GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

How to provide security for web service (SOAP)

By Wen Xue
Submit date: June26, 2004

SANS GIAC GSEC Practical Assignment Version 1.4B
Option 1

1
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Table of contents

Abstract

1. Web Service and Security challenge
1.1 What isweb service
1.2 Web Service technology
1.3 Web service security challenges

2. Solutions on network level
2.1 Crypto system
2.2 SSL
2.3 1PSec
2.4 Deficiencies of SSL and |PSec for web service

3. Solution at the Application level: Web Service Security-
SOAP Message Security (WSS:SMS)
3.1 WSS:SMS defines three main functions

3.2 Example walk-through
3.4 Drawback of WSS:SM'S

4. Practical recommendations
5. Conclusion
Reference

Acronyms

2
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Abstract

This article starts with an overview of web service (SOAP) and its security challenges.
One way to address those challenges is on the network level, i.e. to run web service
over SSL or IPSec. Another approach is to solve the issue on the application level. One
such effort is Web Service Security: SOAP Message Security (WSS:SMS) standard,
which is a security add-on to the SOAP standard.

This paper focuses on WSS:SMS. With an overview and a detailed example, this paper
will give the reader a good idea of how WSS:SMS resolves the security challenges, as
well as its capabilities and its processing rules. The paper also discusses each
solution’s advantages and disadvantages. Finally, a recommendation is given on how to
combine the technologies in order to provide the best result.

1. Web Service and Security challenge

1.1 What is web service

Web service can mean a lot of different things to different people. In this paper, a
definition from an article found on a Microsoft website is used:
We use "Web service" to describe application components whose functionality
and interfaces are exposed to potential users through the application of existing
and emerging Web technology standards including XML, SOAP, WSDL, and
HTTP. [1]
By this definition, web browsing is not web service because it requires people’s direct
interaction. Any services using Remote Method Invocation (RMI), Enterprise Java Bean
(EJB) or Common Object Request Broker Architecture (CORBA) are not web service.
On the other hand, if two servers from two businesses are exchanging information
automatically using SOAP, that is web service.

1.2 Web Service technology

Web Service is a suite of three major technologies, SOAP, WSDL and HTTP. A high
level overview of each is given in this section. Another good overview can be found in

2]

1.2.1 SOAP:

Simple Object Access Protocol (SOAP) is a lightweight protocol intended for
exchanging structured information in a decentralized, distributed environment. [3]
The SOAP standard defines three things:
« How messages should be constructed.
o A set of encoding rules that describe data types for an application to process
data.
« A convention for representing remote procedure calls and responses.

3
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

A SOAP message is an XML document that is enclosed in the SOAP <Envelope>.
Inside the <Envelope> there is an optional SOAP <Header>, and a mandatory SOAP
<Body>.

e« The <Header> is the place to add new elements to extend SOAP features. By
describing new functions in the <Header>, the two communicating parties can
understand each other in the distributed environment without any pre-agreement.

e The <Body> contains the actual request or response message.

Below is a simple SOAP message sample copied from the SOAP standard but slightly
modified for easy understanding. The SOAP body contains an alert message. The
header part contains priority and expiration information for the recipient to decide how it
should be processed.

<env:Envelope xmins:env="http://www.w3.0rg/2003/05/soap-envelope">
<env:Header>
<n:priority>1</n:priority>
<n:expires>2001-06-22T14:00:00-05:00</n:expires>
</env:Header>
<env:Body>
<m:alert xmIns:m="http://example.org/alert">
<m:msg>Pick up Mary at school at 2pm</m:msg>
</m:alert>
</env:Body>
</env:Envelope>*

1.2.2 WSDL

Web Service Description Language (WSDL)[4] is used as meta-data for SOAP. It
defines what a web service can do, where it resides, how it should be invoked, and the
structure and format of the SOAP message for a particular web service.

1.2.3 HTTP

Hypertext Transfer Protocol (HTTP) is the network protocol used to transfer SOAP
requests and responses between client and server. SOAP can potentially be carried by
a variety of other protocols, such as SMTP. However, HTTP is the only binding
transport protocol defined in the SOAP standard.

1.3 Web service security challenges
Web service faces all the security challenges that other Internet applications are facing.
Because of business involvement and the financial liability, some risks are more

significant than others. This paper only discusses network transport and transaction
related issues.

