
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Using Snort to Detect Rogue IRC Bot Programs

Christopher W. Hanna
Oct. 8, 2004

GSEC Practical Version 1.4c (Track 1 – Option 1)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Abstract
 This paper provides an introductory guide for an IT professional to
learn about and detect IRC bots on an internal network. The author is a
systems administrator at a small Midwestern university who believes this
research can be valuable to other educational or governmental organizations
facing the same problems. This paper will first present a brief overview of
what IRC is and how it functions, and why it is a potential threat vector. It will
then show by example IDS rules via Snort that can be used to detect rogue
IRC activity. Next, several packets taken from the University network will be
analyzed to show how these rogue IRC systems communicate. Finally, some
problems and solutions will be discussed with the hopes of improving the
detection process.

What is Internet Relay Chat (IRC)?
 In order to understand the problem, we first need grounding in the
basics of what IRC is. We need to understand how IRC is designed and how
compromised nodes are controlled before we can begin detecting them. This
is only a brief look at some of the commands; a more in depth coverage can
be found online, starting with RFC 1459, which defines the basic IRC
commands.
 IRC was initially designed in 1988, by Jarkko “WiZ” Oikarinen in
Finland. IRC was designed as an expansion of existing BBS software of the
time to allow real-time chat and USENET-style news (Stenberg). Jarkko
expanded the chat portion and convinced users at other universities to join the
experimental network. In a year's time, there were servers around the globe;
the network expanded and grew into several forms, eventually ending up as
the EFNet. Because of problems with duplicate usernames, the Undernet
was formed as a competing network -- it allowed channel registrations and
other amenities (Stenberg). The aforementioned RFC 1459 was written in
1993 as a basic description, and reported that the user base in the two years
previous had seen a tenfold growth (Oikarinen/Reed). The 'NickServ' also
existed at this time; NickServ was a service in Germany that allowed
nicknames to be registered so users could keep their favorite nick when they
logged back on. This service was shut down sometime in 1994. Due to a
series of conflicts over bandwidth consumption issues, network 'splits', and
registration problems, IRC has now splintered into hundreds of independent
groups. There is no longer a monolithic IRC network from which all paths
lead. Modern processing power and bandwidth availability, especially at
universities, is such that almost any machine can host a minor IRC server, at
least for around 1000 clients to use. In addition, the base IRC protocol from
RFC 1459 is being constantly revised and added to, and as a result, a large
number of people are developing custom additions to IRC (Stenberg).

IRC Terms
 IRC is a client-server based system. Clients connect to a server and
are identified by a unique 'nickname'. Though various operations, clients can
then connect with other clients, and servers can connect with other servers,
becoming clients of their own, like a relay. A special class of user called the
'operator' has the power to disconnect servers or users from the network.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

This can cause what is called a 'split'; if two groups are on the same channel
but one server is removed from another, the two groups can talk amongst
themselves but cannot see anyone from the other group.
 Clients organize themselves by joining channels. A channel is simply
a sub-partition of the whole for which a client will receive messages, much like
a television channel determines the programs viewed by its user. Channel
names typically begin with '#', so the '#bicycles' channel is likely (but not
necessarily) a channel for talking about bicycles. These channels are
created by the first person to join them, and disappear if no one is in the
channel. Each channel also has its own operators who can remove clients
from that channel, change the title of the channel, or other tasks relating only
to that channel.

Basic IRC Commands
 The IRC commands covered here are ASCII strings, and this will
simplify detection. Messages sent may or may not generate a reply; there is
no guarantee of delivery in the standard.
 The NICK and USER commands identify a user to the network. The
NICK command sets the nickname of the user. This command may fail if that
user already exists on the network, and the client will be forced to choose
another name. The USER command identifies the host, server, and screen-
printable name of the user. Since clients must issue these commands in the
beginning phases of an IRC connection, looking for this string on the network
will identify IRC bots trying to log into a server or a server being logged into,
depending upon the direction of the traffic.
 Several messages deal with channel operations. The JOIN command
allows a user to join a specific channel. The MODE command allows
modifications to made to a channel; for example, for it to be made private.
The MODE message can also be used on a specific nickname to change its
status.
 PING and PONG are two commands used to maintain connection
between the server and the client. If no activity occurs on a connection, the
server will send a PING to the client to make sure it is alive. The client must
respond with a PONG within a set time interval to remain active.
 Users can contact other users with the PRIVMSG message that allows
one user to send a private message to another. Within the scope of this
paper, PRIVMSG is usually used to send the controlling entity an indication
that the compromised client machine is ready for their use or has completed
some task. Often these nodes are called ‘zombie’ machines, because they
are mindless drones waiting for marching orders from the central authority. A
large group on these clients can be controlled by one server: authorities in
Singapore found a group of 10,000 zombie machines connecting to one
central server, waiting to be used as part of an attack (Roberts). We will be
examining the details of this traffic later.
 Clients can also open up a direct connection to each other, bypassing
the IRC server entirely once the connection is established. This is normally
done to speed up data transfers. IRC provides the DCC message for this
operation. These messages rely on CTCP, or Client-To-Client Protocol,
which is not covered here (see http://www.irchelp.org/irchelp/rfc/ctcpspec.html
for a good description). A DCC message from one user to another includes
the type of connection (CHAT or SEND) as well as the address and expected

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

port that the host connection is expected to listen on. In analysis of the IRC
bot packets, it appears that the DCC SEND command is commonly used to
transfer files between hosts. The term 'XDCC' is also thrown about – this is
not a message type but instead a mechanism by which a script can initiate a
DCC transfer. Several channel monikers on IRC use XDCC as part of label,
making it a useful string to search for when we generate rules later on.
 Finally, the CONNECT message is used to order one server to log into
another. This can allow a smaller IRC server to act as a gateway to a larger
one. There are many more IRC messages. The standard reference for these
commands is RFC 1459, but some IRC servers have additional commands
that have been added since this standard was written. We should also note
that the messages above are what is seen at the network level and not the
actual commands used in an IRC client; instead commands in a client will be
prefixed with '/', such as '/privmsg Mordecai Is that you?', which would send 'Is
that you?' to the user registered with the 'Mordecai' nickname.

