
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
1

A Centralized Logging and Alerting Solution
Using Logwatcher/Logcatcher and Swatch

SANS GIAC Security Essential Certification
Practical Assignment

Version 1.4b –Option 2
06 July 2004

Daniel J. Wittig

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
2

Abstract

You have just completed a long project and spent a lot of time and money implementing
reasonable security controls to appropriately protect the company GIAC Enterprise
Resource Planning (ERP) system. You have spent your time in the trenches and have
gone through the complete development process from initial concept through design
and construction to user acceptance testing and then finally implementation and rollout.
Now you start your next phase of the project, but it turns out that the project was over
budget and all outside development or purchases are on hold until first quarter of the
next fiscal year. To make matters worse, change management is non-existent at best.
This paints a pretty grim picture for the Security Engineer responsible to design,
develop and implement a logging and alerting solution for the GIAC ERP System that
was just rolled out. This is not an uncommon scenario for many security departments.
Many Project Managers seem to overlook the ongoing management of the system and
focus all attention on rolling out the solution to the business owners and end users on
time.

Basically, your Security Director just tasked you to develop a logging and alerting
strategy within a couple months, but with a very limited budget and without
outside/contractor development resources.

This practical will illustrate our teams approach to implementing a reasonable logging
and alerting solution with freely available open source software. We decided to
concentrate on two freely available and open source products. The first tool,
Logwatcher/Logcatcher, was developed by Luke Kanies and provides ease of log
management and improved integrity of the logs through centralized logging. The
second tool, Swatch monitoring and alerting tool developed by Todd Atkins provides
real time alerting and notification of significant events that may indicate possible abuse
or misuse of the system. Both of these functions, centralized logging and alerting, are
critical aspects of a layered defensive posture to monitor the current security state of the
Company’s ERP system. The solution presented is not meant to be a complete solution,
but it is a solution that can be implemented quickly and with limited resources. It is also
a solution that can be built upon as additional resources, time and money, become
available.

1. Pre-existing Scenario

After reviewing the current operating environment it became apparent that the
management of the logs and the data generated by system, network, application, and
user activities was inadequate at best. System administrators were randomly deleting
system logs, application logs were unreliable due to file permissions and administrators
were too busy with basic system administrative tasks to review the logs. We performed
a risk assessment of the current operating environment to determine the extent of our
problems. The following risks were noted as result.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
3

 Application log files are currently set to a permissions level that makes it
impossible to guarantee the integrity of the logs and to prevent or detect
unauthorized disclosure, deletion or access.

 System administrators are randomly deleting the logs as disk space nears
capacity. The deletion of the logs makes subsequent review, analysis and
problem resolution impossible. Therefore, it will not be possible to detect
actual or attempted inappropriate access for inquiry or modification of
application data or system configuration.

 No procedures/processes exist to review system-created audit logs for
possible system compromise. Unauthorized abuse or misuse could go
undetected or unaccounted because administrators or security personnel
were not routinely reviewing the logs.

 The security team was not being notified of system events or changes to
configuration that adversely impact the securitystate of the Company’s ERP
System. The following are an example of the events or changes:

o Application security disabled without security team approval.
o New security programs migrated to production environment before

security/code review with without security team approval.
o Unauthorized file permission changes.
o Changes to security configuration outside normal change control process.
o Unauthorized migration to production of security authorization changes.

Logging is only one aspect of a layered defensive posture, which begins with the
establishment of appropriate and effective security policies, but it’s probably the most
overlooked.

2. The Plan

Now that we understand the risks, our next task was to attack the problem and develop
a solution that we could implement within two months, without a budget and limited
developer resources. We met as a team to discuss the current scenario and decided to
focus on journaling the logs to a remote server and automating the review and alerting
process. Furthermore, Because of the limited budget and resources, we knew we
knew that we had to look to freely available open source software.

3. Our Objectives

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
4

The next step was to set the objectives of what we wanted to accomplish. We came up
to two main objectives.