4
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

e Confidentiality: Unintended parties should not be able to understand the
message. Special care must be taken especially because of SOAP’s ASCII
format. Otherwise even an amateur hacker can sniff the message.

e Integrity: Web service works in a distributed environment. The message may be
received and forwarded on by an intermediary, who may not be completely
trusted. No one should be able to modify the message during the transfer without
being detected

e Authentication: We want to verify that the response is really originated from the
claimed sender.

e No-repudiation: The sender must not be able to deny that he ever sent the
message. This is one step above authentication. For example, if authentication is
based on a shared secret, the sender still has a chance to deny because the
receiver also has the ability to create the message using the shared secret. The
concept of no-repudiation is very important in the business world.

Authorization will not be discussed because it's not tightly coupled with web service,
and most businesses will choose their own implementation.

2. Solutions on network level

These security challenges can be partially solved by using existing network protocols,
such as SSL and IPSec to carry HTTP and SOAP. The protocol stacks are shown in

figure 1.
SOAP SOAP
HTTP HTTP
SSL or TCP
TCP IPSec
IP IP

Figure 1. Network protocol solution stack

Before we talk about the solutions, let’s briefly review the cryptosystem.

2.1 Crypto system

Based on the SANS Security Essential with CISSP CBK book [5], there are three

types of crypto algorithms.

e Secret key cryptosystem: A single key is used for both encryption and
decryption. It is also called symmetric key.

e Public key cryptosystem: Each key holder has a public key and a private key.
As its name implies, everyone can know the public key, but only the key holder
knows his own private key. There are three primary usages for the public key
cryptosystem.

5
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

o Encryption: If a message is encrypted by A’s public key, assuming only A
knows A’s private key, then A and only A can decrypt the message with
A’s private key.

o Authentication and non-repudiation: If a signature can be verified by A’s
public key upon a particular message, then it is A and it must be A that
signed the message using his private key

o0 Key exchange: By a series of mathematical calculations, A and B can
agree on a new key without ever transferring the key.

e Hashing: Hashing is a one-way mathematical calculation. From the same
message the hashing of the message always yields the same hashed value. Any
change in the message will yield a different result. The hashing calculation is
fast. But for the other direction, from the hashed value, it is extremely difficult to
derive/guess the original message. Hashing is usually used to check message
integrity. Sometimes the hashed value is called message digest.

2.2 SSL

The Secure Socket Layer (SSL) protocol runs above TCP/IP and under application
level protocols such as HTTP or IMAP. SSL-enabled servers and clients can
authenticate each other, and establish an encrypted connection to provide
confidentiality and integrity. [6]

The SSL protocol uses a public-key cryptosystem to authenticate each other and to
negotiate the symmetric key for later encryption. This is because symmetric key
encryption is much faster than public-key (asymmetric) encryption, but public-key
encryption provides better authentication. The major steps of SSL can be
summarized as follows:

1. Every SSL session begins with a handshake. The client and the server send
information to each other, such as SSL version, cipher setting, random data, etc.
Based on the information, the two sides agree upon a common setting for later
communication. Furthermore, the client and server should exchange their X.509
digital certificates.

2. The client and the server authenticate each other (or just authenticate in one
direction) by validating the other’s X.509 certificate.

3. By utilizing the public-key based key exchange algorithms and the results from
the handshake, the client and the server can negotiate a symmetric session key.
The key can be used to encrypt and to decrypt messages during later
communication. Because the key is never transferred across the network, only
the client and the server know this session key and can understand the data.

4. Now the client and the server can start to transfer data with confidence that they
are sending and receiving data to and from the right party. Nobody else can
understand the data. Nobody can tamper with the data.

