
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Understanding
Oracle Auditing

 GIAC Security Essentials
Certification (GSEC)
Practical Assignment

Version 1.4b

Option 1 - Research on Topics
 in Information Security

Submitted by: Wayne Reeser

Sep 21, 2004
Location: SANS Baltimore, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wayne Reeser Table of Contents

Table of Contents

Abstract...1

Introduction ...1

Requirement for Auditing ..1

Where to start? ...2

Where is the audit trail? .. 3

DB audit trail... 3

OS audit trail ... 3

How to choose between audit trail locations .. 4

Mandatory OS auditing... 4

A first audit ... 4

The Basics (SQL AUDIT command) ...6

Audit options relevant to all auditing.. 6

AUDIT option BY SESSION ... 6

AUDIT option BY ACCESS .. 6

AUDIT WHENEVER SUCCESSFUL or NOT SUCCESSFUL 7

Statement and Privilege Auditing ... 7

Object Auditing... 8

Default Auditing ... 10

Tips and Lessons Learned..10

Common mistakes when testing ... 10

Auditing Create Session.. 11

Auditing SYSDBA.. 13

Protecting the audit trail.. 13

Managing the audit trail for performance ... 15

Object Auditing tips.. 17

What if the desired audit option does not exist? ... 17

AUDIT NOT EXISTS .. 17

Issues when modifying existing auditing.. 17

Audit return codes... 18

Removing the “ANY CLIENT” audit option ... 19

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 ii

Other Auditing Options..19

Auditing and Oracle Label Security ... 19

Oracle Fine-Grained Auditing .. 20

“Selective Audit” tool ... 20

N-tier ... 21

Auditing Enhancements in 10G.. 21

What Should be Audited? ... 21

Conclusions ..22

References ...1

Appendix A: Miscellaneous Figures ...1

Figure A- 1 DBA_AUDIT_TRAIL table definition.. 1

Figure A- 2 DBA_AUDIT TRAIL example of a LOGON record 1

Figure A- 3 DBA_AUDIT TRAIL example, part 2 ... 2

Appendix B: Useful Auditing Scripts...1

Figure B- 1 Privileges needed to run audit scripts... 1

Figure B- 2 audopts.sql: a script to show enabled standard auditing......................... 2

Figure B- 3: noaudits.sql: A script to remove most audits 4

Figure B- 4: audtr.sql: Audit trail quick look ... 5

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wayne Reeser GSEC 1.4B Practical

 1

Abstract
Understanding Oracle Auditing is critical for comprehensive application security,
but it is perceived as difficult and complex. While the typical DBA can probably
configure and enable auditing, especially given “recommended” auditing options
by the latest DB security scanner, it is unlikely that the auditing design will be as
efficient and effective as it could be. This paper will address basic Oracle
auditing and will explain some of the common “features” of audit which can
confuse or mystify even experienced DBAs. A strong grasp of the basics will
provide a good foundation for later forays into advanced auditing and
understanding of the results generated by enabling the auditing options required
by Oracle security guides.

Introduction
The first auditing question asked of DBAs is usually “How much will auditing hurt
performance?” This is an incomplete question that can’t be answered effectively
without a lot more information. Appropriate information includes the
requirements for auditing and consideration of the role auditing will play in the
overall security architecture. An effective audit strategy aims to collect the
minimum amount that is necessary to meet requirements, and may be dynamic
in that certain incidents trigger increased levels of auditing. Maximum value
auditing is thus achieved with minimum impact. This can best be accomplished
when auditing is approached as a system design problem and consideration is
given to the best audit methods.
Standard Oracle auditing is complex, but with the right foundation, it is possible
to approach it with confidence. Once standard audit is understood, the best
usage of the other auditing mechanisms will fall into place. The key is to learn
enough about the various audit tools to be able to pick the right tool for the job,
and to minimize the data collected. In the space available, this paper will attempt
to explain standard audit, provide some useful scripts for an audit toolkit, and
provide a roadmap to exploring the other auditing mechanisms.
All examples have been worked in Oracle version 9.2. While most of the
examples will work in earlier as well as later versions, results may vary.

Requirement for Auditing
Auditing serves as a deterrent to misuse, a tool for detection and damage
assessment after an incident, and an option for accepting risk if a cost effective
safeguard is not available. Kewley and Lowry (2001) documented a DARPA
study to determine if additional layers of security always resulted in greater
overall security. They found that depending upon the objective of the attacker,
additional layers sometimes added no additional security, and often made it
easier to complete the attack. The more complex the system, the more likely that
vulnerabilities will exist. Despite Defense in Depth, most internet connected

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wayne Reeser GSEC 1.4B Practical

 2

systems will experience security incidents, and effective auditing is an important
tool to assist in detecting and in evaluating those incidents.
The five goals of an audit system, as paraphrased from NCSC (1987, para. 5.1)
are:

1. Allow review of patterns of access to objects by individuals and the
effectiveness of their protection mechanisms

2. Allow discovery of repeated attempts to bypass the protection
mechanisms

3. Allow discovery of use of elevated privileges, even when legitimate.
4. Act as a deterrent – a perpetrator should be aware of the audit existence

and usage.
5. Provide assurance that attempts to bypass protection are recorded and

discovered, even if the attempt is successful.
These goals provide a useful framework for evaluating an auditing design. It is
also important to have the legal department review auditing plans. Auditing is a
form of monitoring. Monitoring must be done appropriately and in compliance
with corporate policy both in order to avoid legal liability and to enable the use of
the audit data in legal proceedings. A complete plan will derive from corporate
policy and will include direction for allowable auditing, access to audit data,
storage and handling of audit data, and archiving and destruction.

Where to start?
It is critical to obtain the Oracle documentation as a reference when approaching
auditing. Oracle provides documentation for supported versions on Oracle
Technet. The Oracle Database Security Guide describes how to enable
standard auditing, how to determine the current auditing in effect, and how to
examine the audit trail. The Oracle Database SQL Reference describes the
AUDIT and NOAUDIT syntax and options.
Although necessary as a reference, the Oracle documentation can be
overwhelming as an introduction. Finnigan’s “Introduction to Simple Oracle
Auditing” introduces several of the key auditing features and provides worked
examples that show how to use auditing to detect certain abuses. This is a good
overview, but it fails to address some common auditing quirks that can be quite
confusing.
Another difficulty to approaching auditing is that there are many ways to collect
data. According to Burleson, there are five ways to audit within Oracle:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wayne Reeser GSEC 1.4B Practical

 3

 SQL audit command (for DML)
 Auditing with object triggers (i.e., DML auditing)
 Auditing with system-level triggers (i.e., DML and DDL)
 Auditing with LogMiner (i.e., DML and DDL)
 Fine-grained auditing (i.e., select auditing)

In addition, Finnigan points out a sixth, Oracle system logs, which may be
required to fully analyze an incident. Beyond that, Flashback Query is an
excellent tool to let an investigator go back and see what data might have been
exposed by the audited event, exactly as it appeared at the time of the event.
Each of these methods has its own interface, audit trail location(s), and effective
usage, and it is necessary to know a bit about all of them to be most effective.
This paper will concentrate on standard auditing in order to explain some of the
quirks which make it appear more complex and confusing to the uninitiated. The
audit interface can be tricky at best and is easily the least intuitive of all of the
auditing methods.

Where is the audit trail?
Standard audit sends output to two locations, DB and OS. Standard audit
records are written only if two conditions are true: First, the initialization
parameter AUDIT_TRAIL must be set to something besides “OFF”. Second,
audit records will only be produced for audit events currently enabled via the SQL
command AUDIT. Regardless of the AUDIT_TRAIL setting, no actions when
connected “AS SYSDBA” are audited by the AUDIT command.
AUDIT_TRAIL determines the destination of the audit trail data, and can be set to
“DB”, “OS”, or “OFF”. AUDIT_TRAIL is a static parameter, requiring a DB restart
to change its value. “OFF” disables standard audit, but does not change the
audit settings established by the AUDIT command.

DB audit trail
The DB audit trail table is normally found in SYS.AUD$. DB audit records are
sparse, in that many of the fields are not populated depending upon the audit
type. To make things a bit easier, Oracle provides numerous views based on
AUD$ which limit the type of records and columns displayed for particular
interests.
DBA_AUDIT_TRAIL (Figure A- 1) is the most comprehensive view and it
includes all audit records plus provides code lookups to make the AUD$ data
presentable. Other views are more specialized, but an experienced DBA will
develop customized queries against DBA_AUDIT_TRAIL instead.

