
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Testing Web Application Security Scanners
against a Web 2.0 Vulnerable Web Application

GIAC (GSEC) Gold Certification

Author: Edmund Forster, e336712@gmail.com

Advisor: Sally Vandeven

Accepted: September 26, 2018

Abstract

Web application security scanners are used to perform proactive security testing
of web applications. Their effectiveness is far from certain, and few studies have
tested them against modern ‘Web 2.0' technologies which present significant
challenges to scanners. In this study three web application security scanners are
tested in 'point-and-shoot' mode against a Web 2.0 vulnerable web application with
AJAX and HTML use cases. Significant variations in performance were observed
and almost three-quarters of vulnerabilities went undetected. The web application
security scanners did not identify Stored XSS, OS Command, Remote File Inclusion,
and Integer Overflow vulnerabilities. This study supports the recommendation to
combine multiple web application security scanners and use them in conjunction with
a specific scanning strategy.

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Testing Web Application Security Scanners against a Web 2.0 Vulnerable Web
Application

	

2

	

Edmund	Forster,	e336712@gmail.com	 	 	

1. Introduction

1.1. The Importance of Web Applications

Critical services across financial, healthcare, defense, energy, and other sectors

rely on secure web applications. Web applications enable users to share and

manipulate information in a platform-independent manner (Berbiche et al. 2017).

They underpin ubiquitous products and services that range from social media to e-

commerce, e-government, banking, and many more. Most businesses now have a

significant e-commerce component and many rely on web applications to connect

with customers. The confidentiality, integrity, and availability of these services can

depend on the security of web applications (Ferreira & Kleppe 2011).

The Web Application Security Consortium (WASC) defines web applications as

software applications executed by a web server that respond to dynamic requests over

HTTP (WASC 2009). They consist of scripts that reside on a web server and interact

with databases or other sources of dynamic content (Berbiche et al. 2017). Typical

deployments are comprised of a client browser, web server, application server(s), and

database server(s) (Berbiche et al. 2017). As the complexity and connectivity of web

applications increases, the challenge of securing them grows exponentially (Berbiche

et al. 2017). These applications are susceptible to commonly occurring security

vulnerabilities including SQL injection, Cross-Site Scripting (XSS), insecure direct

object references, Cross-Site Request Forgery (CSRF), security misconfiguration, and

failure to restrict URL access (Ferreira & Kleppe 2011). As web applications have

grown in complexity it has become increasingly difficult to perform security tests

against them. Testing methods have had to evolve to accommodate the diversity of

new technologies and the increased attack surfaces they bring.

1.2. Web 2.0

The term ‘Web 2.0’ describes the shift in web services and technologies to the

“network as a platform” that spans interconnected devices and delivers software that

is continuously updated. This software provides a mash-up of data from multiple

sources including individual users (O’Reilly 2007). With the emergence of Web 2.0,

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Testing Web Application Security Scanners against a Web 2.0 Vulnerable Web
Application

	

3

	

Edmund	Forster,	e336712@gmail.com	 	 	

the complexity of websites and the resources they draw on increased dramatically,

changing the way resources accessible via HTTP are presented and accessed. Micro-

services written in node.js and Spring Boot are replacing traditional monolithic

applications. Single page applications built with JavaScript (JS) frameworks now

enable the creation of feature-rich front ends that are highly modularized. JS is the

principal language of the web, which includes node.js running server-side and

frameworks such as Angular, Bootstrap, Electron, and React running on the client

(OWASP 2017).

With increases in the accessibility and ease of use of web applications come greater

attack surfaces (Berbiche et al. 2017). Butkiewicz et al. (2011) identified that the top

20,000 websites loaded an average of 40 resources. Kumar et al. (2017) found that

33% of the top million sites loaded content indirectly through third parties. Many

users access resources over which site administrators have little control. Of the sites

studied, 87% executed active content from external domains (Kumar et al. 2017).

Kumar et al. (2017) describe this as the "tangled attack landscape."

1.3. AJAX

Asynchronous JavaScript and XML (AJAX) is a collection of technologies used by

web application developers to create a user experience that mimics non-web

applications. AJAX technologies are used to build robust web applications that

support data-driven websites, increase usability, interactivity, and speed (OWASP

2013). Due to their positive impact on functionality and ease of use, AJAX

technologies have become popular with web application developers (Orloff 2012).

AJAX technologies include the scripting language JS, JS Object Notification (JSON)

or XML for the exchange of data. Document Object Model (DOM) for the dynamic

display of data enables dynamic representation and interaction (Orloff 2012). HTML

(or XHTML) and Cascading Style Sheets (CSS) set the standards for presentation of

content to the user. XML and XSLT provide the formats for server-client data

exchange and manipulation. The XML HTTP Request facilitates asynchronous data

retrieval and ensures that full-page reloads are not necessary each time the user makes

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Testing Web Application Security Scanners against a Web 2.0 Vulnerable Web
Application

	

4

	

Edmund	Forster,	e336712@gmail.com	 	 	

requests (Acunetix 2018). Instead of refreshing the web document after each event,

AJAX performs server calls and document updates in the background without

necessitating a full reload.