What is an IRC 'bot'?
 Put simply, a 'bot' is an automated program that sits in the channel like
a user and acts on messages sent by others from the channel. As the state of
permissions and channels in IRC is transitory in nature, some use a bot
program to keep control of a channel while they are away. For example, an
IRC bot could give a user operator permission on a channel as soon as they
log in, provided they PRIVMSG it a certain password. This allows the channel
to stay in their control at all times. One example of a flexible bot program is
the Dancer bot, which helps keep an IRC channel safe from flooding and
performs other services such as spell checking, dictionary lookups, and SMTP
VRFY checks (Holst). IRC bots can also act as a simple responder,
dispensing fortunes, channel logs, URL links, or even movie times to
response to PRIVMSG commands from users or requests made from those
chatting in the same channel as the bot.
 However, in the cases we examine here, the purpose is not so benign.
Commonly these bots will also serve as an automated file transfer service, or
to collect information from compromised machines, which in turn have a trojan
horse program installed that forces them to quietly join the channel. The
joiners are themselves bots, being automated programs that are listening for a
command to come across the channel so they can react to it. For example, a
hacker could order a channel of 500+ bots to commence a distributed denial-
of-service attack by giving a simple command on the channel to which they
would all be listening to. The 500 hosts involved could be from 500 different
environments, meaning the denial-of-service attack would have a higher
likelihood of being successful. Because of the problems associated with bots
and potential for flooding or misuse, a lot of the primary IRC servers,
especially in the United States, aggressively ban users who run them. EFNet
in particular does this, and one Undernet administrator adds any bots he sees
to a kill list, and believes that bots are “generally a nuisance”. (Wagner).
There is, however, no reason why an intruder cannot simply connect to
another IRC server or even keep their own IRC server off of the rest of the
IRC network. As we will see later, an attacker can set up an IRC server on
one of the compromised machines if they judge it is adequate to hold the
traffic. The distributed nature of IRC serves well to meet this need.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Why should my organization be concerned?
 Rogue IRC bots can pose a multitude of risks. Let us look at the
simplest case and assume an organization is housing only one of these
infected machines. This machine is, by nature, compromised, carrying with it
all the usual risks of data compromise, espionage, and loss of time and
productivity cleaning up the problem. However, machines compromised with
IRC bots are usually designed to act as part of a large network with one or
more controlling points. As part of that design, attackers usually use the bots
themselves to act as scanning agents to find more machines with weak
security in order to set up more bots, and so on. Consider any computers in
your enterprise with weak security likely targets, and any commonalities
between machines in the local environment will likely be exploited almost
immediately. Intruders have even been known to fight amongst themselves to
divide up their share of the territory -- “Do Not Rehack”, displays a typical
Serv-U FTP server banner associated with IRC compromise, as if there were
some ethical bounds to exploitation. Using this exploitation software is not
even that difficult, and hackers target university and government sites,
because they typically have lax security and fast network connectivity
(Graham). Even as far back as 1998, the Computer Incident Advisory
Capability of the Department of Energy warned about this growing issue
(Rayome).
 A larger problem presents itself when the enterprise gets scanned from
within for vulnerabilities and an attacker acts on those vulnerabilities. Much
of this can be automated with scripts, which are relatively simple programs.
An attacker does not need to even be able to write or understand this
process; they may just download an IRC bot kit off of a website or through
other contacts. As this network of compromised machines starts to grow, so
does the personnel time that must be committed to cleaning up the problem.
 Once a few machines on the internal network become compromised
and are set to scan, consider the majority of the enterprise scanned if some
network segmentation is not in place. This will be a very quick process, and
includes port-scanning, exploitation of services, and cracking of passwords.
As part of the scanning, there may be loss of network connectivity as routers
or firewalls struggle to keep up with the large quantity of requests. As seen
later, some attackers are now scanning more slowly in an attempt to evade
detection. Also, most common workstations are now powerful enough to
overwhelm a basic router when acting as a group. As more nodes are added
to the system, more scanning takes place. Larger scale attacks can now
occur; and a coordinated attack of fifty nodes from your network at another
organization's network is not going to be taken lightly. The liability can grow
exponentially if this issue is not dealt with as soon as it is detected.

Problems with detecting IRC bots
 Unfortunately, many of these IRC bots pass by undetected until they
become a significant problem. There are several reasons for this. First, they
do not follow the same pattern of infection or signature from incident to
incident. IT organizations which are used to dealing with known quantities
such as a virus or security hole may be surprised by the flexibility of this
problem. Support staff may be aware of the symptoms but not the causes.
Secondly, some stateful firewalls, both hardware and application, might not
alert about this traffic since it is initiated at the client side once compromise

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

has taken place. Lastly, IRC bots are unusual in quantity of packets sent.
The actual amount of data sent can be very minimal until the bot is put to use
in a denial-of-service attack or other ends. If the organization relies on a list
of top bandwidth consumers to identify security problems, IRC bots may not
be displayed on that chart until the worst case scenario hits, potentially
knocking out the entire network.

Brief overview of Snort
 Snort is an open source intrusion detection system. An intrusion
detection system, or IDS, aims to monitor network traffic and look for signs
that intrusion is taking place. It then dumps these 'alerts' into some form that
security personnel can use to follow-up on the traffic. Snort, like most IDS
systems, is configured with a set of rules or signatures to log traffic which is
deemed suspicious. There are several factors when setting up a Snort
system such as horsepower, listening capability, maintenance, and
positioning within the network. The actual Snort installation is fairly simple
and several guides are available:

“Snort, Apache, PHP, MySQL, ACID on Redhat 9.0 Installation Guide”
http://www.snort.org/docs/snort_acid_rh9.pdf

“Snort Install on Win2000/XP with Acid, and MySQL”
http://www.sans.org/rr/papers/index.php?id=362

“Snort Alert Collection and Analysis Suite”
http://www.sans.org/rr/papers/index.php?id=1253

Snort rules are used in this paper because the Snort suite consists of free
tools that anyone can use on multiple platforms, so the system has become a
standard. Rules passed along via mailing list or other avenues are often
coded for Snort.

