequences accurately [2].

Data mining approaches are designed to determine what features are
most important out of a large collection of data [2]. Sequences are characterized
as occurring in normal data by a smaller set of rules that capture the common
elements in those sequences. During the monitoring stage, any sequence that
violates these rules is treated as an anomaly.

Finite state machines attempt to recognize the language of the program
traces [2]. An example of a very powerful finite state machine is the hidden
Markov model (HMM), used in speech recognition and also in DNA modeling [4,
5]. A HMM’s states represent some unobservable condition of the system being
modeled. In each state, there is a probability of producing other observable
system outputs and a separate probability indicating the next states. HHMs have
the highest amount of accuracy when compared with other system call intrusion
methods, but at a huge computational expense since all the datasets must be
configured extensively before the system can be run [2].

Algorithms to Detect Local System Changes

After a computer has been able to differentiate normal process execution
and anomalies, it must be able to detect changes to itself. When considering
change detection it should be non-specific since its generality could be applied in
many settings to catch changes that might otherwise go undetected. Some
algorithms that can be utilized for change detection include: the exhaustive
detector generating algorithm (or T cell algorithm), linear time detector generating
algorithm, and greedy detector generating algorithm [6].

The exhaustive detector generating algorithm was inspired by the
generation of T cells in the immune system and has two phases: first — generate
a set of detectors; second — monitor the protected data by comparing them with
the detectors and if a detector is activated a change is known to have occurred
[6]. The algorithm only concerns itself with protected strings since they do not

-4 -
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



Exploration of Computer Immune Systems Robert Berbeco

change much over time and “self” is defined as being the protected string, and
“‘non-self’ to be any other string [6].

To generate valid detectors, the self string must be split into equal-size
segments. For example, the following 32-bit string could be broken into eight
substrings, each of length four: 0010 1000 1001 0000 0100 0010 1001 0011
which would produce the collection of self substrings to be protected. The next
step would be to generate random strings to match against the self strings.
Random strings that match the self strings are eliminated and strings that do not
match any of the strings become members of the detector set [6]. The following

diagram exemplifies this process:

Generate
Random
Strings

Detector
Set

Once a detector set of strings has been produced, the state of self can be
continually monitored by matching strings in the self set with the strings in the
detector set. If ever a match is found, it is concluded by the system that the self
set has changed. The following diagram exemplifies this process:

Detector
Collection

Protected l <
Strings 4" Match }—‘
no
yes l

Nongelf
Detected

The exhaustive detector generating algorithm has many advantages: it is
tunable, the detector set does not grow with the number of strings being
protected, protection is symmetric, and can be distributed among several
systems using similar detector sets [6]. The algorithm is tunable since one can
choose a desired probability of detection, and then estimate the number of
detector strings required as a function of the size of the strings to be protected
(probability = 1/strings to be protected). The size of the detector set does not
grow with the number of strings being protected since the number of detector
strings created is independent of the number of original self strings. Protection is
symmetric since changes to the detector set are detected by the same matching
process that notices change to self strings. The biggest disadvantage to the
algorithm is the computational difficulty of generating the initial detector sets. This
computational difficulty is increased even more by the fact that the number of
initial detector strings grows exponentially with the number of self strings, and the

-5-

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



Exploration of Computer Immune Systems Robert Berbeco

probability of detection increases exponentially with the number of independent
detection algorithms running in parallel on multiple systems [6].

The linear time detector generating algorithm attempts to address the
computational issue associate with the exhaustive detector generating algorithm;
has two phases; and runs in linear time with the respect to the size of input [6]. In
phase one, the algorithm counts the recurrence of a number of strings
unmatched by initial strings; and in phase two, enumeration is used by counting
the recurrences from picking detectors randomly in the set of candidate
detectors. By this method, the linear time detector generating algorithm filters the
detector set down to be more specific. When compared to the exhaustive
detector, it is much more computationally efficient as it is running in linear time to
size of the self set and the detector. The disadvantage of this algorithm is it
needs much larger space requirements than the exhaustive detector algorithm
for constructing the data sets; and if really long initial protected strings are used,
the time to create the data sets starts to increase exponentially [6].