1.4. AJAX Security Issues

There is a common misconception that AJAX applications provide increased security

by obscuring server-side scripts. However, XML HTTP uses the same HTTP

protocol as non-AJAX applications and is therefore vulnerable to many traditional

attacks (Acunetix 2018). AJAX technologies offer an increased attack surface due to

the multitude of inputs to be secured. Internal functions of the application can be

exposed, and clients may access third-party resources with limited security and

encoding mechanisms. Lines between client and server-side can become blurred, and

authentication information and sessions require additional protection due to an

increase in session management vulnerabilities (OWASP 2013, Acunetix 2018).

In the context of AJAX, there are several common security vulnerabilities (Orloff

2012). Browser-based attacks can exploit security weaknesses in JS. SQL injections

can extract valuable data from the server side of the web application. Cross-site

scripting (XSS) attacks can exploit browser-side scripts. Also, attackers can

compromise the AJAX service bridge that enables mash-ups to draw on third-party

websites and data sources. Web applications using AJAX technologies can also be

vulnerable to Cross-Site Request Forgery (CSRF).

1.5. Web Application Security Testing

Given the increased attack surface and potential for security vulnerabilities, modern

web applications require proactive security testing. Testing should take place

throughout the Software Development Life Cycle (SDLC) from development through

to deployment and beyond (Gioria 2009, OWASP 2014). The penetrate-and-patch

model, which emphasizes penetration testing and responsive software patching, was

popular in the 1990s. The tester adopted the role of the attacker with limited insight

into the inner workings of the application (Ferreira & Kleppe 2011). Penetration

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Testing Web Application Security Scanners against a Web 2.0 Vulnerable Web
Application

	

5

	

Edmund	Forster,	e336712@gmail.com	 	 	

testing was often considered the primary or only security testing technique (OWASP

2014). As a more holistic view of software development has emerged, the limitations

of the penetrate-and-patch approach have become more widely accepted. Penetration

testing is now regarded as an assurance method rather than as a primary tool for

vulnerability detection (NCSC 2017). Vulnerability studies have shown that attackers

can respond quickly to inhibit the usefulness of patch installation (Symantec Threat

Reports, 2018) highlighting the need for a more strategic approach to security testing.

Software development brings together a combination of people, process, and

technology all of which require testing (OWASP 2014). Comprehensive and high-

quality education, proper policies and standards, and the correct implementation of

technologies can all impact the security of an application. An effective security-

testing regime uses manual inspections and reviews to test the security implications of

people, policies, and processes. Threat modeling helps developers to consider the

security threats their systems and applications may face. Code review is a way of

manually checking the source code for security issues. Finally, penetration testing

can be used to test a running application remotely to identify vulnerabilities for

remediation (OWASP 2014).

1.6. Web application security scanners

Due to the rapid iteration cycle employed in web application development and

maintenance, web application security scanners are used to identify exploitable

vulnerabilities (Ferreira & Kleppe 2011, Berbiche et al. 2017). Examples of web

application security scanners include OWASP ZAP, Arachni Scanner, Burp Proxy,

w3af, and Subgraph Vega. Known as “black-box vulnerability scanners” they are

often marketed as point-and-shoot (PaS) penetration testing tools that automate the

assessment of web application security (Doupé et al. 2010). These tools can speed up

and simplify many routine security tasks (OWASP 2014) and automate the process by

performing thousands of otherwise manual tests. They generate vulnerability reports

and offer remediation advice for security testers. When used wisely and correctly,

they can complement a well-balanced security program (Keary 2013 in OWASP

2014).

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Testing Web Application Security Scanners against a Web 2.0 Vulnerable Web
Application

	

6

	

Edmund	Forster,	e336712@gmail.com	 	 	

Despite their benefits, web application security scanners attract criticism for their

limitations. Keary (2013 in OWASP 2014) argues that web application security

scanners are both generic and seductive. They are designed to assess applications in

general, rather than custom code, and can quickly and easily identify large numbers of

security issues. Configuring web application security scanners can be a complex

undertaking for unfamiliar users, and there is a significant risk of false positive results

(Orozco et al. 2017). Denim Group (2014), an application security firm, argue that

security scanners identify roughly 30% of severe vulnerabilities and often fail to

detect design flaws. Security scanners tend to offer little or no insight into the

internal state of the application. They can provide a useful first look for easily

identifiable vulnerabilities but are unable to deliver in-depth, sophisticated

assessments (OWASP 2014). While these tools do not make software more secure,

they can help to enforce policy and scale the assessment process (Howard 2006 in

OWASP 2014). A risk-based approach that considers the system architecture and the

attacker's perspective is the best way to deploy web application security scanners

(Zhu 2017).

1.7. How effective are web application security scanners?

Many studies have attempted to assess the effectiveness of both open-source and

proprietary web application security scanners available to security professionals. It

can be difficult to determine the relative efficacy of these tools (Berbiche et al. 2017)

due to inconsistent standards and technologies. To help security professionals

evaluate web application scanners, the Web Application Security Consortium

(WASC) developed the web application security scanner Evaluation Criteria

(WASSEC) (WASC 2009). WASSEC was a document created to provide a vendor-

neutral to help guide security professionals in selecting the most appropriate tool. It

offers a comprehensive list of features to consider when evaluating a web application

security scanner and covers factors such as crawling, parsing, session handling,

testing, and reporting.