 The integrity, trust and supportability of the system and application logs will be
greatly enhanced if logs are journaled to a secure server interactively. The
journaling of the log files to a secure server interactively will protect the log files
from being accessed, modified, or deleted by authorized or unauthorized users.
Furthermore, remote journaling will help mitigate disk space issues that may
occur during heavy utilization.

 Active real time monitoring tools should be configured to actively monitor system
logs to detect suspicious or abnormal activity or events while they are occurring.
Teams with key roles in responding to events need to be notified whenever there
are indications that something suspicious, unusual or abnormal is occurring or
has occurred. Teams within the organization cannot execute their
responsibilities if they are not notified in a timely manner that an event is
occurring or has occurred. As a result, the ERP System and the data may suffer
greater damage (loss of confidentiality, integrity, availability) than if all those who
needed to be involved had been informed in a timely manner.

4. The Approach

The steps we took to implement to solution are divided into three tasks. The first task
was to identify the type of data or the logs we want to collect. The next step was to
install and configuration of logwatcher and logcatcher to journal the collected data to the
secure central logging server. The final step was to configure Swatch to automatically
notify the appropriate teams upon detection of matched patterns or configured events.

4.1 Identify the Data to Collect

Before we discuss the technical details of tool we will use to collect and journal the logs,
we need to identify the data we want to collect. The main issue with collection of data is
that it is not too difficult to enable logging mechanisms to collect the data, but rather that
it’s altogether too easy to collect an overwhelming amount of it. It is commonly
acknowledged that it is important to log as much information as possible because it
makes it more difficult or an attacker to hide all of the evidence, but the collection of a
large amount of data places considerable strain on processing and storage facilities.
Furthermore, a considerable amount of time must be spent, either manually, or aided by
tools, sifting through the logs to detect suspicious or abnormal events. Therefore, It is a
balancing act between logging too much, and not being able to manage the collected
data, and logging too little to be able to ascertain whether indeed an abuse or misuse of
the system occurred. Our decision on how much data to collect on the remote server

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
5

was not based on the time spent sifting through the logs, but the fact we had limited disk
space to actually store the logs as well as shortage of manpower resources to manage
the data.

The following table identifies the type of data collected in the location of the information
i.e. log files. The data in the logs identified in the following table is the data required to
determine abnormal or out of tolerance conditions or system events that have occurred.
We decided against journaling binary log files because the issues of converting to plain
text. However, there are tools available to convert binary logs, but our focus for this
project was text files only.

Types of Data Location
The use of the switch user (SU) command /var/adm/sulog

Users last login information /etc/security/lastlog

Super user (SUDO) logging information. Logs users
use of SUDO to run command as root.

/var/log/sudolog

System activity information /var/log/messages

Apache diagnostic information and records of errors
encountered in processing requests

/var/log/http/error_log

User requests processed Apache. /var/log/http/access_log

Messages from the ERP application server. The
following types of data:
 Version of the server
 Who started or stopped the server, and when
 Timestamp error messages
 CPU statistics
 Processing statistics

$GIACDIR/sytem/latm.log

Messages from the ERP batch server. The following
types of data
 Version of the job server
 Who started the server, and when
 Who stopped the server
 Parameter settings
 Processing statistics

$GIACDIR/sytem/lajs.log

Log changes to the security status (security on or off) $GIACDIR/system/sec.log

Log the use of dump and load programs which is run, by
whom, and when. Also log information about security
on creation, for example, when a user creates a new
product line, system code, or form ID, and when access
to that object is added to the user's security class.

$GIACDIR/system/secadmin.log.

Log failed attempts to access environment categories or
forms.

$GIACDIR/system/secvio.log.