2.3 IPSec

IP Security (IPSec) is actually a suite of protocols developed by the IETF. A good
quick overview can be found in [7]. The three most important protocols are:

6
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

e Authentication Header (AH): AH is mainly used for IP source authentication.
Every IP header contains a source IP address. Many firewalls use the source
IP as a criterion to admit or reject a packet. An attacker may modify his
source IP address to an allowed IP address in order to gain access. To
prevent this, the sender is required to calculate a hash value based on every
field in the IP header (except for the field that may change during the
transmission, such as TTL). The hash value is put into the AH header and
inserted between IP header and IP payload. The hash calculation uses a key
that is negotiated at the beginning of the communications. Only the parties
who passed the IKE authentication phase can negotiate the key and calculate
the correct hash value. Therefore any tampering with the IP header can be
detected.

e Encapsulated Security Payload (ESP): ESP offers authentication,
confidentiality and data integrity. The idea is similar to AH: Use negotiated
key to encrypt date, to calculate and verify the hash value. ESP doesn’t
specify the encryption algorithm, though DES3 is most commonly used.
Depending on the user's security requirements, this mechanism may be used
to encrypt either a transport-layer segment (e.g., TCP, UDP, ICMP, IGMP) or
an entire IP datagram.[8] Because of this, AH is not often used anymore
because ESP does everything AH does and more.

e Internet Key Exchange (IKE) is the protocol used to negotiate the session
details that can be used by AH and ESP. In IKE version 1, the negotiation
includes two steps. This first step is to build an authenticated and secure
connection to protect further conversation. The second step is to negotiate all
the details for AH and ESP to happen. IKE version 2 use new procedures.
However, it is not widely implemented yet.

2.4 Deficiencies of SSL and IPSec for web service

From the above discussion we can see that SSL and IPSec can provide good
authentication, confidentiality and message integrity. However, for web service, they
have some deficiencies, as discussed in this section.

2.4.1 SSL and IPSec only provide point-to-point security, not end-to-end
security.

In this paper, the point-to-point communication is defined in IP layer, particularly the
communication from source IP to destination IP. It is not considered end-to-end even
there are gateways, routes and firewalls in the communicating path.

On the other hand, when the communication is beyond the IP layer, it is end-to-end.
For example, a communication between a web client and a web server via a proxy is
end-to-end, because the proxy server will unpack the IP packets and exam packets
in HTTP level. Or if packets arrives at the destination and printed out and put on the
manger’s desk, that is end-to-end.

Based on the article found on a Microsoft website:[1]

7
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

When data is received and forwarded on by an intermediary beyond the transport
layer, both integrity of the data and any associated security information that is
transferred with the data may be lost. This forces any upstream message
processors to rely on the security evaluations made by previous intermediaries
and to completely trust their handling of the content of messages.

Security Cortext Security Context
I I
I I

| . I Web
Requester |a— = Intermediary |-4——= ,
Service

Figure 2 Point-to-point security

Security Contaxt

=

Web
Service

Requester |- | Intermediary |la—s=

Figure 3: End-to-end security

Above two diagrams are also copied from [1].

Figure 2 shows that IPSec and SSL can provide security for the point-to-point
communication. Figure 3 shows that IPSec and SSL may provide security for the end-
to-end communication only when they can completely trust all the intermediary points.

2.4.2 SSL and IPSec is not no-repudiation friendly.

For SSL and IPSec, the public key is only used during the initial negotiation. The
message payload is encrypted with a symmetric key, which is known to both the sender
and the receiver, so no-repudiation can not be provided by just checking an individual IP
packet. Furthermore, one SOAP message might be carried by multiple packets. It will
be quite hard to piece together all the packets to prove the non-repudiation.

3. Solution at the Application level: Web Service Security-SOAP
Message Security (WSS:SMS)

Web Service Security: SOAP Message Security (Shortened as WSS:SMS in this paper)
is a specification developed by the OASIS group (http://www.oasis-open.org). This
specification proposes a standard set of SOAP extensions that can be used when
building secure Web services to implement message content integrity and
confidentiality.

Based on the WSS:SMS standard[9], WSS:SMS itself doesn’t provide new technology
for security. Instead, WSS:SMS relies on existing mechanisms, such as PKI, Kerberos,
etc. WSS:SMS provides rules on how to use existing technology to process the original
SOAP message. WSS:SMS also provides syntax on how to embed the security

8
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

information in the message, such as signature, encryption result, etc. and how to
describe the process. If the sender follows the rules to process the original message
and put enough information on what he did, then without any pre-agreement, the
receiver knows how to proceed to decrypt or to verify the message.