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Testing Web Application Security Scanners against a Web 2.0 Vulnerable Web
Application

	

7

	

Edmund	Forster,	e336712@gmail.com	 	 	

Previous studies have evaluated web application security scanners by testing them

against web applications with known security vulnerabilities. Results are typically

mixed, with many scanners missing all but fundamental issues. Bau et al. (2010)

tested eight commercially available web application security scanners against popular

applications. The majority of scanners in this study detected SQLI and Reflected

XSS vulnerabilities, but identified other issues at a low rate. Doupé et al. (2010)

tested eleven web application security scanners, both commercial and open- source,

using a realistic web application. The tools overlooked many classes of vulnerability.

Suto (2010) tested three web application security scanners against each vendor's test

web applications. Results were highly variable, particularly between ‘trained' and

‘point-and-shoot' (PaS) mode. Suto noted that training these tools required expert

input and was time intensive.

Shelly et al. (2010) assessed the limitations of web application security scanners using

both a secure and an insecure custom web application. The aim of the study was to

identify scanner weaknesses, improve scanner performance, and reduce false reports.

Scanners performed well against simple reflected XSS and SQL injection

vulnerabilities but struggled to detect less traditional variants. Multiple false positives

resulted from tests against the insecure version of the web application. The study did

not explore Web 2.0 technologies such as AJAX. Ferreira and Kleppe (2011) tested

web application security scanners against a custom application. The tools did not

detect reflected XSS and SQL injection but could detect stored XSS and CSRF. Both

of these studies demonstrate that web application security scanners do not detect all

vulnerability types in a consistent manner.

A range of studies highlights significant differences in the performance of web

application security scanners, as well as the lack of standardized methods for testing

them. Alassmi et al. (2012) focused on the detection of stored XSS and identified

limitations of various scanners. Saeed (2014) compared thirty two open-source web

application security scanners using a selection of the WASSEC criteria. The best tool

that met four of six criteria was W3AF. Bakar et al. (2014) tested three web

application security scanners (Nessus, Acunetix, and OWASP ZAP). They were

assessed using two custom test applications using a two-stage methodology that tested

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Testing Web Application Security Scanners against a Web 2.0 Vulnerable Web
Application

	

8

	

Edmund	Forster,	e336712@gmail.com	 	 	

the speed and accuracy of each tool. Alnabulsi et al. (2014) and Alsmadi et al. (2013)

used SNORT to detect SQL attacks on web applications, including the DVWA. Use

of custom SNORT rules showed improved detection rates. Fakhreldeen and Eltyeb

(2014) assessed open-source scanners according to the OWASP Top 10-2013.

Detection performance was compared using the average metric. Makino & Klyvev

(2015) compare the OWASP ZAP and Skipfish web application security scanners.

The tools were used to evaluate vulnerabilities in the Damn Vulnerable Web

Application (DVWA) and Web Application Vulnerability Scanner Evaluation Project

(WAVSEP). Reports were analyzed, and tool characteristics were compared. Results

were in favor of the OWASP ZAP tool.

Zhu (2017) performed a case study test of a web application called Virtual

Application Manager using two web application security scanners. Orozco et al.

(2017) used an IDS to obtain the attack signatures of various web application security

scanners (OWASP ZAP, Acunetix, HP WebInspect, Arachni Scanner) and compared

the requests with the reports generated. Berbiche et al. (2017) assessed the

effectiveness of eleven web application security scanners against WAVSEP. Each of

the scanners produced different outcomes. All tools performed better on SQLI and

XSS than on Local and Remote File Inclusion. With so many products tested under

such a range of experimental conditions it is difficult to determine how one scanner

performs relative to another. Within this body of research, traditional (non-dynamic)

web applications have been evaluated. Much of this work either pre-dates the

emergence of Web 2.0 technologies including AJAX.

Web 2.0 technologies present new challenges for web application security scanners.

These include traps for crawlers as JS and AJAX employ dynamic links and pages.

Web application security scanners were built around HTML name and value pairs,

and not the newer formats. Form input validation often requires valid user data.

Further research will increase security professionals’ knowledge of the capabilities

and relevance of web application security scanners in the modern development

environment.

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Testing Web Application Security Scanners against a Web 2.0 Vulnerable Web
Application

	

9

	

Edmund	Forster,	e336712@gmail.com	 	 	

2. Method

2.1. Procedure

Three web application security scanners, one open-source, and two proprietary, were

tested against a modern web application with known traditional and Web 2.0

(including AJAX-related) vulnerabilities. The web application security scanners were

installed on a testing machine and deployed against the Hackazon application. The

tools were run in automated 'Point-and-Shoot' (PaS) scan mode with minimal

configuration. When necessary, the scanners were configured with test user

credentials to permit access to restricted areas of the site. AJAX options were

selected where available. The number and nature of the vulnerabilities detected were

recorded and analyzed in order to understand how these particular web application

scanners perform against a modern Web 2.0 application with AJAX and HTML use

cases.

The web application security scanners tested were:

OWASP Zed Attack Proxy (ZAP)

(www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project) (OWASP 2018) is

a free, open-source penetration testing tool maintained by the Open Web Application

Security Project (OWASP). ZAP is an “intercepting proxy” designed for testing web

applications.