Figure 1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
6

4.2 Task 2–Journal the logs to the remote server.

Collecting and journaling logs on a remote server not only provide ease of log
management but also provides for improved integrity of the logs. The integrity and
maintenance of the logs is critical to the Security Team’s ability to monitor the current
operating environment of the ERP Systems. Logwatcher/Logcatcher developed by
Luke Kanies is application we used to facilitate the remote collection of the systems logs
in a centralized location. The two components of the application are Logwatcher and
Logcatcher. The Logwatcher daemon runs on the loghost and “watches” for logging
activity and then transfers that captured data to the remote server via Logcatcher.
Logcatcher resides on the remote server and “catches” the log data forwarded by the
Logwatcher to the remote centralized logging server.

Logwatcher residing on the loghost performs the following functions:

 Watches–Watches the log files specified in the logwatcher configuration file
(/usr/local/etc/logwatcher.cfg)

 Collects–Captures the log data
 Connects–Initiates a connection with the remote server
 Transfers–Journals, in real time, the captured data to the remote server

Logcatcher resides on the remote server and performs the following:

 Listens–Listens on port 2000 for connection initiated by logwatcher
 Writes–Writes all logging data transferred to a centralized dump file–

/var/log/logcatcher.dump
 Organizes–Writes logging data to /log directory in addition to the dump file, but

in a more organized fashion.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
7

A graphical representation of Logwatcher/Logcatcher is shown below.

Figure 2

4.2.1 Installation

Our System Administration team completed the installation of Logwatcher/Logcatcher.
Therefore, this practical does not discuss that actual installation of the application. The
installation consisted of downloading the Logwatcher/Logcatcher program forwarded by
the developer and installing it in the right directory. We will discuss the actual
configuration of the application, the startup process, and the organization of the data on
the remote centralized logging server.

4.2.2 Logwatcher configuration

The logwatcher configuration file is located in /usr/local/etc/logwatcher.cfg. This is
where you tell logwatcher what log files to “watch”. The log files are listed under the
specified group within the configuration file. This is the only file we had to update after
the System Administrator completed the installation of Logwatcher/Logcatcher. We
added the log files identified in figure 1 of this document to the specified groups. AIX

Loghost
Servers

Remote Server
Centralized Logging Server

Logwatch
er

Daemon

Logcatch
er

Daemon

System and
application logs
(logs are identified in
figure 1 document)

/log directory
system logs

/log
dump file

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
8

logs where added to the aix group, Apache logs where added to the http group, and
ERP logs were added to the env group. Logwatcher is very flexible, because it allows
you to make as many groups as you want in the configuration file and then just load
them in logwatcher

Logwatcher configuration file

this is just used for defining which groups to parse
you can find out more about this config file format by
running 'perldoc Config::IniFiles' and you can find out more
about the details of the log file itself by running
'perldoc /usr/local/scripts/logging/logwatcher'

$Id: logwatcher.cfg,v 1.5 2004/03/31 19:19:18 wzd4845 Exp $

all aix logs to watch
these are opened by adding '--group aix' to the command
[aix]
Logfiles=<<EOT
/var/adm/sulog
/etc/security/failedlogin
/etc/security/lastlog
/var/log/sudolog
/var/log/messages
/var/log/Cfengine
EOT

http logs
these are opened by adding '--group http' to the command
[http]
Logfiles=<<EOT
/var/log/HTTP/error_log
/var/log/HTTP/access_log
EOT

erp-specific logs
#[erp]
#Logfiles=/this/log/does/not/exist

per-environment erp logs
these logs are opened in every environment specified to logwatcher, and
to open these you must specify an erp environment with '--env <environment>'
[erpenvlogs]
ERPlogfiles=<<EOT

These are the AIX logs we
journaled to the remote
server

These are the Apache logs
we journaled to the remote
server

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
9

${GIACDIR}/system/latm.log
${ GIACDIR}/system/lajs.log
${ GIACDIR}/system/secadmin.log
${ GIACDIR}/system/secvio.log
${ GIACDIR}/system/sec.log
EOT

4.2.3 Starting Logwatcher

Starting Logwatcher on the loghost is very simple. You just execute the script
downloaded by the administrators and specify the groups you want to watch and the
server you want to journal the logs to. You specify the groups with --group and the
server you want to write to with --server.

