
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Port Knocking: An Overview of Concepts, Issues and
Implementations

Ben Maddock

Submitted for SANS GIAC GSEC Practical on 23rd September 2004
Assignment version: 1.4c

Abstract

Port-knocking is a stealthy method of information transmission across
computer networks. It has been a source of interest of late thanks largely to
an article by Martin Krzywinski1.

This paper seeks to define port-knocking, examine why it might be useful,
answer some objections and highlight some of the benefits. An overview of
features in currently available implementations will illustrate some of the
diversity this approach offers. Finally areas for future exploration will be
offered and a conclusion will be drawn on the usefulness of port-knocking.

What is Port Knocking?

Martin Krzywinski, who is credited with much of the recent interest in this
method of covert information sending, offers a fairly narrow definition on his
port knocking site as follows: “Port knocking is a method of establishing a
connection to a networked computer that has no open ports”2

However a contrasting example of port knocking could be as follows. IP
packets are sent from a client to a predetermined sequence of closed ports on
a firewall-protected host. A script on the host monitors the firewall logs and,
when it recognizes the secret sequence, triggers some user-defined action on
the host.

Thus, perhaps a broader definition would be more appropriate: “a method for
delivery of information via closed ports on a networked computer”.

For those who haven’t come across port-knocking before a small concrete
example of a problem and solution may be of use.

Assume Client A needs to provide information to Host B. However it is not
convenient for Host B to have open ports. How can Client A communicate
with Host B?

A solution using port-knocking might begin with certain ports being arbitrarily
defined as representing certain values. For example ports 501-526 represent
letters of the alphabet with port 501 representing ‘a’, 502 ‘b’ up to 526 ‘z’. Port
‘500’ represents begin/end for the message to be sent. In order to send the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

test message ‘foobar’, Client A simply sends packets to Host B ports 500,
506, 515, 515, 502, 501, 518 and 500 respectively.
For the purpose of this example (and most simple port knocking
implementations) Host B must be logging every attempt to access any port in
the port range 500-526 through its firewall rules. A simple script which is
monitoring the firewall log on Host B notes a packet arriving aimed at port 500
from Client A and then watches for further attempted connections from Client
A in the relevant port range. After port 500 it should detect 506, 515, 515, 502,
501, 518 and 500. The script then decodes the message using the agreed
protocol and reverses the encryption to reveal the message: “begin, f o o b a
r, end”.

There are several things to note in this example. Once an attempt is received
on port 500, the script must watch for all subsequent attempts from that IP. An
obvious (and potentially large) limitation is that there is really no way to
ensure the packets arrive in ordera or even at all. Time delays for each
subsequent packet would help to alleviate this (but would impact the speed of
overall information transmission), as would the concept of beginning and
ending the message with a special port/packet.

Unfortunately there is no way ensure the reliability of this method of
transmission in the same way as an end to end TCP connection, where path,
packet order and error checking are all available. Fundamentally the
message, whatever it is, is still being transmitted in ‘clear-text’ which makes
eavesdropping trivial.

So what is the Point?

That’s all very interesting but if someone needs to send a host a message like
‘foobar’ there are many less convoluted and more reliable ways to do it.
As mentioned above, the usefulness of port-knocking really relies in the ability
to communicate with a server which has no open ports/services.

The most obvious application where this is desirable and the one Krzywinski
and most recent port-knocking advocates put forward is getting the ‘silent’
server to make a service temporarily available.

Suppose a user has a server at home which is essentially used ‘standalone’
and is normally only accessed via the console.

In this scenario there may be little need for services to be run allowing remote
access. If a user wishes to have the ability to login occasionally from a remote
location (say their place of work), it is possible to configure the server to
respond to a port-knocking sequence in order to temporarily allow remote
access through ssh.

a Short discussion later in the paper about a way around this using altered sequence numbers in TCP
packets. (The Future of Port Knocking 4th point)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

In order for this to happen a ‘secret’ knock must be predefined (on host and
the client) for port knocking to work. For example ports 500, 498, 500, 502
and 560 must be pinged (with ICMP packets) in sequence to activate the
listening script on the host. Again, a script runs in the background monitoring
the logs for attempts to access these closed ports. Once it detects a particular
IP address attempting to access these ports in sequence (within say 10
seconds) it is configured to enable ssh on port 22 for 3 minutes.