BurpSuite Pro (https://portswigger.net/burp) (PortSwigger 2018) is a fully featured

web application scanner and intercepting proxy and claims "coverage of over 100

generic vulnerabilities, such as SQL injection and cross-site scripting (XSS)" and with

"great performance against all vulnerabilities in the OWASP top 10". It claims to

advance crawling capabilities (including coverage of the latest web technologies such

as REST, JSON, AJAX, and SOAP)". This study tested the professional version.

Acunetix Vulnerability Scanner https://www.acunetix.com/vulnerability-scanner/)

(proprietary demo version) (Acunetix 2018) claims to detect over 4500 web

application vulnerabilities and critical vulnerabilities with 100% accuracy. It offers

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Testing Web Application Security Scanners against a Web 2.0 Vulnerable Web
Application

	

1
0

	

Edmund	Forster,	e336712@gmail.com	 	 	

"DeepScan Technology – for crawling of AJAX-heavy client-side Single Page

Applications (SPAs)" and the "industry's most advanced SQL Injection and Cross-site

Scripting testing – includes advanced detection of DOM-based XSS."

2.2. Vulnerable Web Application

The Hackazon vulnerable web application (www.github.com/rapid7/hackazon)

created by Dan Kuykendall (Kuykendall 2014) was the target web application for this

study. Hackazon offers a ‘fake app' test site that replicates an online storefront

(Kuykendall 2014). Unlike ‘traditional' vulnerable web applications tested in

previous studies, it incorporates a realistic e-commerce workflow as well as

frameworks such as the Google Web Toolkit and JSON. ‘Traditional' vulnerable web

applications such as Web Goat (published in 2002 and written in Java) and the Damn

Vulnerable Web Application (published in 2008 and composed in PHP) are valuable

teaching tools and can effectively test Web 1.0 scanners. However, they do not pose

the challenges represented by Web 2.0.

Hackazon enables the user to configure the application to customize the vulnerability

landscape. It therefore reduces the risk that scanners have ‘pre-learned' the

vulnerabilities. Hackazon includes (Kuykendall 2014): both AJAX and standard

HTML use cases; AJAX interfaces using RESTful backends, mostly XML and JSON

with portions using GWT; web services for mobile-client; Flash and AMF support for

entering coupon codes; and strict workflow sequences with vulnerabilities. The

Hackazon frontpage (below) includes branding, product descriptions and images, and

links to typical e-commerce sign-in and contact pages .

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Testing Web Application Security Scanners against a Web 2.0 Vulnerable Web
Application

	

1
1

	

Edmund	Forster,	e336712@gmail.com	 	 	

Figure 1: Hackazon (Rapid7 2018)

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Testing Web Application Security Scanners against a Web 2.0 Vulnerable Web
Application

	

1
2

	

Edmund	Forster,	e336712@gmail.com	 	 	

2.3. Installation and Configuration

Hackazon is a PHP web application and requires a PHP framework, an Apache server,

and a MySQL database (Rapid7 2018). Hackazon was downloaded from

https://github.com/rapid7/hackazon and was installed on a Windows 10 VM by

following the installation guide (Rapid7 2018). WampServer 2 was installed and the

appropriate DocumentRoot and Directory modifications were made. The MySQL

database was created, and user credentials were set. The Hackazon Installation

Wizard was used to set up the application. Difficulties logging into the Administrator

Interface were overcome by adding the @hackazon.com stem to the username. The

following vulnerabilities were set (further detail at Annex A):

Vulnerability Type Location URL

1 SQL /

2 OSCommand /account/documents

3 RemoteFileInclude /account/help_articles

4 XSS /account/orders[id]

5 Stored XSS /account/profile/edit

6 ArbitraryFileUpload /account/profile/edit

7 BlindSQL /amf

8 SQL /api/category [GET]

9 BlindSQL /api/category [GET]

10 Stored XSS /api/category/_id_ [GET]

11 XMLExternalEntity /api/user/_id_ [PUT]

12 BlindSQL /api/user/_id_ [PUT]

13 BlindSQL /category/view

14 SQL /checkout/billing

15 Stored XSS /checkout/shipping

16 CSRF /contact

17 SQL /contact

18 Stored XSS /faq

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Testing Web Application Security Scanners against a Web 2.0 Vulnerable Web
Application

	

1
3

	

Edmund	Forster,	e336712@gmail.com	 	 	

19 BlindSQL /helpdesk

20 SQL /helpdesk

21 IntegerOverflow /product/view

22 SQL /product/view

23 XSS /search

24 SQL /user/login

25 BlindSQL /wishlist/add-product/_id_

26 CSRF /wishlist/new

27 XSS /wishlist/new

28 SQL /wishlist/remove-product/_id_

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Testing Web Application Security Scanners against a Web 2.0 Vulnerable Web
Application

	

1
4

	

Edmund	Forster,	e336712@gmail.com	 	 	

3. Results

3.1. Acunetix (Trial Version)

A significant limitation of the Acunetix Vulnerability Scanner Trial Version is that it

did not provide details of the specific location of the vulnerabilities detected. The

Acunetix Vulnerability Scanner reported 45 total alerts: four high, 30 medium, eight

low, and three informational. It performed well on XSS with an assessed 100%

detection rate. It detected one of six Blind SQL vulnerabilities and one of two CSRF

vulnerabilities. It did not identify SQL, Stored XSS, Integer Overflow, or File Upload

vulnerabilities. The report is as follows:

Alerts Raised

45 total alerts, four high, 30 medium, eight low, three informational.