Example /usr/local/scripts/logging/logwatcher --group aix --group http --server
my_remote_server

In the example above we are watching the logs in the aix and http groups
specified in our configuration file (/usr/local/etc/logwatcher.cfg) and journaling
them to the server my_romote_server.

Logwatcher will read the logwatcher configuration file to determine which logs are in the
aix and http groups, watch for activity in those logs, and then write the logs entries in
real time to my_remote_server.

Note: Logwatcher cannot write logs to a remote server unless Logcatcher is
running on that server. Logwatcher will not be able to initiate the connection if
this is the case.

4.2.4 Logwatcher Process

Logwatcher should start one process after the script is executed. Check to make sure
the process started correctly by executing the command ps -ef.

ps–ef|grep logwatcher results:

root 909460 1 3 Jul 03 - 48:36 perl /usr/local/scripts/logging/logwatcher
--group aix --group http --server my_remote_server

4.2.5 Logcatcher Configuration

Logcatcher is a simple POE event passer. It listens on one port and passes all events
to another port. The only configuration task with Logcatcher was to review of the default

These are the ERP
application logs we
journaled to the remote
server

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
10

options to determine if they would work in our environment. The following are the
default values:

logfile
Where to write the log messages. Defaults to
/var/log/logcatcher.log.

ports
The port on which to listen for connections. Defaults
to 2000.

stats
How often to print a statistics message to the log file.
Defaults to every minute.

store
Where to store the logs. Defaults to
/var/tmp/logcatcher.

After a review of the default configuration, we decided to change only the storage
location of the logs.

We changed the following in /usr/local/scripts/logcatcher

 Storage location changed to /log
o $store ||= '/log';

We kept the defaults for the following in /usr/local/scripts/logcatcher

 $port ||= 2000;
 $stats ||= 5;
 $logfile ||= "/var/log/logcatcher.log";

4.2.6 Starting Logcatcher

One of the major selling points of Logcatcher was the option to “dump” all data received
from Logwatcher to a central file. Also, if you remove the file Logcatcher is writing to, it
will immediately reopen the file. We saw an opportunity with Swatch to monitor the
dump file containing all logging data from all hosts writing to the remote logging server.
We discuss this further down in the practical.

Start Logcatcher by executing the script downloaded by the administrators and specify
the location of the “dump” file. You specify the “dump” file with a --dump.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
11

Example /usr/local/scripts/logging/logcatcher --dump /log/logcatcher.dump

In the example above, Logwatcher will “catch” all data forwarded by Logwatcher
and write it to two locations

1. It will write the data to the default store location–/log
2. It will also write the data to wherever you specified with the --dump variable–

/log/logcatcher.dump

Caution– Keep in mind that all data is being written to the “dump” file. Make sure you
have the storage capacity or disk space to support this. This is critical in our solution
because Swatch monitors the “dump” fileand Logcatcher will fail to write to the file if it
reaches space capacity. What does this mean? No alerts!

4.2.7 Logcatcher Process

Logcatcher should start one process after the script is executed. Check to make sure
the process started correctly by executing the command ps -ef.

ps–ef|grep logcatcher should indicate:

root 6184986 1 3 00:03:13 - 2:22 perl -w
/usr/local/scripts/logging/logcatcher --dump /log/logcatcher.dump

4.2.8 Log storage and organization

Logcatcher not only writes to the dump file, but also writes to the location specified in
“store” variable of the Logcatcher script, but in a more organized fashion. A
subdirectory is created for each loghost journaling logs to the remote centralized logging
server.

The following is an example of the directory structure of the directory specified in the
“store” option of Logcatcher program.