OS audit trail
The OS audit trail location varies by platform. On Solaris, individual files
containing one or more audit records are, by default, put in

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wayne Reeser GSEC 1.4B Practical

 4

$ORACLE_HOME/rdbms/audit. The optional initialization parameter
AUDIT_FILE_DEST can override the default location on some platforms. On
Windows, the OS trail goes into the event log which can be accessed by event
viewer or dumped to a flat file with dumpel.exe, a free resource kit component
from Microsoft.

How to choose between audit trail locations
The decision on which audit trail to use is driven by security and ease of access.
The DB audit trail is the most common choice since it contains more information
and is easier to access and analyze. The OS audit trail is more difficult to access
and modify from inside the database, which makes it easier to protect from
malicious database users or DBAs. However, this increased protection is offset
by a difficult to parse file format and decreased audit information. In either case,
certain audit records always go to the OS audit trail and these should be
reviewed regularly.

Mandatory OS auditing
By design, database startup, shutdown, and connection attempts by SYSDBA
are always audited to the OS audit trail regardless of the AUDIT_TRAIL setting.
This auditing cannot be disabled.

A first audit
The following exercises should be performed on a non-production database,
preferably with no other users active. Obtain permission to modify any database
auditing which is present. When experimenting with the audit trail, it is much
easier to figure out why a certain audit record was generated in response to an
action if there are no other users potentially producing audit records.

 Set the database initialization parameter AUDIT_TRAIL=DB and restart
the database to enable auditing.

 Place the scripts from Appendix B in the SQL*PLUS working directory.
 The script in Figure B- 1 creates a role and a user with the privileges

necessary to perform the remainder of the exercises. Execute the script
AS SYSDBA.

 Connect as the newly created user “AUD”. Unless otherwise stated, do
all exercises from the AUD user. Remember, “AS SYSDBA” connections
do not produce standard audit records.

First, determine if auditing options are already present. Figure B- 2 is a script
called audopts.sql which will show all standard auditing. While this information
can be determined via multiple data dictionary views, this one-stop script is
easier. This is the expected result if no auditing is active:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wayne Reeser GSEC 1.4B Practical

 5

SQL> @audopts.sql
dba_stmt_audit_opts union dba_priv_audit_opts

no rows selected

dba_obj_audit_opts

no rows selected

If auditing options are present, drop the auditing by using the script in Figure B-
3. Execute the script noaudits.sql and it will produce a file called noaudit.sql and
automatically execute it. Now try audopts.sql again. The script has some
limitations noted in the script documentation, review it if any auditing remains on.
Now clear the audit trail by deleting from AUD$. If this is not allowable, the script
in Figure B- 4 is useful. Edit the script audtr.sql to add the current system time to
the embedded query. Replace this string before starting an audit test and this
will help to return only the relevent audit trail records.
One of the most important goals of auditing is to find out who is accessing the
system. AUDIT CREATE SESSION is an efficient way to record this and it
should be the first option considered when enabling auditing. From the AUD
account, issue the following statements:

SQL> audit create session;

Audit succeeded.

SQL> @audopts
dba_stmt_audit_opts union dba_priv_audit_opts

USER_NAME PROXY AUDIT_OPTION AUD
---------- ----- ------------------------------ ----
 CREATE SESSION A/A

Notice the output of the audopts script shown above. The “A/A” is a two position
code. The first letter is for auditing “whenever successful” and the second
position is for auditing “whenever unsuccessful”. The codes are A= “by access”,
S= ”by session”, and “-“ = “not set”. These options will be discussed below. The
proxy column is used for auditing “proxy authentication.” Now reconnect and
check the audit trail:

SQL> connect aud/aud@ORCA;
Connected.
SQL> select * from dba_audit_trail;

-- see Figure A- 2

Examine the audit trail (see Figure A- 2). First notice that many fields are null.
The type of audit record determines which fields are populated. Use
DBA_AUDIT_TRAIL rather than selecting limited columns whenever
experimenting to make sure that all information is available. The three ID fields
are critical. The SESSIONID ties together all audit records for a session.
ENTRYID is a unique key for each record. STATEMENTID indicates the SQL
statement which caused the audit action, and multiple records can be generated

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wayne Reeser GSEC 1.4B Practical

 6

for a single statement. Note that ACTION_NAME=LOGON,
RETURN_CODE=0, all LOGOFF fields are NULL, COMMENT_TEXT field has
authentication information, and PRIVILEGE_USED = CREATE SESSION. This
type of record will be produced for each non-sysdba login under “audit create
session.” Now reconnect again and take another look:

SQL> connect aud/aud@ORCA;
Connected.
SQL> select * from dba_audit_trail;

-- see Figure A- 3

Most audit trails would have three records: the original LOGON, a LOGOFF, and
the new LOGON. In fact, Figure A- 3 shows two records, one with
ACTION_NAME=LOGOFF and one with LOGON. What happened to the original
LOGON record? That is Oracle audit quirk #1. We’ll cover the audit command a
bit more and then get back to this and other mysteries below.

The Basics (SQL AUDIT command)
ORACLE supports three different kinds of audits enabled via various syntax of
the SQL command AUDIT: statement, privilege, and object. Statement and
privilege audits share syntax and can be limited by user. Object audits apply to a
single object but cannot be restricted by user. All three share certain common
options.

Audit options relevant to all auditing
All Oracle auditing produced by the AUDIT statement goes to the same audit
trail. However, the following options are applicable to all forms of the AUDIT
statement and modify the details of when auditing is recorded.

AUDIT option BY SESSION
Auditing BY SESSION produces a single audit trail record per audit option
regardless of the number of successful or unsuccessful attempts within that
session. There is no field which provides an occurrence count or an error code
for failed attempts (RETURNCODE is always 0). In most cases, auditing BY
ACCESS is used instead of BY SESSION for the increased information.
Only certain options may be enabled BY SESSION. If the option is not a BY
SESSION option, the audit will be enabled BY ACCESS and no error will be
returned. Whenever the audit command is used, it is wise to follow up with a
check to see what resulted. A check of the audit options enabled (use the
audopts.sql script) will show which AUDIT method is actually being performed.

AUDIT option BY ACCESS
Auditing BY ACCESS generates an audit trail record for every user attempt. An
ACCESS record with a nonzero DBA_AUDIT_TRAIL.RETURNCODE indicates a
failed attempt. The RETURNCODE is simply the Oracle Error code returned due
to the failure. The benefit of BY ACCESS is that the audit trail shows the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wayne Reeser GSEC 1.4B Practical

 7

number of times the audited action was attempted, the sequence of audited
actions, and the result (either success or the failure code) of each action.

AUDIT WHENEVER SUCCESSFUL or NOT SUCCESSFUL
All AUDIT types can be restricted to audit only when a user action succeeds, only
when it fails, or both. Note that the syntax is "WHENEVER [NOT]
SUCCESSFUL". If the clause is removed entirely, the audit statement will enable
audit independent upon the outcome. This can be a useful tool in limiting the
"noise" in the audit trail. If users are allowed to perform certain actions, and
there is no security relevance to those actions, there is no need to audit. Instead,
audit whenever NOT SUCCESSFUL. Not only will this catch attempts to
escalate privileges and "fishing trips" by malicious users, it will also catch failed
SQL indicating application coding errors or users in need of training.

Statement and Privilege Auditing
Statement and privilege auditing are separated in the Oracle documentation and
data dictionary views. However, they use identical syntax, and considering them
as identical will simplify things greatly. By definition, a statement audit fires when
a user issues the matching SQL statement. A privilege audit fires when the SQL
statement requires that privilege in order to succeed. As an example, consider if
SCOTT issues the following two statements:

DROP TABLE SCOTT.MYTAB;
DROP TABLE HR_APP.PAYROLL;

Both of these are drop table statements, but the second one would need the
privilege “DROP ANY TABLE” to succeed. If the requirement is to detect drop
actions by users against objects which they do not own, auditing the statement
would produce many audit records of no consequence. The privilege audit
“AUDIT DROP ANY TABLE BY ACCESS”, however, fires only on the privilege
use, which will detect successful drops.
Continuing with the statement vs. privilege discussion: Issue the DROP ANY
TABLE audit and directly check the views which indicate whether a privilege or
statement option is set:

SQL> audit drop any table;

SQL> select * from DBA_PRIV_AUDIT_OPTS;

USER_NAME PROXY PRIVILEGE SUCCESS FAILURE
---------- ----- ---------------------- ---------- ----------
 CREATE SESSION BY ACCESS BY ACCESS
 DROP ANY TABLE BY ACCESS BY ACCESS

SQL> select * from DBA_STMT_AUDIT_OPTS;

USER_NAME PROXY AUDIT_OPTION SUCCESS FAILURE
---------- ----- ---------------------- ---------- ----------
 CREATE SESSION BY ACCESS BY ACCESS
 DROP ANY TABLE BY ACCESS BY ACCESS

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wayne Reeser GSEC 1.4B Practical

 8

First note that the AUDIT syntax does not make a distinction between statement
and privilege options. Is “CREATE SESSION” a statement or a privilege option?
What about “DROP ANY TABLE?” According to the Oracle views, each appears
to be both, but only one audit trail record results from each audited action. To
get rid of the audit from both views, simply issue a single “NOAUDIT DROP ANY
TABLE”. The best approach is to use the audopts.sql script to view the auditing
options, and not worry about it.