High:

 XSS (3)

 BlindSQL (1)

Medium:

 User Credentials sent in clear text (19)

 Application error messages (6)

 Vulnerable JS library (3)

 HTML form without CSRF protection (1)

 Insecure crossdomain.xml file (1)

Low:

 Hidden form input found (1)

 Apache mod_negotiation filename brute-forcing

 Clickjacking X-Frame-Options header missing

 Cookie without HttpOnly flag set

 Cookie without secure flag set

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Testing Web Application Security Scanners against a Web 2.0 Vulnerable Web
Application

	

1
5

	

Edmund	Forster,	e336712@gmail.com	 	 	

 Login-page password guessing attack

 TRACE method enabled

3.2. OWASP Zed Attack Proxy (ZAP)

Automated Active Scan and the AJAX Spider modes were used. OWASP ZAP

reported a high number of alerts across five vulnerability categories. ZAP highlighted

site-wide issues such as ‘X-Frame-Options Header Not Set,' ‘Web Browser XSS

Protection Not Enabled,' and ‘Path Traversal.' It did not flag any of the specific pre-

configured vulnerabilities.

Alerts Raised

High:

Path Traversal. Allows the attacker access to files, directories, and commands that

may reside outside the web document root directory.

Medium:

X-Frame-Options Header Not Set (290). Not included in HTTP response to protect

against ‘clickjacking' attacks.

Low:

 Cookie No HttpOnly Flag (212)

 Web Browser XSS Protection Not Enabled (318)

 X-Content-Type-Options Header Missing (761)

3.3. BurpSuite Pro

BurpSuite Pro correctly identified several of the preconfigured vulnerabilities: one

BlindSQL, two SQL, one CSRF, and two reflected XSS. It also identified a potential

additional Python code injection vulnerability, as well as issues such as data from

input returned in the application's response, and the HTTP TRACE method.

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Testing Web Application Security Scanners against a Web 2.0 Vulnerable Web
Application

	

1
6

	

Edmund	Forster,	e336712@gmail.com	 	 	

Vulnerabilities Detected

High:

 Cross-site scripting (reflected) (5)

 Flash cross-domain policy

 Cleartext submission of the password (38)

 SQL Injection (3)

 Python code injection

Low:

 Password field with autocomplete enabled (3)

 Unencrypted communications

 Cookie without HttpOnly flag set (2)

Other:

 Input returned in response (403)

 HTTP TRACE enabled

 Email addresses disclosed

 Frameable response (potential Clickjacking) (39)

 Cross-site request forgery (4)

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Testing Web Application Security Scanners against a Web 2.0 Vulnerable Web
Application

	

1
7

	

Edmund	Forster,	e336712@gmail.com	 	 	

3.4. Analysis

Acunetix reported 40 total alerts, Burp Suite 499 (across 13 alert categories), and

OWASP ZAP 1676 (across five alert categories). Differences in the classification of

severity between the scanners complicated the analysis. For example, Burp Suite

classified vulnerabilities as either high severity, low severity, or informational,

whereas Acunetix and OWASP ZAP rated them as high, medium, and low.

Scanner High Medium Low Other Total Alerts

Acunetix 4 30 6 - 40

Burp Suite 45 - 450 4 499

OWASP ZAP 1 313 1363 - 1676

Table 1: Total alerts by scanner and severity

The 2215 total alerts across the three scanners covered a spectrum of 22 vulnerability

types. There were high numbers of generic items identified such as ‘Input Reflected

in Response,' ‘No Brower XSS Protection,' ‘Clickjacking X-Frame-Options,' and

‘Cookie HTTPOnly not set’ vulnerabilities. A significant number of these were

related alerts; a single issue (for example, XSS) reported across multiple parameters.

Overall, there were significant inconsistencies between each of the scanners. High

consequence issues had to be picked out from the ‘noise’ of multiple alerts relating to

more generic issues. The total alerts were analyzed to identify the number of unique

vulnerability reports (figures 2 and 3 refer). Both BurpSuite and OWASP ZAP

reported high numbers of duplicate alerts.

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Testing Web Application Security Scanners against a Web 2.0 Vulnerable Web
Application

	

1
8

	

Edmund	Forster,	e336712@gmail.com	 	 	

Figure 2: Total alerts across all scanners by type

Figure 3: Unique vulnerabilities by scanner and severity

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Testing Web Application Security Scanners against a Web 2.0 Vulnerable Web
Application

	

1
9

	

Edmund	Forster,	e336712@gmail.com	 	 	

The scanners identified SQLI and XSS vulnerabilities. Both Acunetix and Burp Suite

identified SQLI including BlindSQL issues, although coverage was far from

complete. Similarly, reflected XSS was detected, and stored XSS were not detected, a

finding consistent with previous studies by Bau et al. (2010) and Berbiche et al.

(2017). This suggests that web application security scanners may frequently

encounter problems when attempting to identify stored XSS vulnerabilities, perhaps

due to limitations in their detection methods. For example, Burpsuite identified two

of the preconfigured Reflected XSS vulnerabilities but did not flag any of the Stored

XSS issues. This observation points to the challenges involved in detecting these

attacks, and the importance of performing manual code security reviews. Burp Suite

did flag that the HTTP TRACE method was enabled, a potential risk factor for XSS

that could permit an attacker to steal cookie data via JS. Both Acunetix and Burp

Suite identified CSRF-related issues. Acunetix identified an HTML form with no

apparent CSRF protection enabled, and Burpsuite highlighted a similar feature that

was vulnerable to attacks against unauthenticated functionality. Although

encouraging that a range of vulnerabilities were successfully detected by the three

web application security scanners, the successful detections were sufficiently

inconsistent to indicate that a manual review of the vulnerable application would be

required in addition to automated testing.