 /log–all log data is stored in /log
 /log/loghost–each loghost writing to the remote centralized server has a

directory
 /log/loghost/log_name–every individual log for the loghost has a directory

(example - /var/log/messages from myloghost)
 /log/loghost/log_name/year–Logs are organized by year
 /log/loghost/logname/year/month–logs are further organized by month
 /log/loghost/logname/year/month/day–final location of the actual data is the day

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
12

Example–You are looking for the sudo logs from June 17th, 2004 logs on remote
centralized logging server from server na123abc

The path on the remote centralized logging server would be - /log/na123abc/
var__log__sudolog/2004/6/17

 UNIX command - cd /log/na123abc/ var__log__sudolog/2004/6/17
 UNIX command - more 17

We are not monitoring these files with Swatch, but they have been very useful for
problem resolution.

4.3 Automated monitoring, detection and alerting

The monitoring of the data collected and the detection of certain events was a major
concern of the Security Team as well as the System Administrators. Both these teams
have the assigned responsibility to act upon notification or detection of certain events,
but neither team had the resources to sift through the vast amount of data for signs of
suspicious or abnormal activity.

We automated the sifting though that vast amount of data by implementing Swatch on
the remote logging centralized logging server. Swatch is a simple program written in
the Perl programming language that is designed to monitor log files. Swatch allows us
to automatically scan the log files collected on the remote centralized logging server by
Logcatcher. Swatch will search for particular entries or patterns and then take
appropriate action, such as sending an alert email or alert. Additionally, Swatch is
widely used, is relatively simple to implement, and is freely available open source
software.

One of the features of Logcatcher is that it was developed with a --dump=<file>
function. The means that Logcatcher writes all data collected from Logwatcher to a
dump file as well as individual files based on hostname and log. We configured Swatch
to monitor the dump file and send alerts based on the configuration file or filter
developed by the Security team. By configuring Swatch to monitor the dump file, we
search for patterns in all logs from all hosts journaling logs to the Centralized Logging
Server.

There are three components of Swatch. The first component is the swatch tool itself
written in the Perl programming language. The second component is the startup or
command line options developed by the Security team. The startup script for the most
part defines the logs to be monitored, the mode of operation and the configuration file
containing filter or pattern we are monitoring. The third component is configuration file or

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
13

filter developed by the Security team. The configuration file contains the patterns to
look for and the actions to perform when a specific pattern is found.

The preceding sections contain the detailed steps of installing and/or configuring the
three components of swatch.

 The Swatch Perl program and the prerequisite Perl modules
 The Swatch startup script
 The Swatch filter or configuration file

4.3.1 Download and Install Prerequisite Perl modules

Repeat the following steps for each perl module:

Date::Calc

Time::HiRes

Date::Format

1) download the perl module from www.cpan.org to the local machine

2) scp the perl module from the local machine to your home directory $HOME

3) mv the downloaded gzip file to /usr/lib/per15

4) untar the gzip file by executing tar–xzvf <gzip file>

5) cd into the directory created during untarring/unzipping and type “perl
Makefile.PL” – this will create a “Makefile” with the appropriate parameters

6) while in the directory type “Make” –this will compile the module and create the
dynamically linkable library file that will be linked to Perl.

7) while in thedirectory type “make test” –should indicate All tests successful at the
end if everything is okay

8) while in the same directory type “make install” –this completes the install of the
Perl module.

4.3.2 Download and Install Swatch

1) download swatch from http://swatch.sourceforge.net/ to you local machine

2) scp the downloaded swatch gzip file from your local machine to your home
directory

3) mv swatch downloaded swatch gzip file from the home directory to /usr/local/bin

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
14

4) untar the downloaded swatch gzip file byexecuting “tar –xzvf <gzip file>”. This
will create the swatch directory /usr/local/bin/swatch-3.0.8

5) cd into /usr/local/bin/swatch-3.0.8 and type “perl Makefile.PL” - this will create a
“Makefile” with the appropriate parameters and will also check the system to
determine if prerequisite perl modules are installed. The following is returned if all
is okay

Screen shot

Checking if your kit is complete...

Looks good

Writing Makefile for swatch

6) while in /usr/local/bin/swatch-3.0.8 type “make” to compile swatch.

