GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

Application Security within
Java 2, Standard Edition (J2SE)

JAAS, JCE, and JSSE

By Damon Kaberna
GSEC Assignment v.1.4B
March 16, 2004

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Table of Contents

N 1] 1 =T o3 TR 3
ApPlication SECUTILY BASICS ...cccuiiiiiiiieiie ettt s 3
Java 2 Standard Edition (J2SE) and Java 2 Enterprise Edition (J2EE)........... 4
BASIC J2SE SECUTIITY ..eoeeiiieiesieeie ettt sttt sttt sae e ee e e sneeeesneesreenee e 4
Java Authentication and Authorization Service (JAAS)....ccooieiieiineeneeeeee 6
JAAS AULNENTICALION ...ttt 7
JAAS AULNOTIZATION ...ttt bbb 8
SUMMATY <.ttt sttt e ae e et e e sae e eabeesaeeeaseesaeesaseeaseeeabeesseesaseenneeenneeaseeas 9
Java Cryptography EXteNSION (JCE).....cooi i 9
(=T gTolgY/ o1 iToT VA T=Tox oY/ o] i o] o [N 10
(S CT=T L=t =1 o] o SR 10
Message AuthentiCation COUEooeeeeiiieee e 11
Java Secure Socket EXteNSion (JSSE).....ccccceiieieiiie e eee e 12
3] ST 12
[I S TP 13
Conclusions - USING J2SE SECUILY ..ceiieiiiierieeie e 13
URL:http://java.sun.com/j2se/1.4.2/docs/guide/security/jgss/tutorials/LoginConfig
1= o1 0 S 15
Appendix A — Sample Logon Configuration File (JAAS).....ccccoevivvevieeieceennns 15
Appendix B — Sample Policy File (JAAS) ..t 17
Appendix C — Code Example — Logging In with JAAS ... 18
Appendix D — Code Example — Authorizing with JAAS ... 19
Appendix E = RunNing Code (JAAS) ..ottt 19

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Abstract

Several “tools” have been implemented with Java 2 Standard Edition (J2SE) that
can be used to secure applications. With J2SE you can authenticate, authorize,
encrypt data, and encrypt the transmission of data all within code. These tools
include the Java Authentication and Authorization Service (JAAS), the Java
Cryptography Extension (JCE), and the Java Secure Socket Extension (JSSE).

This paper will examine what the security professional needs to know to make
informed decisions about how security is implemented within Java applications
using J2SE tools. With the proper understanding, security can be implemented
within a Java application, making the application very safe and secure.

Application Security Basics

When designing an application the focus of the security professional is often on
operating system (OS) security, network security, or even physical security. It is
easy to understand the need to secure a server, the physical lines that connect
servers, or the room in which the server is housed. Unfortunately application
security is often overlooked.

What is application security? For the purposes of this paper, application security
is security that is implemented or dramatically influenced by the person or
persons who build applications using Java. Most typical security elements
including authentication, authorization and encryption can be implemented within
application code. It is my hope to shed light on Java application security topics
which are often considered beyond the responsibility of the security professional.

There are security elements which may be implemented at the application layer
or at the system layer. Security which occurs at the system layer is often termed
“declarative” security because the security specifics must be declared to the
system in which a resource resides. File security implemented by an operating
system is a good example of declarative security. If a security professional locks
down a file, then the operating system protects the file by making sure that
identities attempting access to the file have the appropriate permissions.

Security which occurs at the application layer is often termed “programmatic”
because decisions made by the application developer within the application
programming logic affect how the application is secured.

An example of programmatic security is a web page which makes decisions on
which content to show a user based on the user’s attributes. For example, an
employee logs on to an intranet site which is restricted to management
employees. If the employee is a manager then the site is displayed. If the
employee is not a manager then the employee is directed to some other site. The

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

web site checks to see if the employee is a manger by looking in a data store
(perhaps an LDAP directory).

Java 2 Standard Edition (J2SE) and Java 2 Enterprise Edition
(J2EE)

J2SE and J2EE are not the name thing. J2SE is often described as “core Java”.
J2SE provides the core functionality required for a modern programming
language to be useful. J2EE sits “on top” of J2SE providing functionality such as
transactional support, isolation, and security to J2EE applications. Enterprise
Java Beans (EJBs) are notable J2EE constructs which can be called remotely
and provide this functionality.