3.1 WSS:SMS defines three main functions

3.1.1 How to pass security token.

The message sender may want to pass some credential, such as user name and
password, for authentication. He may also want to pass some secret key or public-key
so the receiver can decrypt the message and verify the signature. WSS:SMS uses the
term “security token” to represent all security-related information that can be applied to
the message.

e A security token itself can be signed. That means the token issuer (not the token
owner) should sign the token with his private key and attach the signature to the
security token. Then everyone who knows the issuer’s public-key can verify that
the token is indeed issued by that issuer. X.509 digital certificate and Kerberos
ticket are two examples of signed security tokens.

e A security token can also be unsigned including things such as username and
password. However, username/password is weak by nature, and a password can
not be used to sign or to encrypt messages. So in general, username and
password are not recommended for web service without special care. In this
article we will only discuss signed security tokens.

WSS:SMS provides the methods and syntax to carry security token within a SOAP
message.

3.1.2 How to provide authentication and message integrity

WSS:SMS provides the format and syntax for a sender to specify which part of the
message he wants to sign, which security token and what signature algorithm he will
use, etc. So when the receiver sees the message, he will know how to verify the
message by just looking into the message.

3.1.3 How to encrypt the message

The WSS:SMS specification allows encryption of any combination of body blocks,
header blocks, any of these sub-structures, and attachments. The encryption is done by
using either a symmetric key that is shared by the sender and the receiver, or by using
a new symmetric key carried in the message, which itself is encrypted with the
receiver’s public key.

These three mechanisms can be used independently, e.g., only to pass username and
password for authentication. Or in a combined manner, e.g., to pass signed security
tokens, and use the tokens to sign and to encrypt the messages.

9
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3.2 Example walk-through

As we discussed before, new elements can be added to a SOAP <Header> block in
order to provide new features. <Security> and many of its sub elements are the
elements introduced by WSS:SMS to add security features. With special rules and
syntax, these elements can be used to pass security tokens, to describe algorithms, to
attach a signature, or to encrypt a message.

Elaborating on the details of the WSS:SMS format and syntax can be tedious. Instead,
this paper will introduce the idea by walking the readers through a scenario:

Two companies, A and B, are doing business on the Internet. A provides the web
service. B uses the service. Every request and response should be authenticated.
Every request and response will be archived in case of future disputes. The
communicating companies don’t want any other party to be able to understand the
messages being passed.

The approach can be like this:

e Every message should be signed with the sender’s private key. Sender should
pass his public key to the receiver for signature verification.

e Every message should be encrypted with a symmetric key. To be more secure,
the two parties should not use a pre-shared symmetric key. Instead, the sender
should pass the symmetric key within the message in a secure manner.

Stepl. A and B get their public-key based security token, such as X.509 digital
certificate.

The certificate should be issued by a Certificate Authority (CA) that both A and B can
trust. The CA can be a third party, such as VeriSign, Entrust, etc. Or in this case it can
be A itself, because B must trust A, and A of course trusts itself. The distribution of
certificate is a complicated issue and is beyond the scope of this paper.

The X.509 digital certificate[10] contains the owner’s name, owner’s pubic key and
validation date, etc. It also contains the issuer (CA)’'s name and a signature. The
signature was calculated based on the certificate contents and CA’s private-key. The
CA’s public key should be well accessible so people can easily verify that the certificate
is indeed issued by that CA.

The public key inside the certificate is meant to be seen by everyone. But the private
key, on the other hand, must be kept secret and secure.

Once A and B get the digital certificates, they can use them many times until the
certificates expire or are revoked by the CA.

On the B side

Step 2: B creates a SOAP request as usual.

One simple SOAP example was provided in section 1.2.1.

Step 3: B presents the security token, i.e. X.509 in the <Security> element inside
the SOAP header.

10
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

This can be done in several ways [11]:

e The X.509 can be split up and each of its attributes can be put into different
elements.

e |t can be carried as binary data. This is the recommended way to present all
signed security keys, including X.509 and Kerberos keys.

e It can be referred to as a URL. A should be able to access that URL to fetch the
certificate.

o If the X.509 certificate is issued by A, then B can refer to it with A’s name and the
certificate serial number. A should know how to fetch the X.509 from its own
network.

Step 4. B chooses the target element to sign.

