
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Implementing Network Based Intrusion Detection in a Multi-School Campus

By Walter Brock

SANS GSEC Practical Assignment
Version 1.4c Option 2

6 September 2004

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Introduction:

With the ever increasing security threats (Sheriff, Ayers, Aug. 2003) to computer
networks of all types, Intrusion Detection Systems have left the exclusive domain
of the Chief Security Officer and are now being implemented by network
administrators of all varying skill levels. In the world of education and nonprofit
organization(or free) IDS's are not simply one alternative, they are often the only
alternative.

After presenting the reader with pertinant background information, this paper
attempts to present the experiences and lessons learned by the author during
the evaluation, testing, and final implementation of a Network Intrusion Detection
System (NIDS). This effort took place within a large multi-school campus in
central Florida, where the author was emplyed as a network manager, over an
approximately 19 month period starting in late 2002 and continuing through June
2004.

Background:

The school district where the author was employed covers an entire county (as
do all districts in Florida). All internet access is routed through a single gateway
at the district headquarters. A firewall, proxy servers, email scanners, and url
content filtering are all performed at this gateway. However, once inside the
firewall, no attempt is made to restrict traffic flowing between campuses.
Additionally, there is no single individual at the district level tasked with ensuring
the security of the network, thus network managers at each campus must
contend not only with threats that might make it through the firewall, but also with
threats from infected computers and “hackers” eminating from within their own
campus and from other campuses throughout the district. Since schools are
required by law to protect the privacy and confidentiality of student information
stored on their servers, the need for intrusion detection becomes evident.

The environment for this project is unique in that the campus where the author
worked actually hosts multiple schools, each fulfilling a different mission, and
each requiring different network and computing resources. The campus itself
consists of more than a dozen buildings (with more being added) and employs a
switched infrastructure based on 100 Mb connections to each desktop. Switches
are connected by a fiber backbone. Outlying buildings are connected via an
802.11b wireless employing high gain external antennas.

Though Host IDS (HIDS) is also a necessary part of this protection, HIDS was
examined as part of a separate project and will not be covered here.

Methodology:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Each Network IDS was installed on a “clean”, “stock” RedHat 9 system running
on a Gateway e2000 computer featuring a 2.4.GHz processor and 256 MB of
RAM.
Each Network IDS was allowed to run for a length of time necessary to confirm
the configuration and collect accurate data. This varied from 1 to 7 days.
Results were than gathered from system logs and NIDS databases.

Theoretical Background:

Sheriff and Ayers (OCE 2003) define an intrusion threat as “the potential
possibility of a deliberate unauthorized attempt to access information,
manipulate information, or render a system unreliable or unusable.” With this
definition in mind we can then define an intrusion detection system (IDS) as a
program or hardware/software combination whose primary purpose is to detect
deliberate unauthorized attempts to access information, manipulate information,
or render a system unreliable or unusable.

Intrusion detection systems come in two basic forms. There are host based
intrusion detection systems (Host Based IDS) and network intrusion detection
systems (NIDS). Each of these types has their own advantages and
disadvantages and the decision to deploy host based IDS vs. NIDS is not
mutually exclusive. The two complement each other and are often deployed
together to give more complete coverage of a given system. While the major
focus of this paper is on NIDS, host based IDS will also be discussed.

Whether host based or network based, intrusion detection is based on two
fundamental paradigms (Sheriff & Ayers OCE 2003, Rozenblum 2001, Deri 2003,
Rash 2002).

The first are signatures based systems. These systems work by comparing
network traffic or host based files to known signatures. In the case of NIDS, a set
of rules will define known network attacks. Any network data which matches
these rules will cause the NIDS to issue an alert. Snort is an example of this
form of NIDS. In the case of host based IDS this is done by comparing digital
signatures or checksums from these files with signatures obtained at install
time and stored in a protected database. Tripwire is an example of this type of
IDS. Signature based IDS systems are sometimes referred to as misuse
detectors, though this phrase has fallen out of use.