Screen Shot:

cp swatch_oldrc2newrc blib/script/swatch_oldrc2newrc

/usr/bin/perl "-MExtUtils::MY" -e "MY->fixin(shift)"
blib/script/swatch_oldrc2newrc

cp swatch blib/script/swatch

/usr/bin/perl "-MExtUtils::MY" -e "MY->fixin(shift)" blib/script/swatch

Manifying blib/man1/swatch.1

Manifying blib/man1/swatch_oldrc2newrc.1

7) while in /usr/local/bin/swatch-3.0.8 type “make test” –should indicate All tests
successful at the end if everything is okay

Screen shot

All tests successful.

8) while in /usr/local/bin/swatch-3.0.8 type “make install”.

Screen Shot

Writing /usr/lib/perl5/site_perl/5.8.0/i386-linux-thread-
multi/auto/swatch/.packlist

Appending installation info to /usr/lib/perl5/5.8.0/i386-linux-thread-
multi/perllocal.pod

9) while in /usr/local/bin/swatch-3.0.8 type “ make realclean” to complete the
installation of swatch

Screen Shot

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
15

rm -f blib/script/swatch_oldrc2newrc blib/script/swatch

rm -rf ./blib Makefile.aperl blib/arch/auto/swatch/extralibs.all
perlmain.c tmon.out mon.out so_locations pm_to_blib *.o *.a
perl.exe perl perl swatch.bso swatch.def libswatch.def swatch.exp
swatch.x core core.*perl.*.? *perl.core

mv Makefile Makefile.old > /dev/null 2>&1

rm -rf blib/lib/auto/swatch blib/arch/auto/swatch

rm -rf swatch-3.0.8

rm -rf Makefile Makefile.old

4.3.3 Swatch startup script

The Swatch Startup Script is the second component of Swatch and contains the
command line options such as the configuration file, the tail, input record separators,
etc. Basically this is where you instruct swatch what configuration file or filter to use and
what file to monitor. The configuration file is the filter of what to look for and what
actions should be taken upon notification. Command line options listed below are what
we used for this project.

--config-file=”file name” – tells Swatch where to find it’s configuration file. The
default is ${HOME}/.swatchrc.

--tail-file=”file name” –tells Swatch which file to tail. Examines each line of text
as they are added to the filename.

--input-record-separator=”regular expression” –tells Swatch to use regular
expression to delineate the boundary of each input record. The default is a
carriage return.

Our script was very simple because we configured Swatch to monitor one file, the
Logcatcher dump file on the remote centralized logging server. By monitoring the dump
file, we search for patterns in all logs from all hosts journaling logs to the Centralized
Logging Server. This was the major selling point of our solution. Instead of having to
monitor every log file on multiple hosts, we could just monitor the dump file on the
remote centralized logging server. It is also a single point of failure so you must take
additional steps to mitigate the risk of the dump file being corrupted or unavailable.

#!/usr/local/bin/perl -w

use strict;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
16

my %logs = (

This is the swatch start script and will monitor all piped traffic
from the ERP servers(web and app)to the centralized logging server.

"/home/user/swatch/conf/ERP.monitor" => "/log/logcatcher.dump",

);

my $base = "/usr/local/bin/swatch";

foreach my $config (sort keys %logs) {
my $command = $logs{$config};

my $cmd = $base . " --config-file=$config" .
" --tail-file=$command" .
">>/tmp/swatchlog 2>>/tmp/swatchlog &";

system($cmd);
}
wait;

4.3.4 Swatch configuration file or filter

The third component of Swatch is the configuration file or filter developed by the
Security team. This is the file containing the intelligence of Swatch. The file contains
the patterns to look for and the actions to be taken when a pattern is matched.

Before starting on the actual configuration, we needed to develop and document our
strategy. This is an important step that should be completed before developing the
configuration file. The strategy document became the input or requirements for the
configuration file. The hardest part with the strategy document was being able to
correlate an actual event with the log entry.