Sample rules for detection
 Snort rule generation is both simple and difficult. The key to a good
Snort rule is properly defining the signature you wish to match. Rules that
catch too many packets will lead to false positives -- and overwhelm staff who
read the alerts, by deluging them with possible problems which do not exist.
On the other hand, rules that are defined too tightly will miss some types of
exploitation completely. Additionally, attack vectors change from day to day,
so the rules database needs to be monitored, updated, and 'weeded'
frequently. As a beginning step, let us look at a generic rule which has
nothing to do with IRC bots, at least not directly.

alert udp any any -> any 69 (msg:"TFTP GET nc.exe"; content: "|0001|";
offset:0; depth:2; content:"nc.exe"; offset:2; nocase;
classtype:successful-admin; sid:1441; rev:2;)

 The first part of this rule, “alert udp any any -> any 69”, defines the
basic parameters that we match. In this case, we are only looking at UDP
traffic from any host to any other host with destination port 69. This happens
to be the port and protocol associated with TFTP transfers. TFTP actually is a

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

common element used by IRC bots, as infected nodes transfer files to each
other. However, TFTP is also used by many legitimate devices. Keep in
mind that the IDS has to be able to listen between these nodes in order for
this rule to work; having the IDS at the network perimeter is not going to help
detect traffic between two internal workstations. All of the packet logs in this
paper are from the network perimeter, but we will see traces of activity within
the enterprise that may have gone undetected if we were not looking for IRC
bot activity.
 Because we do not want to match just any TFTP packet, the next part
of this rule defines some extra parameters to our alert. The 'msg' is the text
message displayed in the database, so the personnel reading the IDS alerts
understand what the alert shows. This description should be brief and
meaningful. The 'content' field contains the packet signature to track, or the
actual content of the packet that we are attempting to match. The 'offset'
indicates the byte offset where the pattern matcher should start searching for
the pattern. The counterpart to this directive is ‘depth’, which specifies the
last byte in the packet that needs to be searched for this pattern. In the
above, there are two separate patterns that must be matched for the alert to
trigger. This rule is looking for a TFTP GET (content: “|0001|”) in the first two
bytes, followed by the text ‘nc.exe’ somewhere after. The nocase directive
specifies case is not important to the match. Finally, the classtype indicates
what class of alert it is filed under, whereas the 'sid' and 'rev' give each rule a
unique ID and revision number.
 We should also note the “->” arrow, which indicates the direction of
traffic. We may want to match traffic in either direction (“<>”) or only to or
from our internal network. In the snort configuration file, one can define the
internal network like so:

var HOME_NET 139.102.0.0/16

Then, rules can include this parameter – it is much simpler than putting our
network segment in every rule. Incidentally, 'nc.exe' is a program called
Netcat which was the staple of Windows compromises for years, which is why
this alert exists in the first place.

Having covered a sample rule, let us look at some actual rules to detect
IRC bots on the network:

alert tcp $HOME_NET any -> any 6666:7000 (msg:"Possible IRC access
(JOIN)"; flow:to_server,established; content:"JOIN"; classtype:misc-
attack; sid:1000041; rev:7; tag:session,30,seconds;)

This rule tracks connections from the internal network to the external network
on all TCP ports in the range 6666 to 7000, as long as the packet contains the
word “JOIN”. IRC typically uses port TCP 6667 for communication, but that is
not a guarantee. Many IRC servers use a slightly modified port number, such
as TCP 7000. In fact, there is a problem with this rule as it relates to
intrusion. Most exploiters do not code their exploits themselves; attackers
instead find a pre-packaged “kit” to download and then customize it to suit
their needs. The IRC port number is just a configuration option in that kit.
Many intruders are now using varying ports as a means to escape detection
where the others have been caught. To remedy this problem, suppose we

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

open up this rule to catch IRC servers on any port:

alert tcp $HOME_NET any -> any any (msg:"Any port possible IRC
access (JOIN)"; flow:to_server,established; content:"JOIN";
classtype:misc-attack; sid:1000042; rev:7; tag:session,30,seconds;)

 It may not be clear at first, but this is not a good rule – if the alerts that
this rule generates are viewed, they are almost entirely false positives. Why?
Since this rule matches any packet with “JOIN”, it matches any web pages
with the word, unencrypted e-mails with the word, and so forth. As
mentioned before, writing rules is a delicate process. This rule has to
examine every outgoing packet, no matter what the source or destination, so
it is also very processor consumptive for the sniffing machine. As the alerts
themselves need to be analyzed to see if they are useful and proper, the
sniffers themselves needs to be analyzed for CPU and memory consumption
to ensure that the rules are efficiently written. If a sniffer does not have
enough process time to run every rule per packet, it will begin to miss
packets. This is one reason why multiple sniffers can be very useful when
working in anything but a small environment.
 How can this rule be made more specific? First, a pattern can be
matched that does not also match a common English word. The pattern can
also match known bad traffic that has been observed. If we can sniff the
traffic of a known compromised host, we can use that data to formulate
possible avenues of detection. This is a good idea not just for this rule, but for
most areas that the IDS will cover. In the case of IRC bots, there actually
seems to be a good deal of conformity in the kits used, as just some specifics
have been tweaked. Unfortunately the kits can change fairly quickly. Here
are two rules that are the result of analyzing known systems:

alert tcp $HOME_NET !21:443 -> any 1000:65535 (content:"PRIVMSG";
nocase:; content:"Exploit"; nocase:; within:80; tag:session, 20, packets;
msg:"Possible RogueIRC 03"; classtype:trojan-activity; sid:1000168;
rev:6;)

alert tcp $HOME_NET !21:443 -> any 1000:65535 (content:"PRIVMSG";
nocase:; content:"lsass"; nocase:; within:80; tag:session, 20, packets;
msg:"Possible RogueIRC 04"; classtype:trojan-activity; sid:1000168;
rev:6;)

 These rules were distributed via the Educause security mailing list
(Holstein). They focus on traffic sent from any port locally except 21 thru 443,
outward to high numbered ports. This does mean that a crafty attacker using
port 80 to send packets will not be detected; in this case, we are willing to
take that risk because the overhead in looking through port 80 traffic is so
high. We might also have another rule that filters this port more effectively, or
use a web proxy to help filter traffic instead. Each logged packet, in order to
match one of these two rules, must contain a “PRIVMSG” followed closely
(within 80 bytes) by either “Exploit” or “lsass”. These rules were developed
because activity was seen matching these rules. The “lsass” rule refers to a
Microsoft security vulnerability regarding the “lsass.exe” program (for more
details, see http://www.microsoft.com/technet/security/bulletin/ms04-
011.mspx). It is clear these are temporal rules that may not be effective for

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

very long. When major new patterns of attack emerge, new rules to deal with
the new exploits must be developed quickly.
 Instead of broadening our scope from the standard IRC ports and
working outward, we can look at the inverse of normal traffic; that is, traffic of
this type on atypical ports. The following rule was formed from the 'bleeding
edge' rule set (Esler).

alert tcp $HOME_NET any -> $EXTERNAL_NET !6661:6668
(msg:"BLEEDING-EDGE IRC - Nick change on non-std port";
content:"NICK "; offset:0; depth:5; nocase; dsize:<64;
flow:to_server,established; tag:session,300,seconds; classtype:trojan-
activity; sid:2000345; rev:3;)