The second paradigm is anomaly detection. In anomaly detection, the host or
network is monitored for behaviors which would be symptomatic of misuse or an
intrusion. SNARE is a host based IDS which works by monitoring all activity
occurring on the system, such as system calls and accesses to memory looking
for signs of malicious or unauthorized behavior. Most NIDS implement anomaly
detection through some form of statistical analysis. At this time the author knows

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

of no open source NIDS which implement this model. However, NTOP is
presented as an example of an open source solution for monitoring network
utilization and does provide some insight into traffic behavior on the network.

Capturing network traffic:

In order to implement an effective IDS solution it is important to understand
certain fundamental principles involved in reading data (capturing traffic) from the
network. (Taylor 2003, Deri 2002, Baur 2002).

Under normal circumstances, the packets of data on a network segment are only
read by the intended receiver. All other nodes on the network will normally ignore
data packets not addressed to them. In order to capture this traffic, the NIDS will
place its network interface card (NIC) in “promiscuous” mode. In this mode, the
NIDS will read all traffic which flows on the network link to which it is attached
regardless of the intended destination. Note that this does not affect the actual
flow of traffic and in no way prevents or delays the data from reaching the
addressee.

If our network uses a passive hub, all we need to do is simply plug the NIDS
network cable into the hub and we can read all the data flowing on that hub.
Hubs use a bus technology which shares the network bandwidth with all nodes
attached to the hub. This is similar in concept to an old fashioned telephone
party line. However, if ethernet switches are employed this method will not work.
In an ethernet switch, each data packet is sent only to the output port where the
intended receiving node is located. Ethernet switches use built in intelligence in
the form a microprocessor and detected software to detect and store the media
access control addresses (the “hardware addresses) of each node attached to
the switch. Data is routed and internal dedicated connections connect only to the
appropriate node. This is similar to modern private exchange phone systems. A
NIDS on another port will never see this data and so cannot monitor it and detect
an intrusion.

One solution to the problem of switched networks is the span port (sometimes
referred to as a spanning port or mirror port). If the switch supports this option,
than one port can be configured to span all of the the other ports. That is to say,
the data from all of the other ports will be mirrored to the span port. In this way a
NIDS listening on the span port can receive all of the data for the network in
similar fashion to a hub and thus detect intrusions. Span ports work well for
small networks employing only a few switches, but become cumbersome to
implement on larger networks multiple switched segments.

Another solution to the problem of switches is the ethernet tap. An ethernet tap is
a device that sits in line with the data connection between the ethernet switch
and the network router (or another switch). The tap allows the NIDS to capture

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

the data flowing between the switch and the other device. The one disadvantage
to the ethernet tap is that any data flowing between internal nodes on the switch
will not be seen, thus any attempts at intrusion emanating from within the
network will be missed using this configuration. It is not uncommon on larger
networks to deploy multiple NIDS in order to catch both internal and external
intrusion attempts. Often the data from span ports on multiple switches will be
combined together using a hub or a multi port tap. Figure 1 illustrates the use of
an ethernet top to route network data from one network switch segment to
another switch. The switch is then configured with a span port to allow a single
NIDS to monitor data from multiple switches and segments.

 Figure 1: Ethernet tap and switch with span port.

Source: Jeff Nathan (jeff@wwti.com) and Brian Caswell (bmc@snort.org)

Ethernet taps can range in cost anywhere from a few hundred to several
thousand dollars making them prohibitively expensive for budget challenged
organizations. An alternative is the “poor man’s ethernet tap”. This consists of
placing a passive hub in line between the switch and router. Since all data
between the switch and router must now flow through the hub, the data can be
easily monitored by the NIDS. However, this is not an optimal solution. First,
almost all switches and routers support full duplex connections where as
passive hubs support only half duplex connections. This will force the switch
and router to renegotiate a half duplex connection. This can slow
communications and lead to increases in latency. Second, an ethernet tap

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

provides a straight through connection between the hub and router. Should the
ethernet tap loose power or should its internal electronic components fail, the
physical connection between the switch and router will not be broken.

In the case of this test, the router supports a connection to a 1.54 Mbps T1 line.
This being the case, it was felt a 10 Mbps hub between the switch and router
would not noticeably affect network traffic and, indeed, this proved to be the case.
Figure 2 illustrates the configuration used for this test.