Furthermore, all three scanners tested overlooked many classes of vulnerability.

These included OS Command Injection, Remote File Inclusion, and Integer Overflow

vulnerabilities. This is broadly consistent with the findings of Doupé et al. (2010) in

which half of the vulnerabilities were not detected by the scanners tested. In that

study Stored SQL Injection, directory traversal, multi-step XSS, and logic flaw

vulnerabilities were among those missed. OS Command injection uses a web

interface to execute OS commands on the web server. Manual review and URL

modification are used to detect it⎯ a difficult challenge for an automated scanner.

Remote file inclusion involves the exploitation of vulnerable inclusion procedures

such as when a page receives a file path as input that is not correctly sanitized,

allowing injection of an external URL (OWASP 2014). Testing should focus on

scripts that use filenames as parameters and prevention must ensure disabling of the

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Testing Web Application Security Scanners against a Web 2.0 Vulnerable Web
Application

	

2
0

	

Edmund	Forster,	e336712@gmail.com	 	 	

remote inclusion feature in the relevant programming language. Integer overflow

occurs when arithmetic operations cause a number to grow too large to be represented

by the allocated bits (OWASP 2013). Manual review and testing methods can be

used to detect and repair this type of vulnerability.

Overall, approximately 75% of the preconfigured vulnerabilities went undetected.

There are two principal explanations for this: the limitations of web application

security scanners and of ‘Point-and-Shoot' (PaS) mode. In their 2010 study, Shelly et

al. suggested possible explanations for these shortfalls. One may be that the overload

of requests made to the server may lead to the server failing to produce proper

response pages. In turn, the scanners may then fail to adequately handle the server

responses. Consequently opportunities may be missed to test login pages that require

human interaction and user authentication. Failings in the spidering techniques may

cause scanners to overlook parameters or links. Doupé et al. (2010) found that

modern web applications present crawling challenges to scanners. At the time,

scanners were limited in their abilities to handle multimedia data, by incomplete or

incorrect HTML parsers, and by lack of support for JS and Flash.

An additional explanation for the uneven performance is the use of PaS mode. Each

of the security scanners was deployed against the vulnerable web application in this

‘automated' or ‘point-and-shoot' setting, a widely criticized methodology with

significant limitations (Suto 2010). For example, the BurpSuite Pro documentation

(Portswigger 2018) highlights the limitations of fully automated scanning of web

applications. The developers warn that this approach to scanning will provide limited

coverage. They attribute this to the rapid pace of change in client-side technologies,

highly stateful application functionality, and the complexities of session handling

(Portswigger 2018). The developers acknowledge that human insight is required to

locate many critical vulnerabilities. They remind the user that scanners are designed

to be deployed within a "user-driven testing workflow." The use of PaS mode

undoubtedly reduced the number and range of vulnerabilities identified.

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Testing Web Application Security Scanners against a Web 2.0 Vulnerable Web
Application

	

2
1

	

Edmund	Forster,	e336712@gmail.com	 	 	

4. Conclusion

This study tested three web application security scanners against a realistic Web 2.0

web application. The web application, Hackazon, replicated an online storefront

(Kuykendall 2014). It incorporated an e-commerce workflow as well as frameworks

such as the Google Web Toolkit and JSON, as well as both AJAX and standard

HTML use cases. All of the scanners identified potential vulnerabilities, but there

was significant variation in the number and type detected. Overall 75% of configured

vulnerabilities went undetected; OS Command Injection, Remote File Inclusion,

Stored XSS, and Integer Overflow vulnerabilities were overlooked. Web application

security scanners may have limited utility when tackling Web 2.0 applications with

dynamic links, crawler traps, and form validation challenges. The lack of detection

may also be explained by the limitations of PaS mode. Given the limited overlap in

the vulnerability coverage achieved by the three scanners tested, this study supports

the recommendation to use multiple web application security scanners together in

conjunction with a specific scanning strategy to achieve greater coverage and

accuracy (McQuade 2014).

4.1. Related Work

Due to limitations of time and resources, a pre-existing vulnerable web application

tested three web application security scanners. Due to cost limitations, the Acunetix

scanner was deployed in demonstration mode and therefore did not provide granular

insights.

Several areas for potential future research were identified:

a) A significant number of studies have tested a wide range of scanners against

multiple targets. An overarching analysis of these studies will identify general

conclusions and trends

b) There are relatively few vulnerable web applications that incorporate modern

web technologies. Testing a sample of scanners against multiple vulnerable

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Testing Web Application Security Scanners against a Web 2.0 Vulnerable Web
Application

	

2
2

	

Edmund	Forster,	e336712@gmail.com	 	 	

applications would allow for a cross-comparison of results and identification

of strengths and weaknesses.

c) Suto (2010) found high variability in results between automated scanning and

manual testing following a user-driven testing workflow. The low success

rate in the present study points to the need for further research into the

limitations of the automated approach, including behavioral considerations

when undertaking manual testing.