So the user at work can ping their remote host with this combination of
pings/knocks 500, 498,500,502,560 and then has 3 minutes to connect to
ssh:22 on the remote host. After 3 minutes the ssh service is disabled again,
but by then the user has established their connection and the ssh service is
unavailable to anyone else who attempts to connect on port 22.

One thing to note is that it is generally a bad idea to use sequential or
consecutively increasing port numbers as there is an immediate and real risk
of a port scan ‘discovering’ the knock sequence.

Isn’t This All Just Security Through Obscurity?

A key point of debate surrounding port knocking is whether it is just another
form of security through obscurity. To examine this properly a definition of
security through obscurity is required.

Security through Obscurity in the computer security context is generally
defined as securing something by ‘hiding’ or not making known its design.3 As
one Slashdot poster put it, it relies on people not knowing HOW a given
security method works.4 5

Jay Beale provides the following example in his excellent security through
obscurity paper. A Web Server for an organisation which holds secure data
and perhaps runs the web service on a non-standard port and/or uses long
URL’s for the content is an example of security through obscurity in the
generally understood IT context.6

It does not offer any discrete access control of who gets access to the
document (the long URL is the lone ‘password’). Nor is there any way to track
users who may be attempting to find the document by ‘guessing’ the URL.
Most robust security methods have provision for at least these features.

It is important to note that security through obscurity is not universally viewed
as being bad in and of itself, the problem occurs when an organisation or
individual uses obscurity as the only method to secure access to resources or
data without sensible access control provisions in place (such as passwords).
A layered approach (defense in depth) is obviously much better than a single
level of control placed on a resource or group of resources for reasons
described widely in current computer security literature7.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

However a password can also be viewed as just an example of security
through obscurity, a token which a user knows and an attacker doesn’t which
is used to gain access resources8. As mentioned above security through
obscurity is defined slightly differently in an IT context, but it is clear that most
forms of security or access control at some point use a secret or token that is
unknown to the potential attacker.
The difference (it is argued) is that in these cases the security protocol is
known. For example anyone can read on the Internet how the DES encryption
algorithm works, anyone with enough skill as a programmer can implement it.
The difference is that if an attacker knows everything except the secret being
used, they will still have difficulty attacking something secured using this
encryption method with anything other than brute-force guessing or getting
hold of a valid secret. There is no ‘backdoor’ by which someone with more
knowledge than the user of this type of encryption can gain access to the
encrypted resources. The fundamental difference of security through obscurity
is that it potentially has such backdoors.

In this context then, port knocking serves to hide the services on the host until
the correct combination of ports are pinged, especially if there is no logging of
failed attempts or discrete access control.

Krzywinski argues9 that by encrypting the knock, monitoring the logs and
providing fine-grained access control (more than just the one arbitrary knock
sequence for all users) port knocking succeeds in rising above the obscurity
alone tag. A Slashdot user in the initial debate about port knocking proposed
the knock is really analogous to a key.10 These are both quite persuasive, but
the debate has by no means been settled.11

Both sides of the debate agree that port-knocking on its own is not a valid
security measure. However, advocates of port knocking argue that if used
with other security options it is of some use in making it more difficult for
attackers to discover the services initially before proceeding to attack them,
defense in depth. Just as a house (that is otherwise secure) is better off with a
security grill door as well as a deadlocked wooden door, so is a host which
implements port knocking in front of services which in turn require their own
separate authentication.

The Argument Against

It is worth reviewing and responding to the common arguments against port
knocking currently put forward.

Port knocking is really just an extra password (in clear text12).

This is true for a simple knock. If someone is sniffing traffic heading to a host
the knock sequence will be clearly visible from the packets being sent, just as
a telnet password is clearly visible to anyone watching the TCP stream of a
telnet session.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The response to this is to use encrypted and perhaps rolling sequences or
one-time key’s to generate valid knocks which your server understands.