 Figure 2: “Poor Mans Ethernet Tap” Configuration.

 Source: The Author

One last method of intercepting network traffic is called ARP spoofing. ARP, or
Address Resolution Protocol is the method by which network devices identify the
MAC address of other devices on the network. It is ARP that match internet IP
addresses with MAC addresses. In this monitoring method, the NIDS sends an
ARP message to each network node to be monitored. This ARP message
falsely informs the monitored nodes that the NIDS is actually the network router.
The effected nodes will now forward any outgoing traffic to the NIDS rather than to
the router. The NIDS then reads the data and forwards it to the real router.

ARP spoofing has multiple disadvantages. First, it dramatically increases the
load on the NIDS and can increase network latency. Second, should the NIDS

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

malfunction in any way, network traffic will be temporarily interrupted. Finally,
many modern switches are configured to check the MAC addresses of all
incoming packets against their internal routing table and reject those that don’t
match its own ARP address table. This would effectively block data flow to the
NIDS since the switch would recognize that the MAC address of the NIDS does
not match up with the IP address of the actual router. While this method can be
employed successfully, under certain limited circumstances it is not
recommended.

NIDS:

The first three NIDS to be examined here are all based on a program called
Snort (Westphal 2000, McClure 2003, Gaur 2001) Snort, which is available at
www.snort.org, refers to itself as a “light weight NIDS”. This moniker is
misleading. In fact Snort is an extremely powerful program. Snort consists of
three basic components. First is the decoder, which as its name implies,
decodes the captured packets. Second is the detection engine which compares
the decoded packets to the defined rules. Last is the alert & logging component
which records packets flagged by the detection engine to the defined logging
facilities and generates whatever alerts may have been configured by the
administrator.

 Figure 3: Snort Architecture.

 Source: http://www.linuxjournal.com/article.php?sid=4668

Snort Rules:

As mentioned above, Snort works by comparing captured packets to a
predefined set of rules. Snort comes with a set of several thousand default rules
in just over two dozen categories. Each category can be included or excluded as
part of the basic configuration process. For example, a network running a

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Microsoft SQL Server installation would not need to include the Oracle rules.
However, even after excluding unnecessary categories, the Snort administrator
will still need to write new rules. This might be to tell Snort to ignore certain types
of traffic on the local network, such as “ignore port scans from the managers
workstation”. Another possibility would be to include new attack signatures not
included in the default set , though updates to the default rules are made on a
regular basis. Figure 4 shows the syntax for a basic Snort rule.

Figure 4: Anatomy of a snort rule.

Source: http://www.linuxjournal.com/article.php?sid=4668

EVALUATION PHASE

 PureSecureTM

Introduction:

The first of the Snort based systems we will examine is PureSecure. PureSecure
actually has its roots as an open source project. In fact, older versions are still
available from at least one Linux distribution. PureSecure is a commercial
product of Demarc and is available on the Internet at www.demarc.com. Though
no longer entirely open source, it is based on a host of open source components
including the Snort intrusion detection engine, Apache web server and MySQL
database. Demarc adds its own proprietary front end to these components as
well as a customized shell based installer. (Slonaker 2003).

Capabilities:

PureSecureTM actually provides three main functions. It’s strength lies in its
Snort based network IDS (NIDS). It also can be configured to do basic file
integrity checks, similar to, but not as sophisticated as Tripwire. Lastly, it
provides basic network service monitoring. The sensor can be configured to
measure latency between itself and other hosts through ping checks, and basic
service monitoring through TCP connections to predefined ports on those hosts.
I can also track certain fundamental metrics such as CPU utilization and disk
space on machines hosting a PureSecureTM sensor.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Installation:

The first time the author installed PureSecure, just over a year ago, was a
terrible experience. The machine on which it was installed was a production
server which had been in use for over a year. The PureSecure install script had
a terrible time with conflicts between the software it was trying to install and
software already on the server. In the end, the automated install was abandoned
and completed manually. Configuration data had to be manually copied and
pasted to multiple configuration files. User permission had to be defined on
dozens of files and directories. Finally, the MySQL database was manually
created. Once it was finally running, the browser based interface was
impressive, but performance was laboriously slow. The server on which it was
installed was simply underpowered for the application.