WSS:SMS provides the flexibility for the sender to only sign the elements that he
considers important. The target can be the whole message, a single element, or
multiple elements. If there is any ambiguity, the element(s) must be tagged and referred
to with a unique ID.

The specification allows multiple signatures and certificates to be attached to a single
message. The targets to be signed can be from different parts of the message, or can
be overlapping. This is very important for distributed applications that have messages
flow through multiple processing stages. For example, a company’s purchasing
department may create the purchasing request, sign the OrderID and attach the
signature. Next, the accounting department may add a BillingID in the request and sign
the OrderID and BillingID together again, and attach the second signature to the
message. In this way both departments can be held accountable.

Step 5. B canonicalizes and transforms the SOAP message.

To canonicalize and transform SOAP message is due to the fact that a SOAP message
is ASCII based. Two SOAP messages many have the same business logic, but have
some textual difference, such as an extra space between the first name and the last
name. Even when the two messages are exactly the same, different XML parsers may
handle line delimiters in different ways when trying to serialize and de-serialize an XML
data structure. If the algorithm that is used to verify the digital signature runs against a
slightly different serialized version of the data, the result will fail, although logically the
verification should pass. Therefore the SOAP message should be canonicalized and
transformed first to reach a consistent binary representation before the message can be
digested and signed.[12]

B should specify what canonicalization and transformation algorithm he will use. Two
examples of recommended algorithms are Exclusive XML Canonicalization (URL.:
http://www.w3.0rg/2001/10/xml-exc-c14n#) and SOAP Message Normalization
(URL:http://www.w3.0rg/TR/2003/NOTE-s0ap12-n11n-20030328)).

Step 6. B calculates the message digest value based on canonicalization and
transformation result.

Digesting is one-way hashing calculation. The digest result is usually short, e.g. MD5’s
result is 128 bits, and SHA'’s result is 160 bits. The reason for doing digesting will be
explained in next paragraph.

11
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Step 7. B calculates the signature based on the digest result.

B can use his private key to sign the digest result. The reason for signing on the digest
value, not on the original SOAP message, is that the SOAP message can be quite long.
The process of applying the sender’s private key and cryptography algorithm to sign the
full message could significantly impact the performance of Web service. On the other
hand, since the digest value is short and unique for that message, signing on the digest
result has the same effect as signing the original message, but significantly improves
the performance.

B must specify what signing algorithm and which security token were used.
The signature process and syntax must follow W3C XML signature standard. [13]

After the signing process, B can continue with the encryption process.

Step 8. B chooses data items to encrypt.

WSS:SMS provides the flexibility for the sender to encrypt only the content that he
wants to encrypt. It can be elements, the contents of elements or any arbitrary data.

Step 9. B passes the encryption key.

WSS:SMS specifies that the encryption key must be symmetric. The sender and
receiver may already share the key. In this case, only the key ID needs to be
transferred. In another option, the sender can generate a new secret symmetric key and
send the key along with the message. This new key must be encrypted with the
receiver’s public key in case a hacker sniffs the message.

Please don’t confuse the symmetric encryption key with the asymmetric public key: the
asymmetric public key is only used to encrypt the content of symmetric encryption key.

Step 10. B encrypts the target data and replaces the original data with the
encrypted result.

B must describe what encryption algorithm and encryption key were used. The
encryption process and syntax must follow the W3C encryption standard. [14]

Step 11. B sends the SOAP message to A over HTTP protocol.

Step 12. A processes the message.

When A receives the message, A should first try to decrypt the message and verify the
signature based on the descriptions inside the message. The sequence of decrypting
and verifying may vary. After this seemingly simple but indeed very complicated
process, A can process the message as normal.

Below is a real example of a signed and encrypted SOAP message. It is copied from
the WSS:SWS standard[9] but slightly modified for easier understanding.