Port Knocking engenders a false sense of security.

Similar to other security through obscurity techniques (or any security
implementation for that matter), someone who uses port-knocking in tandem
with ssh for example may not be as vigilant about patching ssh vulnerabilities
because they believe the service is ‘invisible’ and therefore safe from casual
attack.

There is certainly some merit in this, in the same way that users on a large
private network behind a firewall (from the Internet) may not feel the need to
patch as regularly because they’re protected from the Internet. Unfortunately
this ignores the fact that it is just as easy to get a virus or be attacked from
someone ‘inside’ the private network. This is not directly a function of port
knocking however. In the current computer security climate all administrators
must be actively monitoring and making decisions about who and what is
trying to connect to hosts they administer, not rely on passive blocks they may
put in place.

Port knocking just adds complexity to either the firewall logs that need to be
kept or the network stack to watch for port-knocks without really adding a
comparable security benefit.

Some complexity is added, particularly for long sequential knocks and there
may be a time delay to activate and connect to the service required. However,
port knocking is comparable to challenge/response authentication combined
with a password and many users have accepted the impost this requires. The
question then becomes whether it adds enough extra ‘security’ to make up for
the extra inconvenience? That probably depends more on the implementation
than anything else. Some of the better implementations provide a significant
degree of security but are still unwieldy for an average user. However there is
no reason a decent plug-in to ssh or a VPN13 for example could not be
developed to make port knocking for an ssh connection relatively seamless
from a user perspective.

Port knocking is vulnerable to DOS attacks/replay attacks/man-in-the-middle.

The concept of port knocking is indeed vulnerable to these attacks and they
must be addressed through additional countermeasures. Further, there exists
the possibility in simpler implementations of an attacker exploiting an
indiscriminate knock daemon (which doesn’t link knocks and IP) by randomly
pinging ports, thus interfering with the knock sequence and denying access to
a legitimate user.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Replay attacks are also a problem for simple static knocks, but can be
mitigated by use of a one-time knock or by encrypting client information (IP)
into the knock sequence.

Man-in-the-middle attacks are similar and may be effective even when
employing encrypted or one-time knocks. The attacker doesn’t need to know
how a sequence is encrypted, they just need to capture a legitimate knock
attempt and replay it to the host. The best defense against this again comes
from Krzywinski’s implementation which is to encode the IP address of the
client into the knock before encrypting it.

Users accessing from public networks may be unable to knock the non-
standard ports because they are firewalled in and are only allowed to use
known ports.

This is certainly a problem, a solution (although convoluted) could be to
trigger an external machine to provide the knock (a 3-way knock). Alternately
packet-knocking on known allowed ports (encrypting content in packets sent
to an allowed port rather than in port sequence).

The Argument For

Port knocking also has several features to recommend it.

It provides a covert channel for transmitting data.

As discussed elsewhere the data transmitted can be anything from a simple
message, to an IP to a complete command to be executed. At no time is the
host required to have an open port.

It allows remote access to a server with no open ports.

If using a knock to activate ssh for example, a legitimate user can still gain
access to a host which otherwise does not betray its existence in any way.

It offers protection in depth from viruses/worms and script kiddies.

A worm/virus or other automated attack against a vulnerable service will be
less likely to access the service if it is only activated when needed. A firewall
configured to normally DENY/DROP everything will give an attacker nothingb,
so that anyone who tries to port scan a host will get nothing at all, the host is a
‘black hole’.

b DENY/DROP as opposed to REJECT will not respond to any packet sent to a host:port combination
which they are applied. REJECT will not allow access, but will respond that access is denied.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Potentially allows time to fix vulnerabilities in the services it protects.

Similarly, by adding a layer in front of services, if vulnerability is discovered in
those services they are not immediately open to exploitation; an attacker still
has to discover the knock sequence required to access the service. This may
buy some extra hours to test the patch and apply it to the service.