SQL> @audopts
dba_stmt_audit_opts union dba_priv_audit_opts

USER_NAME PROXY AUDIT_OPTION AUD
---------- ----- ------------------------------ ----
 CREATE SESSION A/A
 DROP ANY TABLE A/A

To use the AUDIT statement to set statement and privilege options, you must
have the AUDIT SYSTEM privilege.

Object Auditing
Object auditing allows the access or usage of specific objects to be audited.
Unlike statement/privilege auditing which can be limited to audit only specific
users, object auditing is active for all users, but it is limited to one object. The
AUDIT ANY privilege is required to be able to set an object audit in general.
However, the object owner can enable or disable auditing on owned objects, as
well as see which audit options are currently enabled for the object.
Here is an object auditing example:

SQL> create table mytab (x number);
SQL> create table mytab2(x number);

SQL> audit select,insert,update on mytab;
SQL> audit select on mytab2 by access;

SQL> @audopts

dba_obj_audit_opts

object
name ALT AUD COM DEL GRA IND INS LOC REN SEL UPD EXE REA
---------- --- --- --- --- --- --- --- --- --- --- --- --- ---
MYTAB -/- -/- -/- -/- -/- -/- S/S -/- -/- S/S S/S -/- -/-
MYTAB2 -/- -/- -/- -/- -/- -/- -/- -/- -/- A/A -/- -/- -/-

Note that the default auditing option for statement/privilege audits is BY
ACCESS, but the default for object auditing is BY SESSION. The best approach
is to always specify the desired option and not keep track of the defaults. In
addition, always check the options which are enabled after attempting to set
them. In this case, audopts.sql shows that the two audit statements produced
different results. The comments in the audopts.sql script (see Figure B- 2)
specify what each of the character codes mean, but in this example the “S/S”
under SEL means auditing of SELECT is active BY SESSION for both success
and failure for table MYTAB (since BY ACCESS was not specified and BY

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wayne Reeser GSEC 1.4B Practical

 9

SESSION is the default). For MYTAB2 the “A/A” means BY ACCESS. Now
execute some statements which will be audited.

SQL> select x from mytab;
SQL> select y_fail from mytab; -- this fails, bad column name
SQL> select x from mytab2;
SQL> insert into mytab values (1);
SQL> select x from mytab2;
SQL> select x from mytab;

SQL>
select obj_name,action_name,returncode,ses_actions
from dba_audit_trail
where obj_name like 'MYTAB%'
order by timestamp;

OBJ_NAME ACTION_NAME RETURNCODE SES_ACTIONS
------------- --------------- ---------- ----------------
MYTAB SESSION REC 0 ------S--B------
MYTAB2 SELECT 0
MYTAB2 SELECT 0

The difference in the results of the two audits can be seen in the audit trail. In
the case of MYTAB2, the two actions resulted in two BY ACCESS audit trail
records. However, in the case of MYTAB, a single BY SESSION record was
created. The single record is UPDATED whenever an auditable event new to
that session occurs. The SES_ACTIONS field is positionally coded as explained
in Figure A- 1. In this case, position 7 is “insert” and position 10 is “select.” ‘S’
means success, ‘F’ means failure, and ‘B’ means that both occurred during the
session.
Note that if the OS audit trail is in use, BY SESSION records are not updateable
on most platforms, so multiple records may be written.
Now continue the previous example:

Connect scott/tiger@orca
SQL> insert into aud.mytab values (1);
ORA-00942: table or view does not exist
SQL> select * from aud.mytab2;
ORA-00942: table or view does not exist

connect aud/aud@orca
select * from dba_audit_trail where username=’SCOTT’;

USERNA OWNER OBJ_NAME ACTION_NAME RETURNCODE SES_ACTIONS
------ ------ -------- ----------- ---------- --------------
SCOTT AUD MYTAB SESSION REC 0 ------F-------
SCOTT AUD MYTAB2 SELECT 2004

This example illustrates two points. First, note that the returncode that SCOTT
saw in SQL*PLUS (ORA 942) is different from the audit trail returncode in both
cases. The session record has returncode 0, even though the ses_action shows
a FAIL event. This is expected for session records; they do not record the failure
code or the number of occurrences. The ACCESS record shows returncode
2004, which stands for “security violation.” Scott did not have the privilege to
select from AUD.MYTAB2, so Oracle indicates to SCOTT that the object does

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wayne Reeser GSEC 1.4B Practical

 10

not exist while the audit trail records the real reason. This is a feature designed
to limit the information available to a malicious user.

Default Auditing
Oracle object auditing supports a default option in the syntax. It is possible to
issue “AUDIT INSERT ON DEFAULT BY ACCESS.” Note that this does not
enable any auditing. Default auditing has no effect on existing objects, rather it
creates an audit whenever a new object is subsequently created. For example:

SQL> @noaudits
SQL> audit alter on default by access;
SQL> @audopts
dba_stmt_audit_opts union dba_priv_audit_opts

no rows selected

dba_obj_audit_opts

 object object
OWNER name type ALT AUD COM DEL
---------- ---------- ------ --- --- --- ---
DEFAULT DEFAULT DEFAULT A/A -/- -/- -/-

SQL> create table testtab (x number);

SQL> @audopts
dba_stmt_audit_opts union dba_priv_audit_opts

no rows selected

dba_obj_audit_opts

 object object
OWNER name type ALT AUD COM DEL
---------- ---------- ------ --- --- --- ---
DEFAULT DEFAULT DEFAULT A/A -/- -/- -/-
AUD TESTTAB TABLE A/A -/- -/- -/-

In this example, default auditing was enabled, then a table was created. As
shown, the default audit option was automatically applied to the table. Default
auditing is not particularly useful, but it is important to be aware that it represents
auditing on future objects and does not enable those default settings on existing
objects.

Tips and Lessons Learned

Common mistakes when testing
Here are some common mistakes made when testing auditing.

 SYSDBA sessions are never audited by standard audit. The 9i
AUDIT_SYS_OPERATIONS initialization parameter explained below in
"Auditing SYSDBA" does not enable standard auditing on SYSDBA
sessions, instead it copies all SYSDBA SQL to the OS audit trail. Login as
a normal user, not as sysdba, when testing standard audit.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wayne Reeser GSEC 1.4B Practical

 11

 Auditing options take effect upon next login. Active sessions will not
reflect changes in auditing options. If running two sessions, issuing
AUDIT commands from one and testing SQL from another, the second
session will not reflect the AUDIT changes. Reconnect the second
session in order to pick up the current auditing.

 Be meticulous. Certain audit options interfere and will generate different
audit trail results. If experimenting, only enable the desired options. Keep
scripts and results to test repeatability. Always test auditing in the
"production" configuration to ensure that the selected security relevant
activities produce the expected entries in the audit trail.

 Be sure to enable the audit option desired. "AUDIT TABLE" is quite
different than "AUDIT CREATE TABLE".

 Always check the auditing that was actually enabled by the AUDIT
command. Certain AUDIT commands do not produce the expected
results and will complete successfully.