1 <?xml version="1.0" encoding="utf-8"?>
2 <S:Envelope xmins:S="http://www.w3.0rg/2001/12/soap-envelope"

12
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3 xmins:ds="http://www.w3.0rg/2000/09/xmldsig#"
4 xmins:wsse="http://schemas.xmlsoap.org/ws/2002/04/secext
5 xmins:xenc="http://www.w3.0rg/2001/04/xmlenc#">

6 <S:Header>

7 <wsse:Security>

8 <wsse:BinarySecurityToken

9 ValueType="wsse:X509v3"

10 EncodingType="wsse:Base64Binary"

11 Id="X509Token">

12 MIIEZzCCA9CgAWIBAgIQEmMtIZcOrgrKh5i...

13 </wsse:BinarySecurityToken>
14 <xenc:EncryptedKey>

15 <xenc:EncryptionMethod Algorithm= "http://www.w3.0rg/2001/04/xmlenc#rsa-1_5"/>

16 <ds:Keylnfo>

17 <ds:KeyName>CN=Hiroshi Maruyama, C=JP</ds:KeyName>
18 </ds:KeylInfo>

19 <xenc:CipherData>

20 <xenc:CipherValue>d2FpbmdvbGRfEOIm4byVO...

21 </xenc:CipherValue>

22 </xenc:CipherData>

23 <xenc:ReferenceList>

24 <xenc:DataReference URI="#MsgBody"/>

25 </xenc:ReferenceList>

26 </xenc:EncryptedKey>
27 <ds:Signature>

28 <ds:Signedinfo>

29 <ds:CanonicalizationMethod Algorithm=

30 "http:/imww.w3.0rg/2001/10/xml-exc-c14n#"/>
31 <ds:SignatureMethod Algorithm=

32 "http://www.w3.0rg/2000/09/xmldsig#rsa-shal"/>
33 <ds:Reference URL="#MsgBody”>

34 <ds:Transform Algorithm=

35 "http://www.w3.0rg/2001/10/xml-exc-c14n#"/>
36 </ds:Transforms>

37 <ds:DigestMethod Igorithm="http://www.w3.0rg/2000/09/xmldsig#shal"/>
38 </ds:DigestMethod>

39 <ds:DigestValue>EULddytSol...</ds:DigestValue>
40 </ds:Reference>

41 </ds:Signedinfo>

42 <ds:SignatureValue>

43 BL8jdfTOEb1lI/vXcMZNNjPOV...

44 </ds:SignatureValue>

45 <ds:Keylnfo>

46 <wsse:SecurityTokenReference>

47 <wsse:Reference URI="#X509Token"/>

48 </wsse:SecurityTokenReference>

49 </ds:Keylnfo>

50 </ds:Signature>
51 </wsse:Security>
52 </S:Header>

53 <S:Body>

13
© SANS Institute 2004, As part of GIAC practical repository.

Author retains full rights.

54 <xenc:EncryptedData

55 Type=http://www.w3.0rg/2001/04/xmlenc#Element id="#MsgBody">
56 <xenc:EncryptionMethod

57 Algorithm="http://www.w3.0rg/2001/04/xmlenc#3des-cbc"/>

58 <xenc:CipherData>

69 <xenc:CipherValue>d2FpbmdvbGRfEOIm4byVO...

60 </xenc:CipherValue>

61 </xenc:CipherData>

62 </xenc:EncryptedData>

63 </S:Body>

In this example message:

Line 7~51 is the <Security> element added in the SOAP header.

Line 8~13 is a X.509 digital certificate in binary format.

Line 29~30 specifies the canonicalization method.

Line 31~32 specifies the signing method

Line 33 specifies the digesting and signing target. In this example it is the whole SOAP
body.

Line 34~36 specifies the transform method.

Line 37~39 specifies the digest method and the digest values.

Line 42~44 is the signature value.

Line 45~49 specifies what security token is used. In this example, it is the x.509
specified in line 8~13.

Line 15~26 are the encryption related information.

Line 16~18 specifies that the symmetric encryption key is encrypted by public key with
the ID of “CN=Hiroshi Maruyama, C=JP”.

Line 19~22 is the encrypted value of symmetric encryption key.

Line 23~25 specifies which part of the message will be encrypted. In this example it is
the whole SOAP body.

Line 56~57 specifies what symmetric encryption method is used.

Line 58~61 is the encryption result of the message body.

3.4 Drawback of WSS:SMS

WSS:SMS does solve the security challenges we discussed in the first section.
However, it still has some issues.

3.4.1. Lose readability when message is encrypted.

One big selling point of Web Service is the ASCII format and human readability. These
characteristics provide better compatibility and are very important for business-to-
business communication. But when the message is encrypted, the message becomes a
string of characters that can no longer be understood by humans. Did we just lose the
major benefit of web service?