Forces an attacker to be less stealthy

In order to discover a knock an attacker may have to make many attempts, it
is possible that this is obvious as a knock sequence is less directed than a
directed port connection.

Even if an attacker manages to discover a valid knock sequence they still
have to attack the protected service. By protecting the service, it would be
expected that there would be less connection attempts and consequently the
monitoring of connection attempts to the service could be increased. The only
people who will get to the services are those who’ve got past the port-knock,
immediately an attacker is more exposed to discovery because there will
necessarily be less connection attempts to the service.

Example Implementations

Currently there are quite a few examples which implement port knocking
ideas. While most of them are little more than proof-of-concept there are
several interesting ideas that have been incorporated into them which are
worth reviewing.

As mentioned elsewhere in this paper Krzywinski’s14 effort is the most
sophisticated. It incorporates a method to encode the IP address of the
knocking client into a knock sequence which is then encrypted and mapped
back onto a range of valid host ports.

Further, a recent innovation15 reduces the number of knocks significantly by
increasing the range of valid ports. Values to be transmitted are converted to
8-bit binary numbers, concatenated and then split into N-bit numbers where
2^N ports are valid knock ports on the hostc. The numbers are converted back
to decimal, encrypted and encoded into a valid knock sequence. The host
does the reverse.

Other interesting but less sophisticated innovations include salting the knock
sequence with current time and a shared offset to produce a knock sequence

c Another nice feature is that the ports can be non-contiguous.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

which (allowing for time drift) is known to the client and host16. Fwknop is an
implementation which combines OS Fingerprinting17 with port knocking to
grant access only to certain flavours of client18. Doorman19 uses a single UDP
client on a certain port which must contain an encrypted packet which the host
can check, and which indicates which port the host should open.

cd00r20 and SaDoor21 are both older implementations, cd00r having been
written some time agod. Both listen at the network stack level rather than
watching the firewall logs, both are implemented to be hard to detect on the
host. cd00r watches for SYN packets to be sent to particular ports in order.
The sequence resets if a port outside the sequence receives a packet or if a
packet arrives from a different client. However this can be changed to allow
packets from different sources and hence allows someone using cd00r to ‘fly
below the IDS radar’22. Once it receives the correct knock sequence it
executes a user defined command.

SAdoor is similar, although it allows different kinds of packets to be sent, it its
default configuration the third packet contains an encrypted command in the
payload to execute such as a change to the firewall23.

Both the final examples illustrate that while the computer security community
debates the effectiveness of port knocking, blackhats have already been
using it for some time24. From a blackhat’s perspective, applications such as
opening a mail relay or activating a DDOS zombie by knocking from a remote
host would be appealing possibilitiese, as would the ability to close up a
compromised host from further attack25 26.

The Future of Port Knocking

Undoubtedly there are many more implementations and variations on the
port-knocking theme.

Several interesting ideas spring to mind for which implementations or further
discussion was unavailable.

1. A port knock on Host A activates and creates a hole in the firewall (if
needed) to a service on Host B. This may be most useful when one is
external to the workplace firewall and is really an implementation of a
poor-mans VPN (as was described to me by a colleague). Presumably
this would no be difficult to implement on a double-homed host which is
denying external visitors, but needs to talk to the internal machines. It
is similar in concept to redirections now common on home-routers,
where access to a particular port on the router redirects traffic to a
particular host: port on the inside. Even easier would be to combine
this with port-triggering27 which is now appearing on some routers

d cd00r has been around since at least 2000.
e While there were several allusions in documents read to black hat port knocking activity there was
nothing particularly concrete that I could find.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

where an internal host activates a service and the router automatically
generates a rule allowing external access.

2. Another idea is hinted at in the discussion on cd00r. That is the

concept of a back-channel. So rather than a host being port-knocked
into allowing ssh access to the host for the client. The host could be
triggered to initiate a connection back the client. Obviously this is more
risky if an intruder stumbles on a valid knock, but in the cd00r context
when it is not necessarily desirable for the host to be connected at all, it
could be an option.