This rule proves quite fruitful as long as we do not detect many false positives
from this range. It also tracks only in one direction, which saves some
processing time if we feel that the internal network is mostly safe or that
another rule is catching internal IRC servers.
 We have looked primarily at cracking and exploitation, but we should
also consider basic piracy, whether part of a compromised system or not.
IRC bots can be used to deliver this traffic as a kind of peer-to-peer network,
with most of the actual peers being compromised machines. In some cases,
a person will set up a bot on their own machine for the purpose of sharing.
Usually the best way to focus on this problem is to look for XDCC packets.
Here are two sample rules that were written based on university traffic, one for
any XDCC activity with the word 'movie', and another for 'rar' files which are
typically compressed software.

alert tcp any 6666:7000 -> any any (msg:"Possible XDCC Activity
[MOVIE]"; flow:to_server,established; content:"XDCC"; nocase:;
within:80; tag:session, 20, packets; content:"movie"; nocase:;
classtype:misc-attack; sid:1000442; rev:7;)

alert tcp any 6666:7000 -> any any (msg:"Possible XDCC Activity [rar]";
flow:to_server,established; content:"XDCC"; nocase:; within:80;
tag:session, 20, packets; content:".rar"; nocase:; classtype:misc-attack;
sid:1000142; rev:7;)

The goal here is not only to find the problematic machines, but to gather some
rudimentary evidence that can be used to show what is being delivered.
There is some legitimate IRC traffic in the universe, and if we are going to
allow the protocol we need to weed out the good (few) from the bad (many).
If the filename is in the XDCC request, we should be able to find the
destination server, source server, as well as the file being transmitted from the
alert packet. Whether we choose to deal with piracy like a system
compromise, or through a separate judicial process, is a matter of policy.
However, consider that the line between the two is not always so clear.

More comprehensive information on writing Snort rules can be found easily on
the Internet. The following URL is the best place to start:
http://www.snort.org/docs/snort_manual/node14.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Packet analysis on real-world cases
 As mentioned above, reading packets from a known compromised host
can help with rule generation. It can also help understand how a
compromised system works to inform the attacker. The following are several
packets culled from a live network. We should also look at a proposed rule
or two that could better match the packets we are discussing, so we can
understand how to adapt to new situations as they arise.

#(1 - 10) [2004-XX-XX 15:58:07] Possible RogueIRC 06
IPv4: 139.102.X.X -> X.X.X.X
 hlen=5 TOS=0 dlen=166 ID=62152 flags=0 offset=0 TTL=127 chksum=7885
TCP: port=3664 -> dport: 42844 flags=***AP*** seq=1788584791
 ack=1599969501 off=5 res=0 win=15304 urp=0 chksum=11289
Payload: length = 126

000 : 50 52 49 56 4D 53 47 20 23 70 31 20 3A 5B 53 43 PRIVMSG #p1 :[SC
010 : 41 4E 5D 3A 20 52 61 6E 64 6F 6D 20 50 6F 72 74 AN]: Random Port
020 : 20 53 63 61 6E 20 73 74 61 72 74 65 64 20 6F 6E Scan started on
030 : 20 31 33 39 2E 31 30 32 2E 78 2E 78 3A 34 34 35 139.102.x.x:445
040 : 20 77 69 74 68 20 61 20 64 65 6C 61 79 20 6F 66 with a delay of
050 : 20 31 30 20 73 65 63 6F 6E 64 73 20 66 6F 72 20 10 seconds for
060 : 30 20 6D 69 6E 75 74 65 73 20 75 73 69 6E 67 20 0 minutes using
070 : 31 30 30 20 74 68 72 65 61 64 73 2E 0D 0A 100 threads...

 Our first packet is the result of another rule from the Educause security
list. Like the RogueIRC 03 and 04 rules above, this rule looks for a PRIVMSG
followed by another string, in this case “Scan”. The host IP addresses and
times have been sanitized for security reasons. The machine on
139.102.X.X, the university network, is reporting to its master server in
Beijing. The ASCII representation on the packet is kept on the right-hand
column, hex on the left. This packet is reporting that the bot is beginning a
port scan of TCP 445 against the university network; very likely it is looking for
'lsass' vulnerabilities. Note that the “139.102.x.x” is part of the original packet,
not a sanitized result, so the attacker is quite aware of the correct range to
scan. The bot is also apparently using 100 different scanning threads, each
with a delay of 10 seconds in between scans. One theory behind the delay
between scanning is to prevent detection by not consuming too many
resources, either at the workstation or network level, to be noticed. Through
this packet we can see that one machine with an IRC bot, or any sort of
compromise in the enterprise, can quickly lead to large-scale scanning and
exploitation. If the perimeter firewall normally blocks this scanning, it may not
be blocking this attack because it occurs from one machine internal to the
network to another. If that is not worrisome enough, consider that the packet
above actually came from an unsecured wireless network within 139.102.X.X
– we have no information as to who owns that machine!

#(1 - 1) [2004-XX-XX 15:50:26] Possible RogueIRC 05
IPv4: 139.102.X.X -> X.X.X.X
 hlen=5 TOS=0 dlen=148 ID=4425 flags=0 offset=0 TTL=127 chksum=65452
TCP: port=1038 -> dport: 42844 flags=***AP*** seq=130447279
 ack=2246909574 off=5 res=0 win=15497 urp=0 chksum=23413
Payload: length = 108

000 : 50 52 49 56 4D 53 47 20 23 70 31 2D 73 63 61 6E PRIVMSG #p1-scan
010 : 20 3A 5B 46 54 50 5D 3A 20 46 69 6C 65 20 74 72 :[FTP]: File tr
020 : 61 6E 73 66 65 72 20 63 6F 6D 70 6C 65 74 65 20 ansfer complete
030 : 74 6F 20 49 50 3A 20 31 33 39 2E 31 30 32 2E XX to IP: 139.102.X
040 : XX XX 2E XX XX XX 20 28 43 3A 5C 57 49 4E 44 4F XX.XXX (C:\WINDO
050 : 57 53 5C 53 79 73 74 65 6D 33 32 5C 72 65 61 6C WS\System32\real
060 : 70 6C 61 79 2E 65 78 65 29 2E 0D 0A play.exe)...

 This packet is nice enough to report the actual destination of its attack,
as well as the file on the destination machine that is part of the trojan being

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

installed. This is the direct result of the scan initiated above. These
messages are returned as status messages to keep the attacker informed of
the progress of each bot. Here we can see that the 139.102.X.X address
(sanitized, this is a specific machine not a range) is being compromised from
the scanner host. It is very likely that this new machine will also be set up to
do scanning, perhaps for a different vulnerability. Although the packet
reports FTP, this may actually be reporting TFTP traffic.