4.2. Implications

Automated web application security scanners offer a useful tool to aid application

security testing and education. This study and previous body of literature suggest that

this tactic is not fruitful in isolation. Excessive reliance on automation could lead to a

false sense of security and a reduction in coverage.

This study adds weight to the consensus that web application security scanners have

significant limitations. The results support the OWASP recommendation that web

application security testers adopt a holistic approach and go beyond the narrow

conception of the researcher as the attacker (Ferreira & Kleppe 2011). Productive

web application security-testing regimes comprise a blend of manual assessments and

reviews, threat modeling, code review, and penetration testing. In relation to

penetration testing, web application security scanners have a limited role to play.

They are indeed generic and seductive (Keary 2013 in OWASP 2014) and automation

is not the silver bullet it appears to be.

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Testing Web Application Security Scanners against a Web 2.0 Vulnerable Web
Application

	

2
3

	

Edmund	Forster,	e336712@gmail.com	 	 	

References

Acunetix (2017) What is Remote File Inclusion (RFI)?, accessed at

https://www.acunetix.com/blog/articles/remote-file-inclusion-rfi/.

Acunetix (2018) Acunetix Vulnerability Scanner, accessed at

https://www.acunetix.com/vulnerability-scanner/.

Acunetix (2018) AJAX security: Are AJAX Applications Vulnerable to Hack

Attacks?, accessed at https://www.acunetix.com/websitesecurity/ajax/.

Alassmi, S., Zavarsky, P., Lindskog, D., Ruhl, R., Alasiri, A., & Alzaidi, M. (2012).

An analysis of the Effectiveness of Black-box Web Application Scanners in

Detection of Stored XSSI Vulnerabilities. International Journal of Information

Technology and Computer Science, 4(1).

Alnabulsi, H., Islam, M. R., & Mamun, Q. (2014, November). Detecting SQL

injection attacks using SNORT IDS. In Computer Science and Engineering

(APWC on CSE), 2014 Asia-Pacific World Congress on (pp. 1-7). IEEE.

Alsmadi, I., Alsukhni, E., & Dabbour, M. (2013). Efficient assessment and evaluation

for websites vulnerabilities using SNORT. International Journal of Security

and Its Applications, 7(1), 7-16.

Arachni (2018). Arachni Web Application Scanner Framework, accessed at

http://www.arachni-scanner.com.

Bakar, K. A. A., Daud, N. I., & Hasan, M. S. M. (2014, August). A case study on web

application vulnerability scanning tools. In Science and Information

Conference (SAI), 2014 (pp. 595-600). IEEE.

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Testing Web Application Security Scanners against a Web 2.0 Vulnerable Web
Application

	

2
4

	

Edmund	Forster,	e336712@gmail.com	 	 	

Berbiche, N., El Idrissi, S., Guerouate, F., & Sbihi, M. (2017). Performance

Evaluation of web application security scanners for Prevention and Protection

against Vulnerabilities. International Journal of Applied Engineering

Research, 12(21), 11068-11076.)

Bau, J., Bursztein, E., Gupta, D., & Mitchell, J. (2010, May). State of the art:

Automated black-box web application vulnerability testing. In Security and

Privacy (SP), 2010 IEEE Symposium on (pp. 332-345). IEEE.

Butkiewicz, M., Madhyastha, H. V., & Sekar, V. (2011, November). Understanding

website complexity: measurements, metrics, and implications. In Proceedings

of the 2011 ACM SIGCOMM conference on Internet measurement

conference (pp. 313-328). ACM.

Denim Group (2014) Limitations of Automated Tools for Dynamic Web Application

Security Scanning, www.denimgroup.com/resources/blog/2014/05/limitations-

automated-application/

Doupé, A., Cova, M., & Vigna, G. (2010, July). Why Johnny can’t pentest: An

analysis of black-box web vulnerability scanners. In International Conference

on Detection of Intrusions and Malware, and Vulnerability Assessment (pp.

111-131). Springer, Berlin, Heidelberg.

Fakhreldeen, A., & Eltyeb, E. (2014). Assessment of Open Source web application

security scanners. College of Computer Science and Information Technology,

KAU, Khulais, Saudi Arabia.

Ferreira, A. M., & Kleppe, H. (2011). Effectiveness of automated application

penetration testing tools, 6 February 2011.

Giora, S (2009) Web Application Security, Clusif, pp.1-20.

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Testing Web Application Security Scanners against a Web 2.0 Vulnerable Web
Application

	

2
5

	

Edmund	Forster,	e336712@gmail.com	 	 	

Kumar, D., Ma, Z., Durumeric, Z., Mirian, A., Mason, J., Halderman, J. A., & Bailey,

M. (2017, April). Security Challenges in an Increasingly Tangled Web.

In Proceedings of the 26th International Conference on World Wide Web (pp.

677-684). International World Wide Web Conferences Steering Committee.

Kuykendall (2014) ‘Hackazon: Stop hacking like it's 1999', presented at OWASP

APP Sec USA 2014, available at https://youtu.be/Yekzm0Olc3Y.

Makino, Y., & Klyuev, V. Evaluation of web vulnerability scanners. In 2015 IEEE

8th International Conference on Intelligent Data Acquisition and Advanced

Computing Systems: Technology and Applications (IDAACS).