Auditing Create Session
AUDIT CREATE SESSION is one of the primary sources of confusion for new
auditors. This audits connections and connection attempts to the database.
Records produced by this audit option are unusual in that they are updated after
the initial write to the audit trail. The initial record is written with an action of
LOGON, and when the user disconnects the record is updated and the action is
changed. This can cause confusion for new Oracle auditors, since they will only
find a scattering of “LOGON” records, but many “LOGOFF” records in the audit
trail. If AUDIT CREATE SESSION is enabled, session statistics are accumulated
for each successful connection and written into the LOGOFF_% fields when the
session ends. The ACTION_NAME is changed from “LOGON” to “LOGOFF” for
a clean exit, or to “LOGOFF BY CLEANUP” if the session terminated without
logging off. Records with ACTION_NAME=LOGON are either unsuccessful
login attempts (check the RETURNCODE to see why) or current sessions
(RETURNCODE is null). The database does not clean up LOGON records
during instance recovery, so LOGON records indicating successful logon with no
matching session are an indication of that.
In the following example, the first record has a nonzero returncode, in this case a
logon attempt with the wrong password. The second record resulted from a
connect and logoff. The “LOGOFF BY CLEANUP” record was produced by
connecting as AUD and then killing the SQL*PLUS client process instead of
logging out. The last “LOGON” record is the current session and was used to
execute the query

select username, to_char(timestamp,'MMDD HH24:MI:SS') ts
, action_name, returncode
, to_char(logoff_time,'MMDD HH24:MI:SS') Logoff
from dba_audit_trail order by timestamp;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wayne Reeser GSEC 1.4B Practical

 12

USERNA TS ACTION_NAME RETURNCODE LOGOFF
------ ---------- -------------------- ---------- ----------
AUD 0829 22:29 LOGON 1017
AUD 0829 22:36 LOGOFF 0 0829 22:39
AUD 0829 22:39 LOGOFF BY CLEANUP 0 0829 22:40
AUD 0829 22:41 LOGON 0

Note that the time elapsed for the session is available by subtracting the logoff
time from the login time. Calculate the elapsed time in days and then adjust to
the desired units.

select (LOGOFF_TIME-TIMESTAMP)*(60*24) "session time in minutes"
from dba_audit_trail
where action_name like 'LOGOFF%'
and logoff_time is not null;

The DBA_AUDIT_TRAIL.COMMENT_TEXT field is critical in analyzing CREATE
SESSION audits since it contains authentication information about the
connection method. Although IP addresses and client machine names can be
spoofed, the information is still useful in most cases.
Failed SYSDBA connections always go to the OS audit trail. However, the
format is not obvious. Test various invalid types of login attempts and learn the
audit signature on each platform in use. Try to connect with the following and
see what happens:

 Nonexistent user "AS SYSDBA"
 Valid user without SYSDBA, using valid password "AS SYSDBA"
 Valid user without SYSDBA, bad password "AS SYSDBA"
 Valid SYSDBA user, bad password "AS SYSDBA"
 Valid SYSDBA user, valid password "AS SYSDBA"

The following is a Windows event log produced from a failed “connect
aud@DBSID as sysdba,” followed by a successful connect. Note that the record
does not directly indicate that this was an attempt at sysdba (it is inferred since
this is the OS audit log and the PRIVILEGE is NONE) and the status 1031 is
“insufficient privileges”. AUD is a valid account but does not have the SYSDBA
privilege. Another status code, 1017, is “bad username/password.” This one
appears if the user account does not exist at all.

Audit trail: ACTION : 'CONNECT' DATABASE USER: 'aud' PRIVILEGE :
NONE CLIENT USER: xxxx\wreeser CLIENT TERMINAL: xxxx STATUS: 1031.

Audit trail: ACTION : 'CONNECT' DATABASE USER: 'sys' PRIVILEGE :
SYSDBA CLIENT USER: SYSTEM CLIENT TERMINAL: xxxx STATUS: 0 .

If testing from an OS account with the OS DBA role enabled, be aware that the
password is not checked during SYSDBA logins. In order to test completely, use
a non-DBA OS account.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wayne Reeser GSEC 1.4B Practical

 13

Auditing SYSDBA
Full SYSDBA auditing was not possible prior to version 9, when the
AUDIT_SYS_OPERATIONS initialization parameter was added. This parameter
does not make SYSDBA subject to standard auditing. Instead, the SQL text of
every statement goes in the OS audit trail ACTION field.
Even if the DBA is trusted, it is critical to review failed connections to the
SYSDBA account, as this is the only way to detect a password cracking attempt
against SYSDBA. SYSDBA connection attempts always go to the OS audit log
regardless of whether SYSDBA auditing is enabled, but these records are often
ignored or deleted to conserve space. SYSDBA auditing provides a valuable
way to track authorized or unauthorized SYSDBA actions, but it is only useful if
the OS audit trail is reviewed.
The OS audit trail files consist of name/value pairs and can be parsed. Consider
forwarding audit files to a separate system as they are created and process them
there to reduce the danger of modification or deletion. Be aware, that certain
audit files are kept open for extended periods. Consult a platform system
administrator for the best way to securely transfer and parse the files so as not to
lose information. Although full automated analysis or reduction of the OS audit
trail is difficult, full analysis of connection attempts is not, and provides the
biggest benefit.
When analyzing the SYSDBA audit trail, note that the SQL text of each statement
is written into the audit file, complete with carriage returns in some cases. Also,
there is a limited length per audit record on most platforms. If the audit statement
exceeds this length, multiple audit events are generated, each with a chunk of
the SQL text until the SQL text is exhausted. There is no "chunk id" in the audit
trail, so reassembling these chunks can be difficult.

Protecting the audit trail
It is important to protect the audit trail from modification. To audit changes made
to the database audit trail (the AUD$ table), use the following statement:
AUDIT AUDIT, INSERT, UPDATE, DELETE ON AUD$ BY ACCESS;
Audit records in the AUD$ table can only be deleted by a SYSDBA or an account
with delete on AUD$. In general, the SYSDBA account should be restricted to a
highly trusted DBA and all other DBAs should be operating under least privilege.
Write a package to automate the process of purging the audit trail so that the
direct privilege is not needed by the auditors (see “Managing the audit trail for
performance” below).
If connected as SYSDBA, there is no need for a malicious user to modify the DB
audit trail to cover his actions since any audits would go to the OS audit trail.
Because the OS audit trail writes to a small number of separate files per session,
it is trivial for a DBA with OS privileges to find and delete the relevant files. Make
sure that all DBAs have personal OS accounts and that they use the OS group to
obtain OS privileges on Oracle. This allows file permissions to be set so that

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wayne Reeser GSEC 1.4B Practical

 14

most DBAs cannot delete the OS audit files. If this is done, consider how to deal
with the situation of a filled audit OS directory. This could be accidental, or a
deliberate DOS attack and is as simple as launching an infinite loop. Ensure that
procedures exist to allow audit trail maintenance by all DBAs in such a situation,
along with oversight to ensure that this condition is not generated to hide
malicious actions.
Even if the audit trail integrity is suspect, some actions can be detected after the
fact by good configuration management. One way to detect object changes is to
query the DBA_OBJECTS table where last_ddl_time is recent. A more accurate
approach would be to run a periodic comparison of the schema to the expected
results, similar to the way in which Tripwire is used to check the integrity of the
operating system files.
It is as important to monitor the auditing options which are in effect as it is to
guard against changes to the audit trail. Auditing the AUDIT statement itself
(AUDIT AUDIT SYSTEM and AUDIT AUDIT ANY) will record any changes to
auditing options in the DB audit trail. In addition, “AUDIT AUDIT on app_object
BY ACCESS” should be issued for each object in an application schema. Here is
a quick example:

SQL> rem CLEAN UP AUDIT TRAIL FIRST
SQL> @NOAUDITS.SQL
SQL> @DELETE FROM AUD$

-- reconnect to clear any options from the session
SQL CONNECT AUD/AUD@sid

SQL> AUDIT AUDIT, INSERT, UPDATE, DELETE ON AUD$ BY ACCESS;
SQL> AUDIT AUDIT SYSTEM;
SQL> AUDIT AUDIT ANY;
SQL> AUDIT AUDIT ON MYTAB BY ACCESS;
SQL> AUDIT AUDIT ON MYTAB2;
SQL> @audopts
dba_stmt_audit_opts union dba_priv_audit_opts

USER_NAME PROXY AUDIT_OPTION AUD
---------- ----- ------------------------------ ----
 AUDIT ANY A/A
 AUDIT SYSTEM A/A
 SYSTEM AUDIT A/A

dba_obj_audit_opts

object
name ALT AUD COM DEL GRA IND INS LOC REN SEL UPD EXE REA
------- --- --- --- --- --- --- --- --- --- --- --- --- ---
AUD$ -/- A/A -/- A/A -/- -/- A/A -/- -/- -/- A/A -/- -/-
MYTAB -/- A/A -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/-
MYTAB2 -/- S/S -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/-