#(1 - 78) [2004-XX-XX 16:27:01] Possible XDCC Activity [MOVIE]
IPv4: X.X.X.X -> 139.102.X.X
 hlen=5 TOS=0 dlen=172 ID=14550 flags=0 offset=0 TTL=50 chksum=40999
TCP: port=6669 -> dport: 1919 flags=***AP*** seq=2580276337
 ack=424066451 off=5 res=0 win=6432 urp=0 chksum=23554
Payload: length = 132

000 : 3A 5B 65 58 5D 58 44 43 43 2D 50 44 2D 39 39 34 :[eX]XDCC-PD-994
010 : 35 21 7E 65 58 40 38 33 31 31 34 30 46 2E 38 41 5!~eX@831140F.8A
020 : 35 38 44 41 37 32 2E 33 43 41 36 31 31 42 46 2E 58DA72.3CA611BF.
030 : 49 50 20 50 52 49 56 4D 53 47 20 23 65 78 74 72 IP PRIVMSG #extr
040 : 65 6D 65 2D 6D 6F 76 69 65 7A 20 3A 54 6F 74 61 eme-moviez :Tota
050 : 6C 20 4F 66 66 65 72 65 64 3A 20 31 31 33 36 2E l Offered: 1136.
060 : 32 20 4D 42 20 20 54 6F 74 61 6C 20 54 72 61 6E 2 MB Total Tran
070 : 73 66 65 72 72 65 64 3A 20 33 33 35 2E 33 35 20 sferred: 335.35
080 : 47 42 0D 0A GB..

 This packet is from an IRC bot on the external network, from a site
which appears to be a co-location service in the United States. As seen in
the first line of the alert, it was generated by the MOVIE rule from the previous
section, and it demonstrates another use for IRC bots. This bot is sharing
about 1G of movies on the #extreme-moviez channel -- not comparatively
much, but we hope the customer is not paying per gigabyte transferred, for
they have incurred over 335G in illicit traffic since this single IRC bot has been
running. This activity can grow to the size of your network; if a single
workstation is allowed a large chunk of bandwidth, it may start using all of it if
the IRC bot node is not dealt with in the first few days of infection. In this
case, the internal machine on 139.102.X.X is likely accessing this channel on
purpose to download files illegally.

#(1 - 82090) [2004-XX-XX 09:50:32] BLEEDING-EDGE IRC - Nick change on non-std port
IPv4: 139.102.X.X -> X.X.X.X
 hlen=5 TOS=0 dlen=96 ID=47031 flags=0 offset=0 TTL=127 chksum=21758
TCP: port=2470 -> dport: 8888 flags=***AP*** seq=3334969967
 ack=4177268192 off=5 res=0 win=16560 urp=0 chksum=62008
Payload: length = 56

000 : 4E 49 43 4B 20 5B 41 5D 2D 4D 65 64 61 42 6F 74 NICK [A]-MedaBot
010 : 73 2D 78 30 0A 55 53 45 52 20 70 77 6E 74 20 33 s-x0.USER pwnt 3
020 : 32 20 2E 20 3A 50 72 6F 70 65 72 74 79 20 6F 66 2 . :Property of
030 : 20 23 41 6E 69 6D 65 0A #Anime.

 This is the result of one of the bleeding edge rules, designed to detect
NICK changes on ports that are not normally associated with IRC. In
practice, this kind of rule is very useful, since almost no legitimate IRC traffic
takes place over these ports. The packet size is kept below 64 bytes in this
rule (“dsize:<64” in snort) so as to not trigger a lot of false matching.

#(1 - 1519) [2004-XX-XX 11:50:28] suspicious machine (incoming)
Ipv4: 4.23.X.X -> 139.102.X.X
 hlen=5 TOS=0 dlen=56 ID=14798 flags=0 offset=0 TTL=117 chksum=61516
TCP: port=64284 -> dport: 6667 flags=***AP*** seq=4020794036
 ack=4142342231 off=5 res=0 win=64190 urp=0 chksum=45518
Payload: length = 16

000 : 50 4F 4E 47 20 3A 31 43 33 42 38 33 30 32 0D 0A PONG :1C3B8302..

 This is the first packet we look at that was culled from a traffic sniff of

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

an IRC bot server located in a student dormitory. Around 500 hosts were
connecting to this server. This incident has provided a few interesting
packets, logged by Snort using a rule matching all traffic going to this
particular IP. The above packet shows the PONG response sent by the client
on a broadband connection to the server's PING query.

#(1 - 1502) [2004-XX-XX 11:50:28] suspicious machine (incoming)
IPv4: X.X.X.X -> 139.102.X.X
 hlen=5 TOS=0 dlen=86 ID=15874 flags=0 offset=0 TTL=115 chksum=60922
TCP: port=29575 -> dport: 6667 flags=***AP*** seq=823935648
 ack=1918099077 off=5 res=0 win=64512 urp=0 chksum=15138
Payload: length = 46

000 : 4E 49 43 4B 20 61 6B 73 6E 77 73 6E 66 71 0D 0A NICK aksnwsnfq..
010 : 55 53 45 52 20 6C 75 69 76 64 72 6D 63 20 30 20 USER luivdrmc 0
020 : 30 20 3A 61 6B 73 6E 77 73 6E 66 71 0D 0A 0 :aksnwsnfq..

 This packet above shows a typical registration of a client, again from a
broadband connection, most likely a home user. Because the client's NICK
must be unique from other clients, a random string is usually used to register
the IRC bot.

#(1 - 1503) [2004-XX-XX 11:50:28] suspicious machine (outgoing)
IPv4: 139.102.X.X -> X.X.X.X
 hlen=5 TOS=0 dlen=120 ID=10621 flags=0 offset=0 TTL=127 chksum=63069
TCP: port=6667 -> dport: 29575 flags=***AP*** seq=1918099077
 ack=823935694 off=5 res=0 win=16514 urp=0 chksum=46560
Payload: length = 80

000 : 45 52 52 4F 52 20 3A 43 6C 6F 73 69 6E 67 20 4C ERROR :Closing L
010 : 69 6E 6B 3A 20 5B XX 2E XX XX 2E XX XX 2E XX XX ink: [X.XX.XX.XX
020 : XX 5D 20 28 54 6F 6F 20 6D 61 6E 79 20 75 6E 6B X] (Too many unk
030 : 6E 6F 77 6E 20 63 6F 6E 6E 65 63 74 69 6F 6E 73 nown connections
040 : 20 66 72 6F 6D 20 79 6F 75 72 20 49 50 29 0D 0A from your IP)..