3. Further investigation of combinations of encrypting ports and payloads

would strengthen port knocking as a security measure in a similar way
that username/password combinations are stronger than one or the
other. Although the usefulness for the added complexity may not be of
much value.

4. When using TCP packets some artificial manipulation of sequence

numbers may assist in packet arrival order problems and may allow for
scope to cope with missing knocks as well. Again this could be
combined with the concept of packet knocking in an environment which
does not let out packets aimed at non-standard ports. Packets could be
sent to a standard port with a particular range of pseudo-random
sequence numbers, although these kinds of numbers have
limitations28.

5. As mentioned abovef, it is likely that port knocking is already in use to

trigger zombie hosts which have been compromised and have had a
listener installed.

Conclusions

While the ideas behind Port Knocking are not particularly new (cd00r is
testament to that), it is useful that it has been brought to the attention of the
security community recently, if for no other reason than a review of the
important security concepts of Security through Obscurity and Defense in
Depth.

While it is difficult to view port-knocking as being a viable addition to large
high-traffic server there is definitely scope with the development of relatively
simple clients and daemons for low-traffic servers or home-users to enjoy the
benefits of remote access on a limited basis without being immediately
vulnerable to any and every form of automated attack. It should be noted that
the concerns raised in regards to complacency are valid and any robust
implementation for port-knocking should have a feature to force the regular
alteration of knocks.

f Last paragraph of Example Implementations

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

As a defense in depth information security tool for low traffic servers, port-
knocking does have something to offer. The concept of covert communication
is one that will become increasingly important in the hostile internet
environment, and as can be seen by previous implementations such as cd00r,
there is a lot of scope for how to implement and use such covert channels.

Overall for a relatively small investment in complexity port-knocking returns a
useful security dividend that doesn’t require advanced knowledge of
cryptography or network programming for an average user maintaining a
couple of hobbyist servers. Even for a host with more secure requirements,
such as an IDS system which by nature probably doesn’t need to be
broadcasting public services, port-knocking is an added layer of security
which makes an attackers task more difficult. It offers a unique advantage in
that if vulnerability does occur in a service being protecting with port-knocking,
an administrator probably has some grace time to patch it, because the
service is not widely available to anyone using a portscanner. Port knocking is
an interesting concept and as implementations mature further should result in
wider use and broader application within computer security.

Links to some Current Implementations:

Bash version - http://www.opennet.ru/base/sec/port_knocking.txt.html
Cd00r - http://www.phenoelit.de/stuff/cd00rdescr.html
Combo.c - http://www.e-normous.com/nerd/
Doorman - http://doorman.sourceforge.net/
Fwknop - http://www.cipherdyne.org/fwknop/
JPortknock - http://www.gregoire.org/code/jportknock/
knockd - http://www.zeroflux.org/knock/
Krzywinski’s implementation - http://www.portknocking.org/view/download/
Pasmal - http://pasmal.casino770.com/
SAdoor - http://cmn.listprojects.darklab.org/

List of References

1 Krzywinski, Martin, “Port Knocking: Network Authentication Across Closed
Ports”. SysAdmin Magazine 12: 12-17. (2003).

2 Krzywinski, Martin “Port Knocking Summary” URL:
http://www.portknocking.org/view/about/summary (22 Sept 2004)

3 Slashdot – “PK Discussion on Slashdot” URL:
http://slashdot.org/comments.pl?sid=95670&cid=8194532 (22 Sept 2004)

4 Slashdot - “PK Discussion on Slashdot” URL:
http://slashdot.org/comments.pl?sid=95670&cid=8199147 (22 Sept 2004)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5 Miller, Robin, “Security through Obsolescence”, URL:
http://www.theregister.co.uk/2002/06/06/security_through_obsolescence/ (22
Sept 2004)

6 Beale, Jay – ‘"Security Through Obscurity" Ain't What They Think It Is’ URL:
http://www.bastille-linux.org/jay/obscurity-revisited.html (22 Sept 2004)