Basic J2SE Security

Java is a mobile language. What | mean by this is that Java code is designed to
run regardless of source or target platform. When you download an applet (a
piece of Java code which runs in a browser) it does not matter where the code
was downloaded from, it does not matter that you are downloading to a particular
system, and it does not matter what your intentions are in downloading the code.
If the applet contains malicious code then you could be in trouble if your security
settings are not properly enabled.

“The basic principle underpinning the Java 2 platform security architecture can
be summarized as follows: A system-level security policy defines access
permissions (per the needs of the application under consideration) for executing
code grouped into protection domains. The security policy is used for access
control checks, which are performed by the JVM at runtime.”

Java grants access to a resource through a relatively simple mechanism.
Classes are used to represent the security architecture. Let’s take a look at some
of these classes:

The Permission class (java.security.Permission) contains a named permission
and a list of actions which are allowed for the resource in question. The
FilePermission and SocketPermission classes are examples of classes which
implement the Permission class to protect a particular resource. You can also
create your own implementation of this class (i.e. WidgetPermission) to custom
tailor permissions. The “implies” method of the Permission class is used to
determine if access to the resource is implied given an instance of a permission
class.

The PermissionCollection (java.security.PermissionCollection) is a collection of
Permissions of the same kind. The “implies” method of the PermissionCollection

! Belapurkar, p. 2

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

class is used to aggregate the results of the “implies” methods of all of the
Permission objects within the collection.

The Permissions class (java.security.Permissions) is a collection of
PermissionCollection instances (that may not contain Permission objects of the
same type) which represent the total access of a resource. The “implies” method
of the Permissions class is used to determine the results of the appropriate
PermissionCollection related to the resource in question.

The CodeSource class (java.security.CodeSource) encapsulates the URL of a
piece of running code and the certificates used to sign the code into a class so
that a particular piece of code can be identified.

A ProtectionDomain (java.security.ProtectionDomain) is created using an
instance of a CodeSource class and a PermissionCollection. It represents a
mapping between code source and permissions.

The Policy class (java.security.Policy) is used to map the systems policy (in the
form of permissions) into individual ProtectionDomains. The GetPermissions
method of the Policy class allows callers to retrieve the permissions for a
particular CodeSource. Policy is typically represented by a file, but the provider
for the policy can be changed by changing the value of the “policy.providor”
property in the Java.security properties file. The java.security.policy environment
variable is used by the Java Virtual Machine (JVM) to determine the location of
the physical policy store.

The AccessController (java.security.AccessController) is a class which is
responsible for access checking at run-time. The AccessController must be
specified in the “java.security.manager” environment variable so that when the
JVM spins up the AccessController can be created. The CheckPermission
method throws an exception if the requested permission is not valid.
AccessController is used by both the system and by the application programmer
to check permissions. The SecurityManager class delegates calls to
AccessController to enable the system to check access.

Now, let’s talk about how all these classes relate to one another. When any class
is loaded, the system uses a class called the SecureClassLoader
(java.security.SecureClassLoader) to load the class. First the class is loaded
from the specified URL and then the digital signature of the class is checked to
make sure that the class is correct and intact. A CodeSource object is derived
using known information. Using the GetPermissions method of the Policy
instance (the Policy instance is maintained by the system) and the CodeSource,
the PermissionCollection for the resource is acquired. The ProtectionDomain is
then created using the CodeSource and PermissionCollection. Using an instance
of the AccessController class permissions can be checked within an application.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The system uses the SecurityManager class which delegates access checks to
the AccessController to check permissions.

In summary, if you want to do “code centric” access checks in Java: 1) Make
sure that the SecurityManager is known to the JVM. 2) The Policy Provider must
be in place and known to the system. 3) A policy file (or what ever is needed by
the policy provider) must be in place and known to the system. 4) The developer
can make access checks in code if necessary. 5) Custom Permission and
PermissionCollection classes may need to be written to handle resources and
permissions that you might want to secure.

There is a lot more to the story than what | have presented here. Check out the
references below for details on privileged checks and threads of execution. Also
see Appendix C for a code example of how a logon might be performed.