 This indicates that too many connections are taking place from one IP
address to the bot server and that the server is limiting the amount of
connections per IP. An educated guess would be that the IP address is the
address of a home router, behind which several different machines are
infected with the same IRC bot. This is another example of how the client-
server and client-replication method used can get at machines behind a
perimeter. If one machine behind the router is compromised (e.g. by a
trojaned executable), it can recruit its neighbors behind the router if they are
vulnerable to attack.

#(1 - 1715) [2004-XX-XX 11:50:31] suspicious machine (incoming)
IPv4: X.X.X.X -> 139.102.X.X
 hlen=5 TOS=0 dlen=104 ID=22655 flags=0 offset=0 TTL=112 chksum=9646
TCP: port=55441 -> dport: 6667 flags=***AP*** seq=2897706553
 ack=101749144 off=5 res=0 win=16130 urp=0 chksum=39661
Payload: length = 64

000 : 50 52 49 56 4D 53 47 20 23 6D 65 73 73 61 67 65 PRIVMSG #message
010 : 73 23 20 3A 5B 6C 73 61 73 73 5F 34 34 35 5D 3A s# :[lsass_445]:
020 : 20 45 78 70 6C 6F 69 74 69 6E 67 20 49 50 3A 20 Exploiting IP:
030 : 31 39 32 2E 31 36 38 2E 34 2E 32 32 39 2E 0D 0A 192.168.4.229...

 Now we are at the other end of this type of packet from our earlier
examination. This packet is being sent from the client IRC bot in Chile to our
IRC botnet server in the dormitory, to report that it is attempting to
compromise 192.168.4.229, a private network address which is not routable
and therefore has not been sanitized. The client bot has found another
neighbor to infect, probably one that would otherwise be thought secure.

#(1 - 2359) [2004-XX-XX 11:50:40] suspicious machine (outgoing)
IPv4: 139.102.X.X -> X.X.X.X
 hlen=5 TOS=0 dlen=400 ID=13124 flags=0 offset=0 TTL=127 chksum=33901
TCP: port=6667 -> dport: 4844 flags=***AP*** seq=144657477

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 ack=2877783056 off=5 res=0 win=16258 urp=0 chksum=20154
Payload: length = 360

000 : 3A 5B 6B 69 6C 6C 61 5D 2D 38 35 33 35 32 32 21 :[killa]-853522!
010 : 75 6C 64 71 69 79 75 40 36 43 32 43 33 30 2E 44 uldqiyu@6C2C30.D
020 : 46 42 41 34 45 44 32 2E 34 42 33 33 45 38 44 37 FBA4ED2.4B33E8D7
030 : 2E 49 50 20 4A 4F 49 4E 20 3A 23 6A 75 6C 69 65 .IP JOIN :#julie
040 : 23 0D 0A 3A 69 72 63 2E 6E 61 76 2E 63 6F 6D 20 #..:irc.nav.com
050 : 33 33 32 20 5B 6B 69 6C 6C 61 5D 2D 38 35 33 35 332 [killa]-8535
060 : 32 32 20 23 6A 75 6C 69 65 23 20 3A 2E 64 6F 77 22 #julie# :.dow
070 : 6E 6C 6F 61 64 20 68 74 74 70 3A 2F 2F 77 77 77 nload http://www
080 : 2E 74 72 65 6E 7A 68 6F 73 74 2E 63 6F 6D 2F 66 .trenzhost.com/f
090 : 69 6C 65 73 2F 64 6F 6E 64 6F 6E 2F 7A 61 6D 2E iles/dondon/zam.
0a0 : 65 78 65 20 63 3A 5C 6F 68 6B 38 32 2E 65 78 65 exe c:\ohk82.exe
0b0 : 20 31 20 2D 73 0D 0A 3A 69 72 63 2E 6E 61 76 2E 1 -s..:irc.nav.
0c0 : 63 6F 6D 20 33 33 33 20 5B 6B 69 6C 6C 61 5D 2D com 333 [killa]-
0d0 : 38 35 33 35 32 32 20 23 6A 75 6C 69 65 23 20 61 853522 #julie# a
0e0 : 73 20 31 30 39 35 31 37 33 31 39 38 0D 0A 3A 69 s 1095173198..:i
0f0 : 72 63 2E 6E 61 76 2E 63 6F 6D 20 33 35 33 20 5B rc.nav.com 353 [
100 : 6B 69 6C 6C 61 5D 2D 38 35 33 35 32 32 20 40 20 killa]-853522 @
110 : 23 6A 75 6C 69 65 23 20 3A 5B 6B 69 6C 6C 61 5D #julie# :[killa]
120 : 2D 38 35 33 35 32 32 20 0D 0A 3A 69 72 63 2E 6E -853522 ..:irc.n
130 : 61 76 2E 63 6F 6D 20 33 36 36 20 5B 6B 69 6C 6C av.com 366 [kill
140 : 61 5D 2D 38 35 33 35 32 32 20 23 6A 75 6C 69 65 a]-853522 #julie
150 : 23 20 3A 45 6E 64 20 6F 66 20 2F 4E 41 4D 45 53 # :End of /NAMES
160 : 20 6C 69 73 74 2E 0D 0A list...

 Here we have a long packet from server to client, but we include it
because it shows a few interesting things. Firstly, the [killa] probably refers to
the Internet handle of the attacker. We also see a command to download the
file “zan.exe” as “c:\ohk82.exe” from www.trenzhost.com. Since the system
should already be trojaned, this is likely an update or additional software that
will be run by the compromised hosts. The channel name also appears to be
“#julie#”. Curiously, the 'trenzhost' site was not active at the time this packet
was logged; perhaps it was a victim of a denial-of-service itself, because the
ISP was notified or the IRC bot was too successful in propagating. It also
would not be surprising if the bot kit contained its own 'hosts' file to direct this
named traffic to another host instead of the typical DNS result. Only a packet
analysis of the compromised machine itself can lead to proof.

#(1 - 10580) [2004-XX-XX 11:52:49] suspicious machine (incoming)
IPv4: X.X.X.X -> 139.102.X.X
 hlen=5 TOS=0 dlen=142 ID=5086 flags=0 offset=0 TTL=111 chksum=36996
TCP: port=47797 -> dport: 6667 flags=***AP*** seq=2477825822
 ack=1063236490 off=5 res=0 win=64231 urp=0 chksum=28856
Payload: length = 102

000 : 50 52 49 56 4D 53 47 20 23 6D 65 73 73 61 67 65 PRIVMSG #message
010 : 73 23 20 3A 5B 46 54 50 5D 3A 20 46 69 6C 65 20 s# :[FTP]: File
020 : 74 72 61 6E 73 66 65 72 20 63 6F 6D 70 6C 65 74 transfer complet
030 : 65 20 74 6F 20 49 50 3A 20 31 30 2E 31 30 2E 38 e to IP: 10.10.8
040 : 2E 32 37 20 28 43 3A 5C 57 49 4E 4E 54 5C 53 79 .27 (C:\WINNT\Sy
050 : 73 74 65 6D 33 32 5C 77 6E 6D 70 6C 79 72 2E 65 stem32\wnmplyr.e
060 : 78 65 29 2E 0D 0A xe)...