The greedy detector generating algorithm tries to address the issues from
both of the above algorithms, and this algorithm achieves a better coverage of
the string space with the same number of detectors by not selecting the detectors
at random [6]. This algorithm has two phases: phase one — generate two arrays,
one for the self set and the second one for current state of detector set; phase
two — generate strings unmatched by the self set. During its execution, a running
count of the number of non-self strings can be retained that are still unmatched
by any detector; and this algorithm results in a much more compact detector set
and low failure probability than the above two algorithms, but it runs much slower
in real-time than the others [6].

Some factors must be taken into consideration before a determination can
be made of which of the above algorithms to use in detecting local system
changes. First, what is the level of security you need to achieve and maintain?
The number of strings that need to be checked against the detector set depends
on the answer to this question, and a balance has to be met between the level of
security and the degradation of performance of the system in achieving the
desired security level. Second, what is the frequency of checking you wish to use
and should it be intermittent or constant? Intermittent may not be acceptable if a
single occurrence of change can be fatal, whereas constant may involve too
many system resources to maintain. Third, do you want to implement a weighted,
distributed, and/or distributed independent detection type? With weighted, the
detectors are chosen more frequently based on previous performance or known
expected changes. Distributed will have the detector set split over a number of
autonomous agents with each completing anomaly checks in parallel. Distributed
independent will have each agent with a detector set generated independently
from all other agents. This is similar in concept to a population of bio-organisms
with separate immune systems [6].

-6 -
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



Exploration of Computer Immune Systems Robert Berbeco

Share the Information with Other Systems
Distributed Autonomous Agents

A Distributed Autonomous-Agent (DAA) Network-Intrusion Detection
System is a collection of autonomous agents running on the various hosts of a
heterogeneous network, and it provides the foundation for a complete solution to
the complexities of real-time detection [7]. These agents would monitor intrusive
activity on their individual hosts, can be configured specifically for the operating
system in which it runs, and would coordinate with one another to eliminate
intrusions and anomalies [7]. An agent would be installed on each network host
and each agent would be independent, but would communicate, cooperate, and
coordinate with one another when incoming events are detected. A proposed
DAA by Bassus et al uses alerts that can escalate depending on the level of
danger to the system and level of transferability to other systems; and these
escalating alerts can be passed to other agents so that those systems can take
appropriate measures to counteract the potential malicious event [7]. Within this
system, potential attacks can be classified as either misuse behavior or
anomalous behavior. Misuse behavior consists of attacks that can be defined or
ones that are known to exist. In order to determine whether an attack occurred,
the system could compare the behavior with the behavior of defined attack
patterns, and a match would indicate a possible attack [7]. Therefore misuse
examples would include denial of service, hack attempts, illegal logon attempts,
port scans, and other attacks where the pattern of attack can be defined. From
Kumar’s research [8], misuse can be further categorized as existence, regular
expression, or sequence; and intrusions can be represented by an event or
series of events. Anomalies consist of attacks involving a non-typical use of
system resources and are recognized by methods that develop profiles of normal
user’s behavior [7]. If a particular behavior reaches a pre-set threshold, the
behavior becomes anomalous. Kumar's research [8] suggest that these threshold
values could be determined by the activity intensity rate, audit record distribution
of activities, categorical distribution of activities, and ordinal measurable
activities. The following diagram [7 — Figure 3 in reference] represents the object
model of the agent design for this proposed DAA system:

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



Exploration of Computer Immune Systems Robert Berbeco

In the above system an agent will be installed on each host in the network.
This agent will be continually monitoring for potential misuse and anomalies, and
will send messages to other agents if a malicious event is detected. The
monitoring and notification process is achieved by the Communication Interface,
which represents the superclass for the Listener and Sender objects. The
Listener will listen for and receive all incoming messages from other agents, and
it processes them depending on the attack. The Sender sends messages to
other agents, which will be processed by that agent’s Listener. While the agent is
active on a particular system, the Misuse and Anomaly Detectors will be running.
The Misuse Detector is responsible for monitoring system resources and audit
files to find and identify potential security issues. If one is found, it will instantiate
a Misuse object to deal with the threat [7]. The Anomaly Detector is responsible
for monitoring system resources for out of the ordinary behavior. It will call the
Profile of an account or multiple accounts and compare this profile with a stored
Profile. If differences within the two profiles reach a pre-determined threshold, it
will instantiate an Anomaly object to deal with the threat [7]. The Profile
Generator is responsible for tracking and measuring system resources and audit
files, and then creating profiles that can be used by the Anomaly Detector to
detect potential malicious changes. The Current Profile is a profile for a pre-
determined period up to the current time, and the intent of the Current Profile is
to represent the most up-to-date profile of the system. The Stored Profile is used
for historical comparisons, and is periodically checked and merged with the
Current Profile to ensure that its data is fairly up-to-date. The Intrusion Attack
object is responsible for maintaining a database of attributes and methods of
intrusion types that have been detected by the agent. This data store can be
configured for a base level of attributes so each agent has a basic frame of
reference; then as new intrusions are detected they can be added. As this
Intrusion Attack object is updated on the local host, the agent is also responsible
for coordinating this information with other agents. This enables each agent in
the system to the most recent intrusion types available for reference.

Overall this architecture would have some advantages as it is
decentralized, distributed, and each agent in this system actively cooperates; yet
function independently of one another. Since this architecture is decentralized
and distributed it enables growth, there is no single point of failure in the system,
and is very flexible. If there is a need to have centralized administration this could
be added as a console which would communicate with agents through the
existing channels. Real-time response is enabled by the channels of
communication that are enabled between the agents. As new threats are
detected on one system other systems’ agents would become notified and would
enable these other systems to become “immune” to the threat.

Cfengine

Cfengine is an administrative tool created by Mark Burgess, Faculty of
Engineering, Oslo College, Norway, that can be used on BSD and System-5-like
UNIX operating systems and can be utilized through a TCP/IP network [9].

-8-
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



Exploration of Computer Immune Systems Robert Berbeco

Cfengine is meant to allow system administrators to create a single, central
system configuration which will define how every host, that has Cfengine
installed, on a network should be configured. A master configuration file will
define how each host will be configured, since the configuration of each host is
checked against this file, and then any deviations from the individual host
configurations will be fixed automatically.

Cfengine’s role in designing a basic level computer immune system is that
it is useful for automation; and as a reactor to examined situations on a system or
systems and performing the corrective action [10]. Cfengine also communicates
within its environment to maintain the distributed network of systems, and this is
an important method of converging individual behaviors of each Cfengine host
into one defined behavior across the network [10]. As a reactor, Cfengine
enables the ability to configure corrective actions for potential malicious actions.
For example, Cfengine can examine the state of a host system and execute an
administratively specified corrective algorithm. If Cfengine is configured to log the
changes it makes to the system due to the corrective algorithm, it can reanalyze
these changes in order to alter Cfengine’s program next time [11]. Cfengine also
allows for logging and storing the history of the system which can be used for
statistical analysis of machine behavior in order to provide feedback, and this
feedback can be used to determine threshold behavior for activating
countermeasures [11]. This strategy can be applied to system resources,
network collisions, and hacking attempts.

There are some advantages and disadvantages to using Cfengine as a
rudimentary computer immune system. Cfengine, in concept, is very similar to
Microsoft Windows 2000/2003 group policy implementation, and is very versatile.
Once the cfengine.conf file is created and Cfengine is designated to run as a
cron job; the policy on the system is self-maintaining and does not need to be
touched, unless the system administrator wishes to add something to it. Cfengine
also is good at performing repetitive administrative tasks like examining files,
creating files, aliasing files, replacing files, renaming files, editing files, changing
rights, and starting and stopping processes.

The biggest disadvantage that | could see to a potential use of Cfengine
as the basis of a computer immune system is it appears to lack a robust way of
pattern matching. Since pattern matching is needed for identification of self and
anomaly in a computer immune system, | think that this is a major shortfall to
using the system. The only pattern matching that seems to be possible currently
with Cfengine is by file attributes (like strings, dates, etc.). For this system to be
more useful as a potential computer immune system this shortfall will have to be
overcome. Another potential disadvantage is that Cfengine, like other systems
that require human configuration, is susceptible to human errors that may
potentially render the system useless if these errors are not caught when the
system is live.