Beyond code centric security, J2SE security has been augmented with JAAS,
JCE, and JSSE. These services add authentication, authorization, encryption,
and transport layer encryption (SSL) services to Java. JAAS, JSSE, and JCE are
integrated into the 1.4 version of the J2SDK. In version 1.3 of the SDK, JAAS,
JSSE, and JCE were optional elements. Let’s talk about these security tools.

Java Authentication and Authorization Service (JAAS)

“Authentication is the process by which an entity, also called a principle, verifies
that another entity is who or what it claims to be. A principle can be a user, some
executable code, or a computer. “* There are many was to perform
authentication, however, it is most often performed by applying credentials such
as an ID and password.

Authorization is the process of access control. Once you prove who you are by
authenticating you need to get to the resources that are required to do our work.
You should not be able to get to resources that are not required to do your work.
Authorization allows the system to determine what resources you should have
access to and what resources you should not have access to.

The Java Authentication and Authorization Service (JAAS) is a toolset which
enables J2SE applications to authenticate and authorize the caller to access
specific resources. JAAS builds on J2SE (code centric) security adding
authentication and implementing “user-centric” authorization. Custom
authentication and authorization solutions can be created with JAAS.

You may be asking yourself, why would | want to create my own authentication
or authorization scheme for Java? There are lots of reasons to do this — some
good reasons, but many bad reasons. Do the research and make an informed

2 Howard, p. 46-47

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

decision. If you have determined that you need a custom scheme, proceed
carefully. Getting the correct elements in place can be the difference between
success and failure.

Let’s talk about authentication first.
JAAS Authentication
Authentication with JAAS is relatively simple. Here are the basic elements:

To login a user in code, the developer must create an instance of the
LoginContext (javax.security.auth.login.LoginContext). Using the LoginContext,
the Login method is called to login the user. Sounds simple, right? Well there is a
little bit more that has to be done. When the LoginContext is created, a runtime
login configuration file entry friendly name and a callback handler must be
supplied.

The callback handler is an instance of a class
(javax.security.auth.callbackhandler) which handles user interaction during
authentication. User interaction might include a prompt for a user ID and
password.

The runtime login configuration file is located by the system by looking in the
Java.security file at the login.config.url.x property. The x is a number between 1
and n and is used to specify more than one configuration file. The
login.config.url.x property actually contains a fully qualified file name which points
to a runtime login configuration file. Optionally, the runtime login configuration file
can be set through the java.security.auth.login.config property in code or as a
parameter when the application is executed.

Within the runtime login configuration file are a series of runtime login
configuration file entry names (i.e. JndiLoginModule, UnixLoginModule...) which
associate a friendly name (supplied when the LoginContext is created) to a class
which actually does the authentication (the LoginContext interface in the
javax.security.auth.spi). Check out Appendix A for an example of the login
configuration file.

In order to log in, the “login” method from the LoginContext is used. Login makes
an association between the LoginModule (which manages how authentication
works) and the callback handler (which gets input from the user). If authentication
succeeds the commit method of the LoginModule is called and the result is an
instance of a Subject class which represents the user. Within the Subject are
instances of Principle classes which further identify the context of the user based
on how the user authenticated.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

In summary, what does this all mean for the security professional? If you want to
implement authentication in Java, the developer has to: 1) create an instance of
a callback handler to handle user input, 2) create or identify a class to do
authentication, 3) associate the class which does authentication to a friendly
name in the runtime login configuration file, 4) make sure that the runtime login
configuration file is known to the system and 5) create an instance of the
LoginContext and call its login method in code.

JAAS Authorization

JAAS Authorization is an extension of the process started during authentication.
Authorization is not possible without some form of authentication. The primary
mechanisms of JAAS authorization are 1) an authenticated Principle or a
CodeBase, 2) an implementation of the “java.security.PrivilegedAction” class, 3)
a file which describes the authorization policy to be followed and 4) some code to
run that contains some actions needing authorization.

In order to perform JAAS authorization, you need to know three things. You need
to know 1) who or what is authorizing, 2) the resource they are trying to use and
3) what they are actually trying to do with the resource (read, write, execute,
delete...).

There are a couple of ways to identify who is authorizing. Actually, the question is
often not “who” but “what” is authorizing. A Principle, a CodeBase or both can be
used to identify who or what is attempting authorization.

We have already talked about Principles. A Principle is a representation of an
authenticated user created during authentication. A CodeBase is just what it
sounds like: a chunk of code. A CodeBase can be a Java class or a whole
application.