The following are some examples taken from our Swatch strategy document:

Event Log Pattern Priority Alert

New SETUID root Program /var/log/messages NEW SETUID root PROGRAM 2 email to my2way.com

change to file permission - capital
IBM file /var/log/messages had permissions | IBM 1 email to my2way.com

ERP security loads secadmin.log la_apply | secload 3 email to my2way.com

ERP program loads secadmin.log pgmload 2 email to my2way.com

The first item of the configuration file is the pattern to look for within the tailed file.

Swatch
configuration
file

File to
monitor

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
17

watchfor /”pattern”/

The next items within the configuration file are the actions to be taken when the pattern
in matched within the tailed file. We configured Swatch to take the following actions.
There are additional actions that can be configured, however, we chose a very simple
solution. Our objective was to notify the responsible team of an event so they can take
appropriate actions.

 echo [modes]–echo the matched line
 mail [address=address]–send email to address(es) containing the matched lines

as they appear
 bell [N]–echo the matched line, and send a bell N times
 throttle hours:minutes:seconds–used to limit the number of times that the

matched pattern has actions performed on it

Swatch was configured to monitor (/log/logcatcher.dump), search for the following
patterns, and send a notification to the appropriate team when a pattern in matched.
These teams will have the responsibility of responding to the alerts sent by Swatch to
determine if an actual abuse or attempted abuse of the ERP systems has occurred.

The following Swatch configuration file was used for this solution:

swatch configuration file to monitor aix, http, and ERP logs in the ERP
production environment

Swatch monitors /log/logcatcher.dump and searches for patterns listed below

Configuration for monitoring /var/log/messages. This is the file that stores
system activity information.

New SETUID program
This is a priority 2 type alert.

watchfor /NEW SETUID root PROGRAM/
echo normal
bell
mail ERP.Security@MyCompany.com,subject=New SETUID root Program

in Production Priority 2 Alert

File Permission Changes.
This is a priority 2 type alert
watchfor /had permission | IBM/

echo normal

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
18

bell
mail ERP.Security@MyCompany.com,subject=File Permission Change in

Production Priority 2

swatch configuration file for constant monitoring of the ERP secadmin log. the
secadmin log serves two purposes. first it logs every use of the dump and load
program which is run, by whom and when. Second, it logs information about
security on creation for example, when a user creates a new product line, system
code, or form ID and access to that object being added to a security class.

ERP security loads logged
this is a priority 3 type alert
#watchfor /la_apply|secload/

echo
bell
exec
throttle 00:10:00
mail ERP.Security@MyCompany.com,subject=la_apply or secload Priority 3

Alert

program loads
this is a priority 2 type alert
watchfor /pgmload/

echo normal
bell
mail ERP.Security@hcahealthcare.com,subject=Program Load Priority 2

Alert

swatch configuration for sec.log. when a user makes changes to the security
status through laua, lawsec, or secload, the sec.log file records the changes.
Also messages are logged to this file in certain exceptional cases, such as when
there is an error reading the univ.cfg file or when prodsec parameter in univ.cfg is
set to on so that security can not be disabled, but somebody attempts to turn
security off
security turned off or disabled
this is a priority 1 type alert and needs immediate attention
watchfor /Security Disabled/

echo bold, red_h
bell 3
mail Team Member@my2way.com,subject=Security Status Priority 1 Alert

user attempt to turn off security, but prodsec parameter in univ.cfg restricts
ability to do so
this is a priority 1 type alert and needs immediate attention

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
19

watchfor /PRODSEC On - Failed to Disable Security/
echo bold, red_h
mail ERP.Security@MyCompany.com,subject=Attempt to Disable Security

in Priority 1 Alert

Unexpected change to SECOFFICER Security Class
this is a priority 1 type alert and needs immediate attention
watchfor /SECOFFICER Class Alert/

echo
mail ERP.Security@MyCompany.com,subject=Unexpected change to

SECOFFICER Priority 1 Alert

4.3.5 Swatch Issues Encountered During Pilot

A word of caution with the configuration file or filter is to start with a limited number of
patterns to search for. It is all together too easy to get carried away with the number of
patterns to search for and this can make for a very difficult start. We found that it is
better to pilot a few patterns to start and work through the issues before expanding. We
also had a huge learning curve correlating actual events to log entries. We spent a lot
of time analyzing logs to determine which log entry equated to which event. Some of
the issues we worked through are illustrated below:

 Swatch failed to read configuration file and kept reverting to default.
o Solution–Swatch user did not have access to the configuration file so it

reverted to the default configuration file. We simply added Swatch user to
a group with read access to the file

 Swatch failed to read the tail file or the file we wanted to monitor.
o Solution–Another permission problem. The Swatch user did not have

sufficient access to read the tailed monitoring file. Again, we simply added
the Swatch user to a group with read access to the file.

 Swatch returned hundreds of matched patterns for program loads. We
discovered that numerous entries were made for each program load.

o Solution–Add throttle to program load entry in configuration file. Throttle
is used to limit the number of times that the matched pattern has actions
performed on it

 Multiple Swatch processes running because Swatch did not kill old process
before starting a new process.

o We added “kill process” functionality to our startup script. Old Swatch
processes will be killed whenever new process is started.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
20

5. Summary–After solution implementation
The dust has settled and we have been operational with the solution illustrated in this
document for a couple months now, but we are already seeing the benefits. Although
we found additional items we would like to address, we greatly enhanced the security
posture and trust of the ERP System.

The following illustrates the impact of the solution on the overall security state of our
ERP System. This has been accomplished with the implementation of this logging and
alerting solution using the Logwatcher/Logcatcher application and Swatch monitoring
and alerting tool.

 The Logwatcher/Logcatcher application is being used to journal ERP
application log files to a remote and secure centralized logging server in real
time. File permissions are currently set to a permission level that protects the
integrity of the logs and prevents unauthorized disclosure, deletion or access.
Furthermore, log file access is restricted to a very few select members of
Security and System Administration Teams.

 Log files associated with the ERP System are journaled to and managed on
the remote centralized logging server. Logs are journaled in real time so they
will continue to exist even if the System Administrator deletes the files on the
ERP System. Logs are also available on the Remote Centralized Logging
Server for the Security Team to perform review, analysis, and problem
resolution.

 The enormous task of sifting though the vast amount of collected data has
been automated. Swatch has been configured to monitor all logs journaled to
the Remote Centralized Logging Server and send alerts to teams responsible
to respond to specified events. The Security Team is now being notified by
swatch of system events or changes to configuration that adversely impact
the security state of the Company’s ERP system.

Continuously Assess and Evaluate Your Monitoring Process

I mentioned in the beginning of this practical that the solution presented is not meant to
be a complete solution, but rather a solution that can be implemented quickly and with
limited resources. It is also a solution that can be built upon as additional resources,
time and money, become available. It is important to continuously assess and re-
evaluate your monitoring process. You will find that adjustments or enhancements to
the process are necessary as technology, risks, and vulnerabilities change or mature
over time. Discovery of additional risk or detection of new vulnerabilities may also be
grounds for adjusting the process.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
21

Bibliography

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
22

Garfinkel, Simon and Spafford, Gene. Practical UNIX & Internet Security, 2nd Edition.
Bonn: O’Reilly & Associates, Inc. 1996

Allen, Julia H. The CERT Guide to System and Network Security Practices. Boston:
Addison-Wesley, 2001

Siegert, Andreas. The AIX Survival Guide. Boston: Addison-Wesley, 1996

IBM Redbook. AIX 5L Differences Guide Version 5.2 Edition–Online Version
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg245765.html?Open

CERT Coordination Center. Identify data that characterize systems and aid in detecting
signs of suspicious behavior.
http://www.cert.org/security-improvement/practices/p091.html

IBM AIX Manual. System Management Guide: Communications and Networks–Online
Version.
http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/aixbman/commadmn/commad
mntfrm.htm

.