3.4.2. Encryption can be the performance bottleneck.

As we discussed before, a cryptography algorithm is very computing expensive, even
with a symmetric key algorithm. When we sign the message, we sign the shorter digest

14
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

result, which is usually 128 bits or 160 bits and this saves a lot of calculation. But when
we deal with encryption, we have no choice but to do the calculation on the entire
message, which can be quite long. And by now the calculation can only be done in
software level. The encryption process may become a possible bottleneck for some web
services.

3.4.3 The standard and implementation are relatively untested.

WSS:SMS is a relatively new standard. Actually it just reached the “standard” level in
January 2004. WSS:SMS also relies on many XML standards, such as XML encryption
and XML signature, which are also relatively new. The inter-operability is a big issue.
The security of the standard and implementation need to be tested and proved in real
life usage.

4. Practical recommendations

So far we discussed two types of solutions: network protocol based solutions such as
using IPSec and SSL, and the application level solution: WSS:SMS. They all have their
own advantages and disadvantages. Some disadvantage comes with technology itself,
e.g. IPSec and SSL don’t support end-to-end security. Others can be improved given
more time: e.g. WSS:SMS’s implementation will be improved by fixing bugs.
WSS:SMS encryption may no longer be the bottleneck when CPU speeds increase.

So in the current situation, what should businesses do to provide web service in a
cheap, fast and secure manner? In next section, | will give some practical
recommendations.

4.1. Always use WSS:SMS to sign the message. Only sign once, and
sign the whole message.
IPSec and SSL can provide authentication, confidentiality and integrity, but not

repudiation. WSS:SMS can do a good job in all the areas, and can do it pretty efficiently
because it signs on the digest result.

Theoretically, you can sign multiple parts of the message. The business reason was
discussed in section 3.2, step 4. But when you put that theory into practice, it causes
lots of unnecessary complexity for development and testing. Do you want to spend a lot
of time on trouble-shooting? Can you trust the security of the implementation when
dealing with such a high level of complexity? Unless your business really needs it, try to
avoid it and use simpler mechanism. The deployment will be much faster and the
service will be more reliable.

4.2. Always use X.509 digital certificate. Always attach the certificate
in the binary form.

Though WSS:SMS allows any security token, X.509 is the best choice. X.509 and its
related technology are mature, well understood, widely deployed, and proven to be

15
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

secure. Because of this, OASIS provides a separate specification [11] just to describe
the inter working between X5.09 and WSS:SMS.

X.509 can be represented in the message in several ways. It is recommended to embed
X.509 as a binary string. This is a straightforward and the most secure method for the
sender and the receiver. Other methods require more steps to access the certificate,
therefore are exposed to more risks. e.g., if X.509 is referenced by a URL, then what if
the server hosting the URL is down? Even worse, what if that server is hacked?

4.3. If only point-to-point confidentiality is needed, don’t use
WSS:SMS encryption feature. Use SSL or IPSec.

Many web services are between two businesses across the Internet. These businesses
are happy as long as the messages are secure between two business’ networks. In this
point-to-point situation, SSL or IPSec is a much better choice than WSS:SMS
encryption.
e SSL and IPSec standards and implementation are more mature and proved to be
secure. Different vendor’s implementations are more compatible than WSS:SMS.
e SSL and IPSec are integrated into most firewalls and servers, thus the
deployments are cheaper.
e There are many hardware level implementations of SSL and IPSec. They are
much faster than the software implementation.
e Application developers don’t need to worry about encryption. The development
time can be drastically reduced
To use HTTP over SSL (HTTPS) is very common. Another popular solution is to set
up IPSec VPN or SSL VPN. The detail of the deployment is beyond the scope of this
paper.

4.4. If end-to-end confidentiality is indeed needed, use WSS:SMS to
encrypt the whole message.

If you have to use the WSS:SMS encryption feature, try to encrypt the whole message.
This is the easiest for processing. This may save you a lot of time, and still provides
what you need.

4.5 As a general rule, the simpler, the better

You can do it, doesn’t mean that you should do it. Consider your requirements carefully,
and use the simplest feature that can satisfy your requirements.