The principle and/or CodeBase are specified in the authorization policy file along
with their related privileges. The second grant within the Sample Authorization
Policy File in Appendix B is a good example of how a CodeBase is specified to
the system. The third grant shows how a principle is specified.

When known events occur such as creating a file, reading a property, or listening
at a socket, a security check is triggered. If the CodeBase or Principle has the
authority to perform the operation then the operation is allowed. If not then the
operation is not allowed.

Let’s talk about the specific mechanics of authorization. The first step to
authorization is creating an implementation of the PrivilegedAction class and
overriding the run method. The run method must contain all of the custom code
which needs to be authorized to run.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The next step is to create an authorization policy file which contains the “rules”
which determine the privileges needed to access particular resources. Appendix
B contains an example of a policy file.

When a developer needs to run some code which needs to be authorized, the
doAsPrivileged (or doAs) method of the Subject class must be called. The
Subject is acquired through the instance of the LoginContext which was created
during authentication.

Calling doAsPrivileged requires an instance of the subject, an instance of the
overridden PrivilegedAction (or PrivilegedActionException) class, and an
instance of an AccessControlContext. The AccessControlContext is not required.
If it is included it will be used as the base context to apply the current
authorization context to.

So, if you want to authorize using JAAS you have to 1) authenticate using JAAS,
2) create a policy file for authorization rules, 3) override the PrivilegedAction
class, and 4) call the doAsPrivileged method of the Subject acquired during
authentication or from the LoginContext.

Summary

Alright, now that we are all JAAS’d, let’'s sum up. JAAS is a toolset within J2SE
which offers custom authentication and authorization services. There are many
authentication mechanisms which have already been written to perform
authentication using JAAS to various trusted sources.

Authentication is achieved through the use of a call back handler which is used to
gather credentials from the user, a LoginModule which performs the actual
authentication, a Subject which contains information representing the
authenticated user in the form of one or more Principles, and a login
configuration file which tells JAAS what class to use to authenticate.

Policy drives authorization. Creating a good policy file can be tricky and takes
time. Authorization is achieved through an authenticated Subject, an overridden
PrivilegedAction class, and an authorization policy file.

Using JAAS must be a well considered choice. JAAS does not replace system
authentication and authorization and it also potentially introduces administrative

complexity to an application. Do your research and make sure that JAAS and
J2SE security meet your objectives before you implement.

Java Cryptography Extension (JCE)

Maintaining the confidentiality and integrity of data is one of the most significant
issues that security professionals face today. The internet enables us to

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

communicate across broad public vistas, but, because of its public nature, it also
makes us more vulnerable to manipulation and attack. Even company owned
intranets are more open to attacks than ever before. Company owned intranets
are often semi-public intranets where consultants, vendors, and company
employees mix.

Cryptography is one tool used to protect the confidentiality and integrity of data
both at rest and as it crosses the wire. Cryptographic solutions that cross
platforms have been few and far between in the past. Java, because it provides
tools for cryptography and because its nature is portable, offers some relief from
this problem.

JCE is an extension of the Java Cryptography Architecture (JCA). According to
Sun Corporation in its Java Cryptography Extension (JCE) Reference Guide for
the Java 2 SDK, Standard Edition, v 1.4, “the Java Cryptography Extension (JCE)
provides a framework and implementations for encryption, key generation and
key agreement, and Message Authentication Code (MAC) algorithms. Support
for encryption includes symmetric, asymmetric, block, and stream ciphers. The

software also supports secure streams and sealed objects™.

We will not look at all of the implementation details of JCE as we did with JAAS.
Instead we take a quick look at what JCE can do.

Encryption/Decryption

In JCE, the Cipher class provides Encryption and Decryption services. AES
encryption with a 256 bit key is the strongest encryption algorithm supported by
JCE. DES3, DES, Blowfish and many other algorithms are also supported.

Encryption and decryption are fairly easy with JCE. To get an instance of the
Cipher class, call the static “getinstance” method of the Cipher class with the
encryption algorithm and, optionally, a transform and padding. The transform
specifies a method to use to transform the data prior to encryption. Padding
specifies how data is packed when it is returned after an encryption or decryption.