7 Ogren, Eric, “Using a layered security approach to achieve network
integrity”,URL: http://www.computerworld.com/printthis/2004/0,4814,89861,00.html (22
Sept 2004)

8 Slashdot, “PK Discussion on Slashdot” URL:
http://slashdot.org/comments.pl?sid=95670&cid=8192658 (22 Sept 2004)

9 Krzywinski, Martin, ‘Is port knocking an obscurity hack?’ URL:
http://www.portknocking.org/view/about/obscurity (22 Sept 2004)

10 Slashdot, “PK Discussion on Slashdot”, URL:
http://slashdot.org/comments.pl?sid=95670&cid=8192452 (22 Sept 2004)

11 Relatively recent debates are found here:
Slashdot, “PK Discussion on Slashdot” URL:
http://slashdot.org/articles/04/02/05/1834228.shtml?tid=126&tid=172 (22 Sept
2004)Slashdot, “PK + OS Fingerprinting discussion on Slashdot” URL:
http://it.slashdot.org/it/04/08/01/0436204.shtml (22 Sept 2004)
Debian-Security “idea for improving security” URL:
http://lists.debian.org/debian-security/2003/05/msg00059.html (22 Sept 2004)
- Discussion on Debian Security of a simplified version in May 03.

12 Narayanan, Arvind, “A critique of port knocking”, URL:
http://software.newsforge.com/software/04/08/02/1954253.shtml (22 Sept
2004)

13 Schneier, Bruce, “Port Knocking”, URL: http://www.schneier.com/crypto-
gram-0403.html#5 (22 Sept 2004)

14 Krzywinski , Martin, “Port Knocking: Features”, URL:
http://www.portknocking.org/view/about/features (22 Sept 2004)

15 Krzywinski, Martin, “Port Knocking: Knock Length”, URL:
http://www.portknocking.org/view/details/knocklength (22 Sept 2004)

16 Unknown, “Bash Implementation of Port Knocking”, URL:
http://www.opennet.ru/base/sec/port_knocking.txt.html (22 Sept 2004)

17 Trowbridge, Chris, “An Overview of Remote Operating System Finger
Printing” URL: http://www.sans.org/rr/papers/42/1231.pdf (22 Sept 2004)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

18 Rash, Michael, “fwknop”, URL: http://www.cipherdyne.org/fwknop/ (22 Sept
2004)

19 Ward, Bruce, “Doorman”, URL: http://doorman.sourceforge.net/ (22 Sept
2004)

20 FX, “Cd00r” http://www.phenoelit.de/stuff/cd00rdescr.html (22 Sept 2004)

21 CMN, “SaDoor”, URL: http://cmn.listprojects.darklab.org/ (22 Sept 2004)

22 FX, “cd00r”, URL: http://www.phenoelit.de/stuff/cd00r.c (22 Sept 2004)

23 Nakjang, Nawapong, “A Practical Approach of Stealthy Remote
Administration” URL:
http://www.linuxsecurity.com/feature_stories/feature_story-149.html (22 Sept
2004)

24 Whitehouse, Walker and Yamamoto, Mike, “Knock Knock” URL:
http://cyberdefensemag.com/april2004/citech.php (22 Sept 2004)

25 Bradley, Tony, “Port Knocking: Good Guys and Bad Guys Are Using This
Method To Open Ports”, URL:
http://netsecurity.about.com/cs/generalsecurity/a/aa032004.htm (22 Sept
2004)

26 “Port knocking New trend for Firewall Administrators”,
URL:http://www.tla.ch/TLA/NEWS/2004sec/20040224PortKnocking.htm (22
Sept 2004)

27 Bill, “INFO: Port Triggering – What is it?”, URL:
http://www.dslreports.com/forum/remark,1020195;root=equip,16;mode=flat
(22 Sept 2004)
Krzywinski, Martin, “Port Triggering”, URL:
http://www.portknocking.org/view/about/port_triggering (22 Sept 2004)

28 Eastlake, D (et al), “Randomness recommendations for security” URL:
ftp://ftp.rfc-editor.org/in-notes/rfc1750.txt (22 Sept 2004)