McQuade, K. (2014). Open source web vulnerability scanners: the cost-effective

choice. In Proceedings of the Conference for Information Systems Applied

Research ISSN (Vol. 2167, p. 1508).

National Cyber Security Centre (NCSC). (2017) Penetration testing guidance,

accessed at www.ncsc.gov.uk/penetration-testing.

Orozco, A. L. S., Vega, E. A. A., & Villalba, L. J. G. (2017). Benchmarking of

Pentesting Tools. World Academy of Science, Engineering and Technology,

International Journal of Computer, Electrical, Automation, Control and

Information Engineering, 11(5), 590-593.

O’Reilly, T. (2007) What is web 2.0: design patterns and business models for the next

generation of software, Communication and Strategies 65 (1), 17-37.

Orloff, J (2012) Understanding AJAX vulnerabilities, accessed at

www.ibm.com/developerworks/library.

OWASP (2013) Testing for AJAX Vulnerabilities, accessed at

https://www.owasp.org.

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Testing Web Application Security Scanners against a Web 2.0 Vulnerable Web
Application

	

2
6

	

Edmund	Forster,	e336712@gmail.com	 	 	

OWASP (2014) OWASP Testing Guide v4, accessed at

https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Con

tents.

OWASP (2017) OWASP 2017 Top 10, accessed at

https://www.owasp.org/index.php/Top_10-2017_Top_10.

OWASP (2018) OWASP Zed Attack Proxy, accessed at

https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project.

Portswigger (2018). Burp Suite Professional Features, accessed at

www.portswigger.net/burp.

Portswigger (2018). Using Burp As a Point and Click Scanner, accessed at

www.portswigger.net/burp/help/scanner_pointandclick.

Saeed, F. A. (2014). Using wassec to evaluate commercial web application security

scanners. International Journal of Soft Computing and Engineering

(IJSCE), 4(1), 177-181.

Salva, S., & Laurencot, P. (2009, May). Automatic Ajax application testing.

In Internet and Web Applications and Services, 2009. ICIW'09. Fourth

International Conference on(pp. 229-234). IEEE.

Shelly, D., Marchany, R. & Tront, J. (2010) Closing the gap: analyzing the limitations

of web application vulnerability scanners, presentation to OWASP AppSec

DC 2010.

Suto, L. (2010). Analyzing the accuracy and time costs of web application security

scanners. San Francisco, February.

Symantec (2018) Symantec Threat Reports, accessed at

www.symantec.com/security_reponse/publications/threatreport.jsp.

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Testing Web Application Security Scanners against a Web 2.0 Vulnerable Web
Application

	

2
7

	

Edmund	Forster,	e336712@gmail.com	 	 	

Web Application Security Consortium (2012), The WASC Threat Classification v2.0,

accessed at www.webappsec.org.

Web Application Security Consortium (2009) web application security scanner

Evaluation Criteria, accessed at www.webappsec.org.

Yuliana, M. (2012). Security Evaluation of Web Application Vulnerability Scanners’

Strengths and Limitations Using Custom Web Application. California State

University.

Zhu, C. (2017). Experimental study of vulnerabilities in a web application, Aalto

University.

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Testing Web Application Security Scanners against a Web 2.0 Vulnerable Web
Application

	

2
8

	

Edmund	Forster,	e336712@gmail.com	 	 	

Annex A: Vulnerability Details

Hackazon was configured with the following vulnerabilities (OWASP 2016-2018):

a) SQL Injection: insertion of an SQL query from the client to the application

using user input data;

b) OS Command Injection: the goal is the execution of arbitrary commands on

the host OS via the vulnerable web application. These attacks become

possible when applications pass unsafe user input data to a system shell;

c) Remote File Inclusion: an attacker causes the web application to include a

remote file by when it allows them to insert external scripts or files

dynamically. Consequences include information disclosure and Cross-site

Scripting (XSS) to Remote Code Execution (Acunetix 2017);

d) Cross Site Scripting (XSS): injection of malicious scripts into otherwise

trusted websites. XSS attacks occur when the attacker uses a web application

to send malicious code, often as a browser side script, to a different end user;

e) Stored Cross Site Scripting (sometimes referred to as Persistent or Type-I

XSS): permanent storage of an injected script on target servers in a database,

message forum, visitor log, comment field, or similar. When requesting stored

information, the victim unwittingly retrieves the malicious script;

f) Blind SQL: a type of SQL injection attack that queries the database with true

or false challenges and establishes the answer based on the responses received.

This vulnerability is typically often leveraged when a web application displays

generic error messages but has not protected the code that is vulnerable to

SQLI;

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Testing Web Application Security Scanners against a Web 2.0 Vulnerable Web
Application

	

2
9

	

Edmund	Forster,	e336712@gmail.com	 	 	

g) Arbitrary File Upload: an attacker accesses the upload function of the

application without authenticating correctly;

h) XML External Entity: occurs when a weakly configured XML parser

processes XML input containing a reference to an external entity;

i) Cross-Site Request Forgery (CSRF): forces the end user to execute unwanted

actions on a web application in which they are authenticated;

j) Integer Overflow: Buffer overflows corrupt the execution stack of a web

application. Arithmetic operations cause a number to grow too large to be

represented in the bits allocated to it.