The instance of the Cipher class must then be initialized with its function. These
functions include encrypt, decrypt, wrap, and unwrap. Encryption and decryption
are actually performed by the update and doFinal methods. Wrap and unwrap —
the process of wrapping a key into a secure form and un-wrapping the key into a
usable form - are performed by the wrap and unwrap methods.

Key Generation

% Sun Corporation

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

In order to perform encryption and decryption using a symmetric algorithm, you
have to have a key. Key generation is the process of generating a key for use
with cryptographic functions.

JCE has the facility to generate keys in the form of the KeyGenerator class. To
get an instance of the KeyGenerator class, call the static member function
getinstance with the algorithm name that you want to generate a key for. Initialize
the key with a seed or key size using the init method, then use generateKey to
actually acquire a key from the generator. Easy!

Key Agreement

Key agreement is a process that allows two parties to come up with the same
key. The process gives the users a level of surety that the party that they are
coming to agreement with is who they say they are.

During key agreement, sometimes a key is exchanged, sometimes information is
exchanged which allows both parties to generate the same key. Key agreement
is an attempt to solve the problem of sharing keys safely. If one party is sending
encrypted data to another, the receiver had better be able to decrypt the
encrypted data and the sender should be sure that the receiver is the only one
who can decrypt the data.

The details of key agreement can be very confusing. JCE uses the
KeyAgreement class to perform key agreement functions. The SUN JCE
Reference Guide contains a good example of how the Diffie-Hellman key
exchange algorithm might be coded if you are interested. However, key
agreement should not be taken lightly. Consider your options carefully before you
code and use such algorithms. The confidentiality and integrity of your data is at
stake.

Message Authentication Code

Ensuring the integrity and availability of data is a problem. Data stored at rest can
be altered and replaced. Data moving across the wire can be intercepted and
replaced. Message authentication codes are one way that you can attempt to
ensure the integrity of data.

With JCE you can create hashed messages using message authentication codes
(mac) and the Mac class. The hash is based on a secret key that 2 parties share.
Key agreement and data transfer are the responsibility of the application or
application user.

There are uses for message authentication codes within applications. However,

most modern encryption mechanisms (such as SSL) include some sort of digital
signature or hash to ensure message integrity. Security professionals should use

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

MACs where appropriate, but should not rely on this mechanism for an
“enterprise” solution to data integrity.

In summary, JCE is a useful technology for encryption, decryption, and key
generation within an application. Key agreement is available and can be used to
exchange keys among parties. However, key agreement is complex and should
be approached with caution. Message authentication codes can be used to
validate the integrity of data, but should not be used extensively because other
encryption technologies do the same thing.

Java Secure Socket Extension (JSSE)

JSSE is used primarily as a wrapper for the Secure Sockets Layer (SSL) protocol.
SSL is used to protect the integrity, confidentiality, and availability of data as it
crosses the wire through the use of encryption technologies.

Application layer SSL is very complicated. To use SSL, you have to know about
sockets, key stores, trust stores, encryption keys, and encryption algorithms.
JSSE does not eliminate the need to be well informed, but it does hide a lot of
the implementation details of using SSL.

SSL

Setting up an SSL session can be tricky. Simple examples of how to enable an
SSL session are available on Sun’s web site so | will not describe the details.
Instead, let’s take a look at the major components of setting up a generic
outbound SSL session.

The first thing you need to do to set up an SSL connection within a Java
application is to make the system aware of the properties you want your SSL
session to have. You have to set up the providers that you will need to make SSL
work and make the system aware that you are using SSL and JSSE.

The next thing you need to do is set up a key manager. A key manager is used to
manage credentials and authentication when an SSL connection is created. To
create a key manager, you need a key store. The key store contains certificates
and keys used for authentication. The structure of the key store depends on the
platform that you are running on.

The third step is to create a trust manager. A trust manager uses the information
in a trust store to decide who to trust. A trust store is a key store which contains
certificates and keys related to trusted servers. Trusted servers are those servers
that you want to connect to without having to actively make a decision as to
whether it is a good idea or not.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Key stores and trust stores are really just files which contain certificates and keys.
As often as not, you have to create and manage these stores for yourself.
However, different systems support different forms of key and trust stores so
check with you security administrators before building your own store.

Lastly, an SSL context is created using the key managers and trust managers
that were just created. This context is used by Java to initiate SSL traffic to a
chosen destination.

HTTPS

The method just described is a generic method for creating an SSL context which
allows Java to use SSL under the covers.