Note that the statement audit options in effect show “audit system” and “system
audit.” This is a side effect of the privilege/statement issue mentioned previously.
It represents a single audit, and is removed by “noaudit audit system”.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wayne Reeser GSEC 1.4B Practical

 15

Note that to include audit modifications on objects, you must explicitly use “BY
ACCESS.” As can be seen in the MYTAB2 example above, for objects BY
SESSION is the default. Now remove the auditing and check the audit trail.

select obj_name,action_name,returncode,ses_actions
from dba_audit_trail
where obj_name like 'MYTAB%'
order by timestamp;

OBJ_NAME ACTION_NAME RETURNCODE SES_ACTIONS
---------- --------------- ---------- ----------------
MYTAB2 SESSION REC 0 -S--------------
MYTAB AUDIT OBJECT 0

SQL> noaudit all on mytab;
SQL> noaudit all on mytab2;
SQL>
select obj_name,action_name,returncode,ses_actions
from dba_audit_trail
where obj_name like 'MYTAB%'
order by timestamp;

OBJ_NAME ACTION_NAME RETURNCODE SES_ACTIONS
---------- --------------- ---------- ----------------
MYTAB2 SESSION REC 0 -S--------------
MYTAB AUDIT OBJECT 0
MYTAB NOAUDIT OBJECT 0

In this case, the session record does not provide enough information to see that
the auditing has been removed. However, BY the ACCESS records show the
noaudit.
Just as with object configuration management, audit option configuration
management is a good addition to defense. Once the desired auditing options
are set, the audopts.sql script output can be baselined and an automatic check
can be scheduled to detect changes against the baselined output. The
combination of the audit trail and the configuration check should minimize errors
and maximize the detection of audit changes.

Managing the audit trail for performance
The audit trail tables AUD$ and FGA_LOG$ are located in the SYSTEM
tablespace and most DBA modifications to the table are not permissible under
Oracle Support. In order to efficiently perform analysis on the audit trail, indexes
are necessary. Since indexes cannot be added to AUD$ for support and
performance reasons (they would slow down inserts into the audit trail), a
solution is needed. Here is one solution that may be of use:

 Create an auditor schema which will remained locked once built.
 Duplicate the AUD$ and FGA$ tables there (create table as select). Index

them as needed if you intend to do analysis. Partition the tables by
timestamp if the audit volume is large.

 Create an audit utilities package under the auditor schema. This will
contain all of the needed procedures for managing the audit data.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wayne Reeser GSEC 1.4B Practical

 16

 Schedule a job to move the audit data out of the system tablespace and
into the auditor schema tables. Run the job frequently enough that the
number of records to be moved is small.

The “move” job which transfers data from AUD$ to the audit schema
AUD$ is critical to get right. It must only move data which does not belong
to current sessions. Remember that LOGON and SESSION records are
updated. If the records have been moved, the update information will be
lost, which could be a big problem in some industries. Compare the audit
trail sessionid to the V$SESSION information to determine if the record
can be safely moved. Choose whether to copy (and later duplicate or
overwrite) updateable records which belong to active sessions or simply
wait until the session disconnects. The typical scenario is to perform an
"insert as select" with some where clause to move the data into the audit
repository, followed by a delete. Remember to include a max timestamp
in both where clauses or use a single transaction so that the delete
statement does not remove new records which were not copied.

For connection pooled architectures, deciding whether to wait for a
session to end will have significant consequences in terms of early
detection of malicious activity, since sessions may stay active for a long
time. If a connection pool is involved, consider cycling the connections
(have the application server reconnect a pool connection after a certain
number of uses) or restarting the connection pool on some schedule.

 If the tables are partitioned, deal with them as they fill. Move them to a
separate auditing DB, or analyze and delete them. By maintaining them in
partitions, it is easy to meet such requirements as “maintain three months
of audit data online” while still being able to roll off data without a massive
delete operation. Empty partitions take little space, allowing a full year
"rolling window" of audit partitions to be kept online if you partition by week
number.

 Assign auditors execute access on the audit utilities package to manage
the data transfers. This will allow them to perform the duties without direct
permissions on the audit trail tables, and their actions can in turn be
audited.

 If system performance and security concerns permit, index the audit
schema table and allow auditors to work from it. If not, transfer the data to
an audit DB and perform analysis there.

The benefit of this approach is that the SYSTEM audit tables are kept small. To
the extent possible, the audit work is taken offline with as little impact on the
production system as possible while still maintaining the audit trail integrity.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wayne Reeser GSEC 1.4B Practical

 17

Object Auditing tips
In general, the schema which owns an object has the right to enable or disable
auditing on that object. For this reason, it is a bad idea to allow users or
administrators to connect to the schema of application tables. In fact, the
schemas should be locked if at all possible, and all privileges explicitly granted to
application DBA accounts. If locking the account is not possible, it is still possible
to protect the auditing on those objects. First, AUDIT AUDIT ON
OBJECT_NAME BY ACCESS. This will alert that someone attempted to modify
the auditing. Second, disable AUDIT and NOAUDIT by using database triggers
on the DDL. For example, this trigger will prevent NOAUDIT:

create or replace trigger no_noaudit
before noaudit on database
begin
 raise_application_error(-20000,'Noaudit command is disabled');
end;

Once this trigger is enabled, no auditing can be disabled unless the user has the
privileges to drop the trigger, which would normally be limited to SYSDBA.

What if the desired audit option does not exist?
Certain audit statements result in the audit of related statements. For example,
"AUDIT DROP TABLE" does not exist. Instead, AUDIT TABLE will audit create,
drop, and truncate. The AUDIT section of the Oracle Database SQL Reference
contains tables which provide the available syntax and the resulting auditing.
These tables are fairly accurate, but some exceptions exist. Always verify that
the desired auditing is in place by attempting the action and verifying that an
audit record is produced.

AUDIT NOT EXISTS
AUDIT NOT EXISTS catches failed attempts to access existing or nonexisting
objects. This is a useful auditing option because it will detect actions that
indicate either malicious activity or broken application code.

Issues when modifying existing auditing
When manipulating existing auditing, especially to change the success/not
success or the session/access options, the results are not predictable. In
general it is safer to NOAUDIT the entire option, then AUDIT the desired new
options.
For example:

SQL> audit create table by access;
SQL> noaudit create table whenever not successful;

Based on this, the logical result should be that auditing whenever successful is
left on by access. Instead, the odd result is that the statement is present in the
auditing options, but it is disabled in both states.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wayne Reeser GSEC 1.4B Practical

 18

SQL> @audopts
dba_stmt_audit_opts union dba_priv_audit_opts

USER_NAME PROXY AUDIT_OPTION AUD
---------- ----- ------------------------------ ----
 CREATE TABLE -/-

The correct way to get the expected auditing is to drop the audit and reapply the
desired options:

SQL> noaudit create table;
SQL> audit create table by access whenever successful;

Always check the audit options to see if the audit statement actually performed
the action expected. In some cases, certain auditing combinations are not
supported but the AUDIT statement succeeds. A check of the audit options will
show what was actually enabled.
Whenever testing new audit options, execute a test case and review the audit
trail to see that the audit signature produced is the expected one. It is better to
learn what produces certain odd looking audit trail entries by generating them
rather than to find them while reviewing a production audit trail and have no
explanation for what they mean or how they got there.

Audit return codes
The DBA_AUDIT_TRAIL table has a RETURNCODE column which indicates the
results of the auditing action. The code is the Oracle error message (ORA-nnnn)
that was audited.
While a non-zero returncode is the Oracle error code, it is not necessarily the
error code returned to the user. In some cases, the user gets a generic error
while a more specific one is written to the audit trail to avoid giving malicious
users unauthorized information.
The easiest way to look up the error code is to use the UNIX oerr facility (“oerr
ora nnnn”). Here are some common codes.