 Here is another incident where a machine is compromising another
over a private network (10.*). This packet is reporting back to the server that
the IRC bot in Denmark has been successful in putting a trojan executable
onto the target machine. The trojan executable is named similar to Windows
Media Player, so the person at the workstation may think it is a normal
process running.

#(1 - 13653) [2004-09-14 11:53:36] suspicious machine (outgoing)
IPv4: 139.102.X.X -> X.X.X.X
 hlen=5 TOS=0 dlen=350 ID=47968 flags=0 offset=0 TTL=127 chksum=46758
TCP: port=6667 -> dport: 3020 flags=***AP*** seq=3992909909
 ack=246474892 off=5 res=0 win=16300 urp=0 chksum=38436
Payload: length = 310

000 : 3A 76 76 63 77 61 6D 61 68 21 6E 79 68 79 66 68 :vvcwamah!nyhyfh
010 : 77 40 44 69 65 2D 33 35 42 33 34 38 37 31 2E 70 w@Die-35B34871.p
020 : 6F 6F 6C 38 30 31 38 31 2E 69 6E 74 65 72 62 75 ool80181.interbu

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

030 : 73 69 6E 65 73 73 2E 69 74 20 4A 4F 49 4E 20 3A siness.it JOIN :
040 : 23 6C 61 73 74 69 6D 65 23 0D 0A 3A 69 72 63 2E #lastime#..:irc.
050 : 6E 61 76 2E 63 6F 6D 20 33 33 32 20 76 76 63 77 nav.com 332 vvcw
060 : 61 6D 61 68 20 23 6C 61 73 74 69 6D 65 23 20 3A amah #lastime# :
070 : 2E 61 64 76 73 63 61 6E 20 6C 73 61 73 73 5F 34 .advscan lsass_4
080 : 34 35 20 31 35 30 20 33 20 39 39 39 20 2D 62 20 45 150 3 999 -b
090 : 2D 72 20 2D 73 0D 0A 3A 69 72 63 2E 6E 61 76 2E -r -s..:irc.nav.
0a0 : 63 6F 6D 20 33 33 33 20 76 76 63 77 61 6D 61 68 com 333 vvcwamah
0b0 : 20 23 6C 61 73 74 69 6D 65 23 20 61 73 20 31 30 #lastime# as 10
0c0 : 39 35 30 36 32 35 30 35 0D 0A 3A 69 72 63 2E 6E 95062505..:irc.n
0d0 : 61 76 2E 63 6F 6D 20 33 35 33 20 76 76 63 77 61 av.com 353 vvcwa
0e0 : 6D 61 68 20 40 20 23 6C 61 73 74 69 6D 65 23 20 mah @ #lastime#
0f0 : 3A 76 76 63 77 61 6D 61 68 20 0D 0A 3A 69 72 63 :vvcwamah ..:irc
100 : 2E 6E 61 76 2E 63 6F 6D 20 33 36 36 20 76 76 63 .nav.com 366 vvc
110 : 77 61 6D 61 68 20 23 6C 61 73 74 69 6D 65 23 20 wamah #lastime#
120 : 3A 45 6E 64 20 6F 66 20 2F 4E 41 4D 45 53 20 6C :End of /NAMES l
130 : 69 73 74 2E 0D 0A ist...

 Lastly, we see a command to do 'lsass' vulnerability scanning being
given. The options to the scan (150, 3, 999) are likely the number of threads,
seconds between scan, and minutes to scan respectively.
 It is interesting to look at these packets, but what have we gained?
Like many security problems, we need to be able to periodically review and
refine our approach. Looking at these packets, we can see avenues for better
rule generation.
 One approach is to have each rule focus on a separate area of attack.
First, let us propose a rule to spot any traffic matching 'lsass' on any port
6667, bidirectional. It would be necessary to replace 'lsass' by new
vulnerabilities when they are released, which is why it is important to look at
these packets of compromised machines periodically. By using this rule we
are looking for the obvious weeds in the garden, and not trying too hard to do
more with just one rule. By keeping the port range small, and the string to
match specific (although short), we hope to not see many false positives.
One disadvantage of short text strings is that they will occur by chance in a
certain percentage of packets. The longer the text string, the easier it is to
filter out this background traffic.

alert tcp any any -> any 6667 (msg:"IRC BOT 1 - lsass";
flow:to_server,established; content:"lsass"; nocase:; classtype:bad-
unknown; sid:3011381; rev:1;)

 Secondly, consider the bottlenecks in this process for the attacker.
What steps must be accomplished, regardless of what port or kit the attacker
uses? In all cases, the client must register a NICK request to identify
themselves. How will we best match this rule, without generating a lot of
nonsense alerts? Note that the NICK packets above contain an uppercase
NICK at offset 0. By matching traffic on every port but the most common port,
we can be assured that the machines we find are in fact compromised. This
rule matches less packets, but finds better results, and works as a nice
complement to rule #1. By setting an offset and depth, we hope to reduce
the false positives that would otherwise occur with such a small textual string.

alert tcp any any -> any !6667 (msg:"IRC BOT 2 - NICK begins packet
TCP !6667"; flow:to_server,established; content:"NICK"; offset:0;
depth:5; classtype:bad-unknown; sid:3011382; rev:1;)

 Third, we would like to see if things are happening on the network
internally that a solely perimeter IDS might not detect. To accomplish this, we
can use the IRC bot reporting information against the attacker by looking for

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

“File Transfer” followed by private range IP addresses, or the address of our
internal network. These two rules show examples of this line on thinking,
although the IP signature on rule 3a will need to be adjusted to fit other
networks.

alert tcp $HOME_NET any -> any any (msg:"IRC BOT 3a - file trans
internal IP"; flow:to_server,established; content:"file transfer"; nocase:;
within:80; content:"139.102"; classtype:bad-unknown; sid:3011383;
rev:1;)

alert tcp $HOME_NET any -> any any (msg:"IRC BOT 3b - file trans
private IP"; flow:to_server,established; content:"file transfer"; nocase:;
within:80; content:"192.168"; classtype:bad-unknown; sid:3011384;
rev:1;)