There are other ways to initiate SSL using JSSE. The java.net.url class can be
used to establish an HTTPS connection (or whatever other kind of protocol
supported) to a resource (typically a file) on a server. URL is easy to use and
should be considered if trying to establish HTTPS connections in code.

Conclusions - Using J2SE Security

Even though | have spent the last several weeks researching J2SE security and
find it fascinating, | find myself asking the question: Under what circumstances
would | use JAAS, JCE, and JSSE? This is a tough question that every security
professional, application designer, and developer should ask themselves before
diving into J2SE security.

JAAS has some very interesting features. You can authenticate users. You can
authorize one application to access another through the use of a code base. You
can authorize an application or user to access system resources. You can also
sign code to make sure that the integrity of the code has not been violated.

Authentication with JAAS seems worthwhile. Applications should be able to make
decisions based on who accesses them. Code signing might also be useful in a
shared or exposed environment.

| have serious doubts about using authorization with JAAS however.
Implementing authorization is not trivial. It takes work. J2SE code-centric security
and JAAS do give you the ability to authorize system resources, but | cannot
think of a situation where authorizing a piece of code or user to access a socket
or property would, in a real-world sense, be worthwhile. If someone were to
supply an authorization layer over JAAS to authorize business resources then
JAAS authorization would be worthwhile, however, | have not seen such an
implementation.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

JCA is useful for encryption, decryption and key generation. However, | do not
believe that the typical application would need to support key agreement or
message authentication codes. Key agreement seems very complex and would
be difficult to code correctly. Also, there seems to be few occasions when key
agreement is really necessary from code. Message authentication codes can be
useful to ensure that data is not tampered with, but again | cannot think of a
situation where other mechanisms cannot be used more easily.

JSSE is one of the best ways to establish SSL connections. If you want to get to
a web page from code via HTTPS it is relatively easy with JSSE if you can figure
out how to configure your application.

If you produce or need to secure Java applications, you will use J2SE security at
some point. Authentication, authorization, data encryption and transport layer
encryption are all supported in one way or another. Use J2SE security to
augment your other security mechanisms and your security model will be
complete.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

References

(1) SUN Corp. “Java Secure Socket Extension (JSSE) Reference Guide for the
Java 2 SDK, Standard Edition, v 1.4.2” URL:
http://Java.sun.com/j2se/1.4.2/docs/guide/security/jsse/JSSERefGuide.html

(2) SUN Corp. “Java Authentication and Authorization Service (JAAS) Reference
Guide for the Java 2 SDK, Standard Edition, v 1.4”
URL: http://Java.sun.com/j2se/1.4.2/docs/quide/security/jaas/JAASRefGuide.html

(3) SUN Corp. “Java Cryptography Extension (JCE) Reference Guide for the
Java 2 SDK, Standard Edition, v 1.4”
URL:http://Java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGuide.html

(4) Howard, Michael and LeBlanc, David. Writing Secure Code. Microsoft Press,
2002

(5) Belapurkar, Abhijit. “Java Authorization Internals”
URL.: http://www-106.ibm.com/developerworks/java/library/j-javaauth/ (04 May
2004)

(6) SUN Corp. “Java Class URL”
URL: http://java.sun.com/j2se/1.4.2/docs/api/java/net/URL.html|

(7) SUN Corp. “Default Policy Implementation and Policy File Syntax”
URL:http://java.sun.com/j2se/1.4.2/docs/quide/security/PolicyFiles.html

(8) SUN Corp. “Policy Tool — Policy File Creation and Management Tool”
URL:http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/policytool.html

(9) SUN Corp. “JAAS Authentication Tutorial”
URL:http://java.sun.com/j2se/1.4.2/docs/quide/security/jaas/tutorials/GeneralAcn

Only.html

(10) SUN Corp. “JAAS Authorization Tutorial”
URL:http://java.sun.com/j2se/1.4.2/docs/quide/security/jaas/tutorials/GeneralAcn
AndAzn.html

(11) SUN Corp. “Class ConfigFile”
URL:http://java.sun.com/j2se/1.4.2/docs/quide/security/jaas/spec/com/sun/securit
yv/auth/login/ConfigFile.html

(12) SUN Corp. “JAAS Login Configuration File”
URL:http://java.sun.com/j2se/1.4.2/docs/quide/security/jgss/tutorials/LoginConfig
File.html

Appendix A — Sample Logon Configuration File (JAAS)

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

MLogin {
mcompany.security.access.MLoginModule required debug=true;

J§

kkkkkkkkkkkkkkkkkkkkkkk

“‘MLogin” is the friendly name that JAAS uses to associate an authentication
attempt to the correct LoginModule class.