RETURNCODE Oracle Error text

0 success

1 unique constraint violated

942 table does not exist

995 invalid synonym

1004 default username feature not supported

1017 bad username/pwd

1927 cannot REVOKE privileges you did not grant

1031 insufficient privileges

2004 security violation (this error code is only written to
the audit trail, the user will see a different error
code)

4043 object does not exist

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wayne Reeser GSEC 1.4B Practical

 19

Removing the “ANY CLIENT” audit option
Often DBAs experimenting with AUDIT issue the following statement to see if
SYS can, in fact, be audited. The following audit option is the result:

SQL> Audit create table by SYS;
SQL> select * from dba_stmt_audit_opts;

USER_NAME PROXY_NAME AUDIT_OPTION SUCCESS FAILURE
---------- ---------- -------------- ---------- ----------
ANY CLIENT CREATE TABLE BY ACCESS BY ACCESS

Normally, to turn off an audit option, you simply issue “NOAUDIT audit_option BY
user_name”. In this case it fails:

SQL> noaudit create table by any client;
 *
ERROR at line 1: ORA-00987: missing or invalid username(s)

The correct statement to remove the audit option is:
SQL> noaudit create table by sys;

The "ANY CLIENT" user is used for auditing of Oracle proxy authentication, but
then the proxy_name is not null. For example, here is an example of the
documented behavior:

SQL> audit create table by scott on behalf of any;
Audit succeeded.

SQL> select * from dba_stmt_audit_opts;

USER_NAME PROXY_NAME AUDIT_OPTION SUCCESS FAILURE
---------- ---------- -------------- ---------- ----------
ANY CLIENT SCOTT CREATE TABLE BY ACCESS BY ACCESS

SQL> noaudit create table by scott on behalf of any;
Noaudit succeeded.

Other Auditing Options

Auditing and Oracle Label Security
Oracle Label Security provides an out-of-the-box implementation of Mandatory
Access Control (MAC). OLS auditing is administered via the SA_AUDIT stored
procedure, but the resulting audit trail is written to the AUD$ table, just as
standard auditing is. Be aware that when OLS is installed, the SYS schema
AUD$ table is moved into the SYSTEM schema (although it is still in the
SYSTEM tablespace. While synonyms and permissions are adjusted to make
this transparent, it has the potential to confuse administrators, and the security
policy must address this change to avoid leaving the audit trail vulnerable to
access, modification, or loss.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wayne Reeser GSEC 1.4B Practical

 20

When using OLS auditing, be aware that OLS audit actions are not decoded by
DBA_AUDIT_TRAIL. It is possible to create a view using the OLS procedure
SA_AUDIT_ADMIN.CREATE_VIEW. Compare the results of the OLS audit trail
view with the DBA_AUDIT_TRAIL in order to learn the decode of the action
codes from OLS.

Oracle Fine-Grained Auditing
Fine-Grained Audit (FGA) allows much greater information collection by the
auditor. With FGA, the auditor can log the actual SQL of a query along with bind
variables. Even better, additional selectivity can be placed upon the audit policy
in order to focus the triggering of the audit event. When the policy is created, a
table column can be identified along with a SQL predicate such as ‘salary >
100000’. The audit only occurs if a record is retrieved by the user which matches
the predicate. In addition, a handler procedure can be bound which will fire when
the audit event occurs. This allows capability such as notifying an auditor via
pager when certain suspicious activity occurs. In Oracle 9, FGA is limited to
auditing successful select statements.
Fine Grained audit has several unexpected behaviors. The audit event is
triggered when the first row which meets the audit criteria is processed into the
result set, and then that audit policy is ignored for the remainder of the query.
Thus one audit event per query is fired, not one per record. If the query is
cancelled before the first matching record is processed, or if no matching records
are present (even if the query would have retrieved them), the audit is not
triggered. FGA does not capture unsuccessful attempts, so it must be combined
with other mechanisms to form a complete solution. FGA only works properly
under the Cost Based Optimizer. If the rule based optimizer is used, false
positives can occur (but no events auditable under the policy conditions will ever
be missed).

“Selective Audit” tool
For US Federal customers, Oracle Consulting’s Advanced Programs Group has
created an audit management product called “Selective Audit.” The tool is based
on Enterprise Manager and supports auditing options through a GUI. In addition
the tool provides text and graphical reporting with drill down capabilities. One of
the best features is the ability to select a statement in the audit trail report screen
and “replay” it using flashback query to see the query results as they appeared
to the user who submitted the query. In addition, the tool includes a graphical
interface for Oracle Logminer. Selective Audit also provides “SQL Capture,” the
ability to capture SQL text and bind variables for Select, Insert, Update, and
Delete in Oracle 9i (SQL Capture is distinct from Fine Grained Audit).
A link to a product datasheet is included in the references section. Selective
Audit may be available for commercial customers as well, check with an Oracle
Sales representative.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wayne Reeser GSEC 1.4B Practical

 21

N-tier
In an N-tier system, a user authenticates to an application server, which then
performs queries against other systems such as Oracle databases on behalf of
the user. For Oracle security and auditing to be effective, it is necessary for the
database to know the end user identity. Oracle provides proxy authentication as
one way to provide both a pooling mechanism and pass identity information to
the database. When using proxy authentication, the database must have an
account for the user, but the application server can “proxy” this identity over a
pool account. The database audits the connection in the comment_text field
during the user logon event.
A second method used by custom applications is to set the client identifier. This
is a session variable that can be set and reset by the application server
whenever it is doing work on behalf of an end user. The contents of this variable
are written automatically into both the standard and fine-grained audit trails
whenever an audit event occurs. If Oracle Label Security (OLS) is being used,
the application can also use the PROFILE_ACCESS privilege to enable the
user’s OLS privileges. Oracle’s Secure Application roles can also be leveraged
in this scheme to securely provide object privileges specific to the user.
The whitepaper "Oracle Database 10g Security and Identity Management"
provides further detail on the security and auditing technologies available for
custom development. As application server code becomes more complex,
attempts are made to abstract or allow the application server to handle much of
the work. When this happens, the first thing lost is usually the ability to identify
the end user to the database. With the growth of J2EE, there is an effort to
return to placing the security rules in the application layer. Depending upon the
application server, it is still possible to preserve the end user identity into the
database. Piermarini shows how Oracle auditing and Fine Grained Access
features can be used in a J2EE environment such that the database is aware of
the end user and can authorize and audit accordingly.

Auditing Enhancements in 10G
This paper is limited to the basics of auditing in 9i to prepare a groundwork for
further investigation. Arup Nanda’s “Auditing Tells All” is a great introduction to
auditing features added in 10G. 10G enhances standard auditing as well as
Fine Grained Auditing.

What Should be Audited?
Deciding what to audit should be dictated by requirements. The more important
the data, the more important it is to audit. Many documents exist which
recommend auditing as part of securing Oracle. The Center for Internet Security
provides a hardening guide as well as a scoring tool. This is an excellent place
to start and it provides specific recommendations for hardening as well as
specific auditing to enable. Auditing is only a single part of securing the system,
and all parts must be addressed.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wayne Reeser GSEC 1.4B Practical

 22

Conclusions
Effective auditing is not an easy task. For today's multi-tier systems, it must be
addressed as a requirement during the system design which addresses identity
management from the client, through the middle tiers, and to the back end
servers. Oracle provides a number of tools which can be incorporated to allow
effective N-tier auditing. Even when designed well, auditing requires careful
planning and continued maintenance. Failure to administer the process will
result in missed opportunities to detect problems as well as the possibility of a
system crash due to full storage devices. Auditing does require resources, and
the need to audit must be carefully balanced with the benefits to determine the
appropriate level of auditing. An effective audit program will modify and tune the
level of auditing in response to system activity over time.
Oracle standard auditing is the most complex of all of the Oracle auditing
mechanisms to use well. With a good background in standard audit, it should be
possible to approach the other tools with confidence and to learn where they fit in
a well rounded audit toolkit. This paper has presented a basic overview of
Oracle auditing, some lessons learned, and features which commonly cause
confusion. For a good understanding of Oracle audit, combine this paper with
the Oracle documentation and a few practice sessions.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wayne Reeser References