-9-
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



Exploration of Computer Immune Systems Robert Berbeco

The biggest advantage to using Cfengine is that it currently appears to be
the only publicly and readily available basic level computer immune system
model. The system has been used and researched for about 5-6 years so there
is much known about the system and extensive amounts of documentation is
available. This system appears to be a good first step towards creating a
functioning computer immune system prototype.

Conclusion

The concept of a computer immune system is still a task that requires
more research and experimentation. Much of the current research that has been
completed is still fragmented amongst other related fields such as multi-agent
systems, artificial intelligence, and distributed administrative systems. What is
now required is to combine these individual concepts into an integrated and
autonomous end product.

Hopefully, in the near future computer immune systems will become
realized. As security becomes more of an issue and a priority for companies and
individuals; the creation and implementation of a computer immune system will
help to automate responses to malicious activities and with active learning
enable “immunity” across a network. It could execute in the background without a
central point of failure to detect and eliminate anomalies before they overrun a
system or network. This will free up the human individuals that are currently
spending much of their time to perform some of these repetitive actions to do
other required tasks. The computer immune system would become self-
sustaining over time. Since it appears that currently available basic computer
immune systems, such as Cfengine, still require human intervention during much
of their existence (initially and for updates), the realization of a true functioning
autonomous computer immune system will require more devotion, thought, and
research for the future.

-10 -
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



Exploration of Computer Immune Systems Robert Berbeco

References

[1] Forrest, S., Somayaji, A. Hofmeyr, S. “Principles of a Computer Immune
System.” Department of Computer Science, University of New Mexico, 1997.

[2] Warrender, C., Forrest, S., Pearlmutter, B. “Detecting Intrusions Using
System Calls: Alternative Data Models.” Department of Computer Science,
University of New Mexico, 1999.

[3] P. Helman and J. Bhangoo. “A statistically based system for prioritizing
information exploration under uncertainty.” IEEE Transactions on Systems, Man
and Cybernetics, Part A: Systems and Humans. July 1997 27(4): 449-466.

[4] L. R. Rabiner. “A tutorial on Hidden Markov Models and selected applications
in speech recognition.” Proceedings of the IEEE. 1989 77(2): 257-286.

[5] L. R. Rabiner and B. H. Juang. “An introduction to Hidden Markov Models.”
IEEE ASSP Magazine. January 1986 (1986): 4-16.

[6] M. Ayara, J. Timmis, R. de Lemos, L. de Castro and R. Duncan. “Negative
Selection: How to Generate Detectors.” ICARIS 2002. 2002. URL:
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-35/ayara-etal.pdf (2002)

[7] Barrus, J., Rowe, N. “A Distributed Autonomous-Agent Network-Intrusion
Detection and Response System.” Command and Control Research and
Technology Symposium, Monterey CA. June-July 1998. URL.:
http://www.cs.nps.navy.mil/people/faculty/rowe/barruspap.html (1998)

[8] Kumar, Sandeep. “Classification and Detection of Computer Intrusions.”
Department of Computer Sciences, Purdue University. Ph.D. Dissertation, 1995.
URL:
http://www.cs.plu.edu/pub/faculty/spillman/seniorprojarts/ids/classification.pdf
(1995)

[9] Burgess, Mark. “cfengine - Conceptual Basis.” Centre of Science and
Technology, Oslo College. URL: http://www.cfengine.org/cfdetails.html

[10] Burgess, Mark. “Computer Immune Systems.” Centre of Science and
Technology, Oslo College. 28 May 1998. URL:
http://www.iu.hio.no/~mark/research/immune/immune.html| (28 May 1998)

[11] Burgess, Mark. “Computer Immunology.” Proceedings of the 12th Systems
Administration Conference (LISA '98). 6-11 December 1998. URL:
http://www.usenix.org/publications/library/proceedings/lisa98/full_papers/burgess
[burgess _html/burgess.html (6-11 December 1998)

11 -
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