‘mcompany.security.access.MLoginModule” is the fully qualified Java class
actually containing custom code used to login.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix B — Sample Policy File (JAAS)

[* The first grant gives basic permissions to all principles and CodeBases */
grant {
permission java.lang.RuntimePermission "stopThread";
permission java.net.SocketPermission "localhost:1024-", "listen";
permission java.util.PropertyPermission "java.version”, "read";
permission java.util.PropertyPermission "java.vendor", "read";
permission java.util.PropertyPermission "java.vendor.url", "read";
permission java.util.PropertyPermission "java.class.version”, "read";
permission java.util.PropertyPermission "os.name", "read";
permission java.util.PropertyPermission "os.version", "read";
permission java.util.PropertyPermission "os.arch", "read";
permission java.util.PropertyPermission "file.separator”, "read";
permission java.util.PropertyPermission "path.separator”, "read”;
permission java.util.PropertyPermission "line.separator”, "read";
permission java.util.PropertyPermission "java.specification.version”, "read";
permission java.util.PropertyPermission "java.specification.vendor", "read";
permission java.util.PropertyPermission “java.specification.name", "read";
permission java.util.PropertyPermission "java.vm.specification.version”, "read";
permission java.util.PropertyPermission "java.vm.specification.vendor”, "read";
permission java.util.PropertyPermission "java.vm.specification.name", "read";
permission java.util.PropertyPermission “java.vm.version", "read";
permission java.util.PropertyPermission "java.vm.vendor"”, "read";

permission java.util.PropertyPermission “java.vm.name”, "read";

|8

[* The second grant gives the code in the codebase "file:mJAAS.jar" the */

[* authority to do all the things it need to do to authenticate and authorize */
grant codebase "file:mJAAS.jar" {

permission javax.security.auth.AuthPermission "createLoginContext.MLogin";
permission javax.security.auth.AuthPermission "doAsPrivileged";

permission javax.security.auth.AuthPermission "modifyPrincipals”;

I3

[* The third grant give the principle “testUser” the authority to mess with the */
/* blee.txt file. Notice that the principle class used to contain the principle */

/* information in the Subject must be supplied */

grant Principal mcompany.security.access.MPrinciple "testUser" {
permission java.io.FilePermission "blee.txt", "read, write, delete, execute";

%

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix C — Code Example — Logging In with JAAS
/I This code shows how a developer might make some function calls to login
private LoginContext Ic = null;

public void Login() throws Exception

{

try

{
/I Create a login context using the login method friendly
/I name (MLogin) from the login.config file
/I and an instance of the CallbackHandler class
/I (MCallbackHandler) that was created to handle login.
Ic = new LoginContext("SFLogin", new MCallbackHandler());
/I perform a login
Ic.login();

}

catch (LoginException le)

{
System.err.printin("Cannot create LoginContext. " +

le.getMessage());

System.exit(-1);

}

catch (SecurityException se)

{
System.err.printin("Cannot create LoginContext. " +

se.getMessage());

System.exit(-1);

}

}

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix D — Code Example — Authorizing with JAAS

static LoginContext Ic = null;
static Subject ISubject = null;

/I Run assumes that the login process has already been completed

public Object Run()

{
/[l MAction implements the PrivilegedAction class
MAction IMAction = new MAction();

/I Get the Subject which represents the logged on
I user.
ISubject = Ic.getSubject();

Il JAAS actually runs the run method of the IMAction class
// for you. It is able to do this because IMAction implements
/I PrivilegedAction.

return Subject.doAsPrivileged(ISubject, IMAction, null);

}

Appendix E — Running Code (JAAS)

/I The following “java” command is an example of how you might run the code
I/l within the mJAAS.jar file. The assumption is that mJAAS.jar contains all the

/I files it needs to authenticate and authorize.

java -Djava.security.manager -Djava.security.policy=="java.policy" -
Djava.security.auth.login.config=="login.config" -jar mJAAS.jar

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