5. Conclusion

Doing web service with the SOAP protocol on the Internet faces many security
challenges. Using network level protocols, such as SSL and IPSec, can address some
of the challenges, but with some deficiencies.

WSS:SMS is a new specification that is intended to address all the web service security
issues on the application level, without depending on underlying network protocols. This

16
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

paper gives an introduction to this new specification. Also by walking through an
example, | hope to give the readers a good sense of WSS:SMS’s usage and capability,
as well as its drawbacks.

There is no single perfect solution. So | give my practical recommendations on how to
provide web service security in the current situation: Use the WSS:SMS signature
feature to provide message integrity, authentication and non-repudiation. Use X.509
whenever possible. Try to use IPSec or SSL to provide confidentiality. In general, try to
use the simple features of WSS:SMS.

Reference

[1] Microsoft. Security in a Web Services World: A Proposed Architecture and
Roadmap. April 7, 2002 URL:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnwssecur/html/securitywhitepaper.asp

[2] Aphrodite Tsalgatidou , Thomi Pilioura, An Overview of Standards and Related
Technology in Web Services, December 2002, URL.:
http://www.infosys.tuwien.ac.at/Teaching/Courses/IntAppl/Papers/AnOverviewOfStanda
rdsAndRelatedTechnologylnWebServices.pdf

[3] SOAP standard group, W3C. SOAP Version 1.2 Part 1: Messaging Framework June
2003.URL: http://www.w3.0rg/TR/soap12-partl/

[4] W3C, Web Services Description Language (WSDL) 1.1, March 15, 2001. URL.:
http://www.w3.org/TR/wsdl

[5] Eric Cole, Jason Fossen, Stephen Northcutt, Hal Pomeranz. SANS Security
Essential with CISSP CBK, Version 2.1, 2003, page 912

[6] Anonymous. Introduction to SSL. URL.:
http://developer.netscape.com/docs/manuals/security/sslin/contents.htm

[7] Anita Karve. IP Security: Security extensions to IP bring authentication and privacy
to the Internet. 02/01/1998 URL.:
http://www.networkmagazine.com/article/NMG20000711S0001

[8] Anonymous, Copyright Javvin Company, IPsec ESP: IP Encapsulating Security
Payload. URL.: http://www.javvin.com/protocolESP.html

17
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

[9] OASIS standard group. Web Services Security: SOAP Message Security 1.0
Tuesday, 17 February 2004 URL: http://www.0asis-
open.org/committees/download.php/5531/0asis-200401-wss-soap-message-security-

1.0.pdf

[10] R. Housley, W. Ford, W. Polk, D. Solo, RFC 2495, Internet X.509 Public Key
Infrastructure Certificate and CRL Profile January 1999 URL.:
http://www.ietf.org/rfc/rfc2459.txt

[11'1 OASIS standard group. Web Service Security X509 Certificate Token Profile, May
19" 2003, URL: http://www.0asis-open.org/committees/download.php/2131/WSS-

X509-04.pdf

[12] Bilal Siddiqui, XML Canonicalization, September 18, 2002, URL:
http://webservices.xml.com/pub/a/ws/2002/09/18/c14n.html

[13] W3C Recommendation, XML Signature Syntax and Processing-12, February 2002.
URL.: http:// http://www.w3.0rg/TR/xmldsig-core/

[14] W3C recommendation. XML Encryption Syntax and Processing, December 10,
2002. URL: http://www.w3.0rg/TR/2002/REC-xmlenc-core-20021210/

Acronyms
AH: Authentication Header
CA: Certificate Authority
ESP: Encapsulated Security Payload
HTTP: Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol - Secure
IKE: Internet Key Exchange
IMAP: Internet Message Access Protocol
IPSec: IP Security protocol
MD5: Message Digest Algorithm #5
OASIS: Organization for the Advancement of Structured Information Standards
SHA: Secure Hash Algorithm
SOAP: Simple Object Access Protocol
SSL.: Secure Sockets Layer
TTL: Time to live
URL: Uniform Resource Locator

18

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

W23C: World Wide Web Consortium

WSDL.: Web Service Description Language
WSS:SMS: Web Service Security: SOAP Message Security
XML: eXtensible Markup Language

19

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