 1

References
Burleson, D. (Jul, 2003) "Oracle design security from the ground up" URL:
http://builder.com.com/5100-6388-5035131.html (22 Aug 2004).
Center for Internet Security, Benchmark and Scoring Tool for the Oracle
Database, URL: http://www.cisecurity.org/bench_oracle.html (22 Aug 2004)
Finnigan, P. (Apr. 2003) "Introduction to Simple Oracle Auditing." URL:
http://www.securityfocus.com/infocus/1689 (22 Aug 2004).
Kewley, D and Lowry, J. (June 2001), “Observations on the effects of defense in
depth on adversary behavior in cyber warfare.” Proceedings of the 2001 IEEE
Workshop on Information Assurance and Security.
URL: http://www.itoc.usma.edu/Workshop/2001/Authors/Submitted_Abstracts/
paperT3C2(18).pdf (22 Aug 2004).
National Computer Security Center, NCSC-TG-001 Version 2, A Guide to
Understanding Audit in Trusted Systems, (1987), URL:
http://www.radium.ncsc.mil/tpep/library/rainbow/ (22 Aug 2004).
Oracle Corporation (2003), Oracle Database Security Guide10g Release 1
(10.1), URL: http://download-west.oracle.com/docs/cd/B14117_01 /network.101/
b10773/toc.htm (22 Aug 2004).
Oracle Corporation (2003), Oracle Database SQL Reference 10g Release 1
(10.1), URL: http://download-west.oracle.com/docs/cd/B14117_01/server.101/
b10759/toc.htm (22 Aug 2004).
Oracle Corporation (Dec, 2003), “Oracle Database 10g Security and Identity
Management” URL: http://www.oracle.com/technology/deploy/security/pdf/
twp_security_db_securityoverview_10r1_1203.pdf (22 Aug 2004).
Oracle Corporation (2001), “Oracle Selective Audit” URL:
http://www.oracle.com/industries/government/selective_audit.pdf (22 Aug 2004).
Oracle Corporation, Shortcut to full product Documentation, URL:
http://tahiti.oracle.com/ (22 Aug 2004).
Oracle Technet, URL: http://www.oracle.com/technology/index.html (22 Aug
2004).
Nanda, Arup “Oracle Database 10g: The Top 20 Features for DBAs, Week 10,
Auditing Tells All” URL:
http://www.oracle.com/technology/pub/articles/10gdba/week10_10gdba.html (1
SEP 2004)
Piermarini, M. and Knox, D. (Oct. 2003), "Leveraging Oracle Database Security
with J2EE Container Managed Persistence." URL:
http://otn.oracle.com/tech/java/oc4j/pdf/j2ee-cmp-with-vpd.pdf (22 Aug 2004).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wayne Reeser Appendix A

 1

Appendix A: Miscellaneous Figures
Figure A- 1 DBA_AUDIT_TRAIL table definition

Column Description

OS_USERNAME Operating system login whose actions were audited

USERNAME Name (not ID number) of the user audited

USERHOST Numeric instance ID for the Oracle DB instance

TERMINAL Identifier of the user's terminal

TIMESTAMP Timestamp of audit or login time for LOGON action

OWNER Schema of the object affected by the action

OBJ_NAME Name of the object affected by the action

ACTION Numeric type code corresponding to the action

ACTION_NAME Text name corresponding to the ACTION. If null in
DBA_AUDIT_TRAIL, the audit record was probably
generated by an add-on such as Label Security and not the
AUDIT command. Check those components for an audit
trail view which will decode those actions.

NEW_OWNER Schema of the NEW_NAME object

NEW_NAME New object name after RENAME or the name of the
underlying object

OBJ_PRIVILEGE Object privileges of a GRANT or REVOKE statement

SYS_PRIVILEGE System privileges of a GRANT or REVOKE statement

ADMIN_OPTION The role or system priv. was granted with ADMIN option

GRANTEE Name of grantee in a GRANT or REVOKE statement

AUDIT_OPTION Auditing option set with the AUDIT statement

SES_ACTIONS Session summary (a string of 16 characters, one for each
action type in the order ALTER, AUDIT, COMMENT,
DELETE, GRANT, INDEX, INSERT, LOCK, RENAME,
SELECT, UPDATE, REFERENCES, and EXECUTE. Pos.
14- 16 reserved. <‘-‘ none, S success, F failure, B both>

LOGOFF_TIME Timestamp for user log off. LOGOFF_% fields are only
populated for records with an action of LOGOFF or
LOGOFF BY CLEANUP

LOGOFF_LREAD Logical reads for the session

LOGOFF_PREAD Physical reads for the session

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wayne Reeser Appendix A

 2

LOGOFF_LWRITE Logical writes for the session

LOGOFF_DLOCK # of Deadlocks detected during the session

COMMENT_TEXT For login, indicates how the user was authenticated. The
method can be one of the following:
DATABASE - authentication was done by password
NETWORK - SQL or the Advanced Security authentication
PROXY - the client was authenticated by another user. The
name of the proxy user follows the method type

SESSIONID Use this to get all audit records for a single session.

ENTRYID Unique ID for each audit trail record

STATEMENTID Connects all audit trail records generated by a single user
SQL statement

RETURNCODE Oracle Server message code (ORA - error).

PRIV_USED System privilege used to execute the action

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wayne Reeser Appendix A

 1

Figure A- 2 DBA_AUDIT TRAIL example of a LOGON record
SQL> connect aud/aud@orca
Connected.
SQL> select * from dba_audit_trail;

OS_USERNAME
--
USERNA USERHOST
------ ---
TERMINAL
--
TIMESTAMP OWNER OBJ_NAME ACTION ACTION_NAME NEW_OWNER
--------- ------ -------------------- ---------- -------------------- ------------------------------
NEW_NAME
--
SES_ACTIONS LOGOFF_TI LOGOFF_LREAD LOGOFF_PREAD LOGOFF_LWRITE LOGOFF_DLOCK
---------------- --------- ------------ ------------ ------------- ---------------------------------
COMMENT_TEXT
--
SESSIONID ENTRYID STATEMENTID RETURNCODE PRIV_USED CLIENT_ID
--------- ------- ----------- ---------- -------------------- --------------------------------------
xxxxxx\wreeser
AUD
xxxxxx
26-AUG-04 100 LOGON

Authenticated by: DATABASE; Client address: (ADDRESS=(PROTOCOL=tcp)(HOST=xxx.xxx.xxx.xxx)(PORT=4380))
 665 1 1 0 CREATE SESSION

1 row selected.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wayne Reeser Appendix A

 2

Figure A- 3 DBA_AUDIT TRAIL example, part 2
OS_USERNAME
--
USERNA USERHOST
------ ---
TERMINAL
--
TIMESTAMP OWNER OBJ_NAME ACTION ACTION_NAME NEW_OWNER
--------- ------ -------------------- ---------- -------------------- ------------------------------
NEW_NAME
--
SES_ACTIONS LOGOFF_TI LOGOFF_LREAD LOGOFF_PREAD LOGOFF_LWRITE LOGOFF_DLOCK
---------------- --------- ------------ ------------ ------------- ---------------------------------
COMMENT_TEXT
--
SESSIONID ENTRYID STATEMENTID RETURNCODE PRIV_USED CLIENT_ID
--------- ------- ----------- ---------- -------------------- --------------------------------------
xxxxxx\wreeser
AUD
xxxxxx
26-AUG-04 101 LOGOFF

 26-AUG-04 95 0 11 0
Authenticated by: DATABASE; Client address: (ADDRESS=(PROTOCOL=tcp)(HOST=xxx.xxx.xxx.xxx)(PORT=4380))
 665 1 1 0 CREATE SESSION
<<<<second record begins here>>>>
xxxxxx\wreeser
AUD
xxxxxx
26-AUG-04 100 LOGON

Authenticated by: DATABASE; Client address: (ADDRESS=(PROTOCOL=tcp)(HOST=xxx.xxx.xxx.xxx)(PORT=4421))
 666 1 1 0 CREATE SESSION

2 rows selected.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wayne Reeser Appendix B

 1

Appendix B: Useful Auditing Scripts
Figure B- 1 Privileges needed to run audit scripts

REM
REM
REM Privileges needed to run audit scripts
REM
REM If Oracle Label Security is installed,
REM AUD$ has been moved to SYSTEM.AUD$
REM
REM verify that there is no existing role named audmgr before executing
REM

drop role audmgr;
create role audmgr;

grant select,delete on sys.aud$ to audmgr;
grant select on sys.dba_audit_trail to audmgr;
grant select on sys.dba_stmt_audit_opts to audmgr;
grant select on sys.dba_priv_audit_opts to audmgr;
grant select on sys.dba_obj_audit_opts to audmgr;
grant select on sys.all_def_audit_opts to audmgr;
grant select on sys.obj$ to audmgr;
grant select on sys.tab$ to audmgr;
grant select on sys.stmt_audit_option_map to audmgr;
grant select on sys.system_privilege_map to audmgr;

grant select on sys.dba_users to audmgr;
grant select on sys.dba_objects to audmgr;
grant select on sys.dba_tables to audmgr;
grant select on sys.obj$ to audmgr;
grant select on sys.tab$ to audmgr;

grant audit any to audmgr;
grant audit system to audmgr;