 Finally, we want to detect if any bot servers are being deployed on the
network. Typically a machine with a large amount of outgoing connections
will be flagged by network engineers, but at an organization such as a
university, these incidents get buried under a mountain of other file-sharing
traffic and exploitation. We would like rules specific to this problem. A
generic rule, unlike rule #1, would be preferable. Rule #2 doesn't match the
most common port, and rule #3, although reversible, depends upon the
reporting information from the client. We will instead craft a rule based on a
different component, the “PRIVMSG” message, incoming to our network.
Case-sensitivity will save some processing time, and the text string is unique
enough not to find many false positives. We can use the offset to further thin
the detection.

alert tcp any any -> $HOME_NET any (msg:"IRC BOT 4 - possible
internal BOT server"; flow:to_server,established; content:"PRIVMSG";
offset:0; depth:8; classtype:bad-unknown; sid:3011385; rev:1;)

Problems with this approach
 There are several problems with using this approach. If the overall
intent is to deal with system compromise and improve security in general, it is
a difficult strategy to pursue. First, this method is reactive, not proactive.
Machines will be compromised by the time the first IRC packet is seen. Rules
of this sort are not always robust enough to feed into a script to disable
machines automatically, so must be filtered by human hands.
 Secondly, finding this activity presents a moving target. The
customizable kits that carry this payload change on a daily basis. What today
is sending constant pings to a machine in Sweden on TCP 6667 may
tomorrow be slowly port scanning the network and connecting once a week to
a server in Italy on TCP 43023. In 2001, one of the targets used to set up bot
networks was a variant of CodeRed II compromised systems called
“Powerbot” (Dittrich). Today, it is XP workstations vulnerable to ‘lsass’
exploits. In order to catch the most intrusion, generic rules must be used,
which in turn causes so many alerts that security staff can not keep pace with
reading and reacting to them. Even a basic rule looking for JOIN on TCP
6667 will catch many false positives, if a lot of legitimate IRC traffic takes
place on the network -- anyone joining a standard IRC channel will trigger this

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

rule. It is the esoteric connections that are of interest, but those are by
definition harder and more time-consumptive to find. Although a difficult task
in theory to find every compromise, it is relatively easy to get decent results
with a few simple rules such as the above. Hopefully our journey to writing
some new rules, and looking at the results, has been a good learning
experience.

Getting results with this approach
 Using Snort to detect this activity allows the coordination of cleanup,
the monitoring of evolving trends, and an evaluation of security within the
network. A Snort rule which polls for IRC traffic matching a known
exploitation signature can produce useful alerts. Those alerts can be
selected from the alert database and mailed automatically to security
personnel with a small amount of programming ability. As systemic intrusion
grows, the ability to contain the problem must grow with it. Dealing with each
individual machine by-hand may not be a sustainable way to deal with the
problem.
 If a certain area of the network has a much higher incidence per
machine of IRC bot intrusion, such as a student dormitory, we can be sure the
security of that zone is rather poor and machines in that area must suffer
constant attacks. This should indicate that it is an area that needs
improvement. It also will be a good area to monitor more closely using Snort,
perhaps with a separate sniffer with a pared down rule set for monitoring
limited kinds of activity. The more specific and 'local' the IDS can be, the
more useful this information can become. Scanning and exploitation on a
computer lab could lead to some sort of programmatic action to be taken at
the network level. These open zones are likely the place within the network
where new exploits will first be tried, and by examining this data, what is
learned can be leveraged to predict problems in the rest of the enterprise.

Concluding statements
 A neat, packaged solution to this problem does not exist without strict
control of workstations. Since strict control is not always possible or
practical, and the Internet enables attackers to download a new set of tools at
4:00AM and deploy them on our network at 4:03AM, dealing with mutating
problems like IRC bots will be a constant battle. Intrusion detection systems
are a must-have in the current security environment. However, having the
tools is a meaningless gesture without the time and ability to use them
properly. This paper has looked at one small part of the problem, that of IRC
bot compromise. We have seen insight into IDS rule writing and deployment
throughout the enterprise. The focus of this paper dealt mainly with a
University environment, because that is the author's area of study. Open
enterprises, along with ISPs, can also be considered 'enablers' of this activity,
for security issues often are ignored, deemed unimportant, or otherwise not
given due consideration at an organizational level. It is important that
organizations such as these be proactive in dealing with security issues not
only for their own good, but for the good of the Internet as a whole. Even if
the reader has no intention of writing rules, deploying IDS systems, or
analyzing security practice, it is hoped that at least an understanding of one
the recent problems of computer security has been advanced.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

References

Dittrich, Dave. “’Power’ bot”. August 8, 2001. URL:
http://staff.washington.edu/dittrich/misc/power.analysis.txt (7 Oct 2004).

Esler, Joel. “Bleeding Snort rules”. 2004. URL:
http://www.bleedingsnort.com/bleeding-all.rules (7 Oct 2004).

Graham, Robert. “On Magic, IRC wars, and DDoS.” URL:
http://www.robertgraham.com/op-ed/magic-ddos.html (7 Oct 2004).

Holst, Alex. “Frequently Asked Questions about the Dancer bot.” June 17, 1998.
URL: http://dancer.sourceforge.net/FAQ (7 Oct 2004).

Holstein, Michael. “[unisog] Computer Pests (known trojan/virus list)”. September
29, 2004. Posting to Educause security mailing list (re-post of rules). URL:
http://lists.sans.org/pipermail/unisog/2004-September/015232.html (7 Oct 2004)

Oikarinen, Jarkko and Reed, Darren. “RFC 1459 – Internet Relay Chat Protocol.”
May 1993. URL: http://www.faqs.org/rfcs/rfc1459.html (7 Oct 2004).

Rayome, Jerry. “IRC on Your Dime? What You Really Need to Know About
Internet Relay Chat”. June 1998.
URL: http://ciac.llnl.gov/ciac/documents/CIAC-2318_IRC_On_Your_Dime.pdf
(7 Oct 2004).

Roberts, Paul. “ISP Telenor cripples zombie PC network.” September 10, 2004.
http://www.computerworld.com/securitytopics/security/cybercrime/story/0,10801,958
47,00.html (7 Oct 2004).

Stenberg, Daniel. “History of IRC (Internet Relay Chat).” September 24, 2002.
URL: http://daniel.haxx.se/irchistory.html (7 Oct 2004).

Wagner, Cliff. “The Edge Zone: IRC Zone: IRC Bots.” 2002. URL:
http://www.edge-zone.net/irc/bots.html (7 Oct 2004).