Create user aud identified by aud
default tablespace users
temporary tablespace temp;
grant create session, resource, audmgr to aud;

create synonym aud.aud$ for sys.aud$;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wayne Reeser Appendix B

 2

Figure B- 2 audopts.sql: a script to show enabled standard auditing
REM
REM audopts.sql
REM
REM Created by Wayne Reeser
REM
REM Script to report all enabled standard auditing
REM

set pages 9999
SET ECHO off
col user_name format a10
col proxy_name format a5
col audit_option format a30
col timest format a13
col userid format a8 trunc
col obn format a10 trunc
col name format a13 trunc
col sessionid format 99999
col entryid format 999
col owner format a10 wrap
col object_name hea object|name format a10 wrap
col object_type hea object|type format a6 wrap
col priv_used format a15 wrap
col privilege format a30 wrap
col aud format a4

col acname format a12 heading "Action name"

prompt dba_stmt_audit_opts union dba_priv_audit_opts
select user_name,proxy_name,audit_option,
decode(success,'BY ACCESS','A','BY SESSION','S','-')||
'/'||decode(failure,'BY ACCESS','A','BY SESSION','S','-') aud
from sys.dba_stmt_audit_opts
union
select user_name,proxy_name,privilege audit_option,
decode(success,'BY ACCESS','A','BY SESSION','S','-')||
'/'||decode(failure,'BY ACCESS','A','BY SESSION','S','-') aud
from sys.dba_priv_audit_opts
order by audit_option
/

REM the following query will produce output like this for each
REM object
REM A= by access, S= by session, - = off:

REM ALT AUD COM DEL GRA IND INS LOC REN SEL UPD REF EXE CRE REA WRI
REM --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
REM -/- -/- -/- A/A -/- -/- A/A -/- -/- -/- A/A -/- -/- -/- -/- -/-

REM ALT ALTER LOC LOCK
REM AUD AUDIT REN RENAME
REM COM COMMENT SEL SELECT
REM DEL DELETE UPD UPDATE
REM GRA GRANT REF REFERENCES (not used)
REM IND INDEX EXE EXECUTE
REM INS INSERT REA READ on Directories
REM CRE, WRI (CREATE and WRITE on Directories -- not supported)

REM the first part gets the default auditing options.
REM the all_def_audit_opts doesn't have the REA col.

REM Note the final line in the where clause:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wayne Reeser Appendix B

 3

REM and substr(alt,1,1) in ('-','A','S')
REM is intended to filter out IOT overflow segments, which
REM are classified as object type ‘table’ and have their audit
REM field filled with the NUL character if the characterset is
REM ASCII and something else, otherwise.

col alt for a3
col aud for a3
col com for a3
col del for a3
col gra for a3
col ind for a3
col ins for a3
col loc for a3
col ren for a3
col sel for a3
col upd for a3
col exe for a3
col rea for a3

prompt dba_obj_audit_opts
select 'DEFAULT' owner, 'DEFAULT' object_name, 'DEFAULT' object_type,
substr(t.audit$, 1, 1) || '/' || substr(t.audit$, 2, 1) ALT,
substr(t.audit$, 3, 1) || '/' || substr(t.audit$, 4, 1) AUD,
substr(t.audit$, 5, 1) || '/' || substr(t.audit$, 6, 1) COM,
substr(t.audit$, 7, 1) || '/' || substr(t.audit$, 8, 1) DEL,
substr(t.audit$, 9, 1) || '/' || substr(t.audit$, 10, 1) GRA,
substr(t.audit$, 11, 1) || '/' || substr(t.audit$, 12, 1) IND,
substr(t.audit$, 13, 1) || '/' || substr(t.audit$, 14, 1) INS,
substr(t.audit$, 15, 1) || '/' || substr(t.audit$, 16, 1) LOC,
substr(t.audit$, 17, 1) || '/' || substr(t.audit$, 18, 1) REN,
substr(t.audit$, 19, 1) || '/' || substr(t.audit$, 20, 1) SEL,
substr(t.audit$, 21, 1) || '/' || substr(t.audit$, 22, 1) UPD,
substr(t.audit$, 25, 1) || '/' || substr(t.audit$, 26, 1) EXE,
substr(t.audit$, 29, 1) || '/' || substr(t.audit$, 30, 1) REA
from sys.obj$ o, sys.tab$ t
where o.obj# = t.obj#
and o.owner# = 0
and o.name = '_default_auditing_options_'
and (instr(t.audit$,'S')>0
 or instr(t.audit$,'A')>0
)
union
select owner,object_name,object_type,
alt,aud,com,del,gra,ind,ins,loc,ren,sel,upd,exe,rea
 from sys.dba_obj_audit_opts
 where (
 alt !='-/-' or aud !='-/-' or com !='-/-'
 or del !='-/-' or gra !='-/-' or ind !='-/-'
 or ins !='-/-' or loc !='-/-' or ren !='-/-'
 or sel !='-/-' or upd !='-/-' or exe !='-/-' or rea !='-/-'
)
 and substr(alt,1,1) in ('-','A','S')
/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wayne Reeser Appendix B

 4

Figure B- 3: noaudits.sql: A script to remove most audits
REM
REM noaudits.sql
REM
REM Created by Wayne Reeser
REM
REM produces and executes a script called noaudit.sql to remove
REM most statement/privilege audits and turn off default auditing.
REM
REM a case where script does not work:
REM Note: If the user_name is 'ANY CLIENT' and the proxy_name column is
REM null in either dba_stmt_audit_opts or dba_priv_audit_opts,
REM then you can only delete the audit
REM by issuing "noaudit xxxx by SYS" (where xxxx is the audit option)
REM if user_name is 'ANY CLIENT' and proxy_name is not null,
REM for example: if proxy_name is 'scott', then
REM "noaudit xxxx by scott on behalf of any"
REM
REM Case 2: “AUDIT ALL PRIVILEGES BY SCOTT”
REM This will produce audits which do not meet the individual
REM NOAUDIT syntax. The way to get rid of these is to
REM issue “NOAUDIT ALL PRIVILEGES BY SCOTT”
REM -- automating it is left as an exercise for the reader…
REM

set termout off
set pages 9999
set lines 71
col a format a70
set head off
set echo off
set feedback off
spool noaudit.sql

select 'noaudit '||audit_option
 ||decode(user_name,'','',' by '||user_name)||';' a
from sys.dba_stmt_audit_opts
union
select 'noaudit '||privilege
 ||decode(user_name,'','',' by '||user_name)||';' a
from sys.dba_priv_audit_opts
union
select 'noaudit all on default;' a
from dual
union
select 'noaudit all on '||owner||'.'||object_name||';' a
from sys.dba_obj_audit_opts
where (
 alt !='-/-' or aud !='-/-' or com !='-/-'
 or del !='-/-' or gra !='-/-' or ind !='-/-'
 or ins !='-/-' or loc !='-/-' or ren !='-/-'
 or sel !='-/-' or upd !='-/-' or exe !='-/-' or rea !='-/-'
)
 and substr(alt,1,1) in ('-','A','S');

spool off;
set termout on
set head on
set feedback on
set echo on
@noaudit.sql

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wayne Reeser Appendix B

 5

Figure B- 4: audtr.sql: Audit trail quick look
REM
REM audtr.sql
REM
REM Created by Wayne Reeser
REM
REM produces a quick dump of the audit trail, useful when
REM experimenting with audit.

REM select to_char(sysdate,'YYYYMMDD HH24MISS') from dual;
REM and replace the string in the where clause with the result
REM to limit the records returned (if you are unable to
REM truncate/delete the audit trail)
REM
REM spools output to results.txt
REM

set lines 200
set trimspool on
set pages 9999
col username for a6 trunc
col owner for a6 trunc
col obj_name for a20
col action_name for a20 trunc
col priv_used for a20 trunc
col audit_option for a20 trunc
-- col returncode
col ses_actions for a16 trunc
col obj_privilege for a16 trunc
col sys_privilege for a20 trunc
col audit_option for a20 trunc
col grantee for a6 trunc
col ts for a10 trunc
spool result.txt
select username, owner, obj_name, action_name, priv_used,
 audit_option, returncode, ses_actions,
 obj_privilege,sys_privilege, admin_option,grantee,
 to_char(timestamp,'MMDDHH24MISS') ts
from dba_audit_trail
where to_char(timestamp,'YYYYMMDD HH24MISS')>'20040901 161840'
order by to_char(timestamp,'YYYYMMDD HH24MISS');
spool off