The install of PureSecure for this evaluation was an altogether different
experience. The install was performed on a pristine RedHat Linux install that
had never been in production or even on the network and had never had any of
the conflicting software on it.

The process began by registering for and downloading the installer script. While
PureSecureTM is a commercial product it is offered free for personal and
noncommercial use1 . The installer script is a 300 KB shell script. It asks a few
questions, than downloads the source code for the Snort IDS, Apache web
server, MySQL database server, as well as several library files and perl modules.
Compiling from source takes longer but also insures optimum performance for
a given installation and helps to dramatically reduce problems with library
conflicts and dependencies.

After a little over two hours, the installer had finished compiling and installing all
of the open source components and was ready to download and install the
PureSecure daemon itself. This daemon and its associated web files is the
heart of PureSecure. The daemon controls the snort process, database logging,
and handles the user interface via the web server.

The entire install process was nearly flawless and the IDS went online without a
hitch.

User Interface:

As mentioned previously, PureSecureTM is accessed through a browser based

1 The download page for PureSecure Personal Edition states that the product is only free for “home” use.
However, the license file included with the software states clearly, that PureSecure is free for noncommercial use
and specifically sites non profit organizations as an example of such use.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

interface. The web server is configured to use SSL encryption, but oddly enough,
there is an option at install time to allow anonymous log ins to the web console.
I declined that option and set up a password protected log in. Administrative
functions are password protected in either case, but I cannot imagine any
network administrator allowing anonymous log ins to his or her IDS!

The PureSecureTM interface is well thought out. New users will want to spend
some time with the equally well written documentation before configuring some
of the more advanced functions.

 Figure 5: PureSecure Summary Page.

 Source: http://www.demarc.com

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 Figure 6: PureSecure Configuration Page.

 Source: http://www.demarc.com

Results:

The results from PureSecure were quite impressive. Over a seven day period,
PureSecure logged over 150,000 events. Of these, 345 were considered to be
unique. The overwhelming majority of these events were actually normal
network traffic. Fortunately, the ability to show unique event types (see Figure 3)
made the job of sorting normal traffic from genuine security concerns
dramatically easier. Once the normal traffic types are identified, new rules can
be inserted into the Snort configuration to instruct the NIDS to ignore those types.
For example, in an earlier test, PureSecure logged over 345,000 events in a one
week period. The creation of a “local” rule set instructing Snort to ignore certain
type of normal traffic resulted in the results seen here. Further “tweaking” of the
rules could easily reduce the number of false positives by another order of
magnitude.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 Figure 7: PureSecure Unique Events Page.

 Source: The Author

Figure 9: PureSecure Graph
Port Scans Detected Over 7 day Period, Host 2.

Source: The Author

Figure 8: PureSecure Graph:
Port Scans Detected Over 7 Day Period, Host 1.

Source: The Author

 MIDAS v2.0

Introduction:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

MIDAS is an entirely open source project and is intended to be an entirely free
alternative to PureSecure. It is built on exactly the same open source foundation
as PureSecure (Snort, Apache, MySQL & assorted components) and is available
at http://midas-nms.sourceforge.net. Version 2.0i was tested. (Metcalf 2002).

Capabilities:

MIDAS attempts to equal the functionality of PureSecure by adding its own
integrity and service checking capabilities to the Snort NIDS. However, MIDAS
lacks many of PureSecure’s more advanced capabilities, such as managing
numerous sensors from a single console.

User interface:

MIDAS presents the user with a web based interface strikingly similar to
PureSecure (see Figure 10). Interestingly, a check of the MIDAS web site shows
that an entirely new interface is under development though no time frame is
given for its release.

 Figure 10: Midas Summary Page.

 Source: The Author

Installation:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Despite the similarities with PureSecure, the MIDAS installation was anything but
easy. After downloading and compiling the source code the next step was to
configure the daemons. MIDAS uses not one, but six separate daemon
processes. Each has its own XML formatted configuration file that must be
edited manually. Unfortunately, the daemons give very little feed back by way of
error codes (even with the debug level set high) which makes it very difficult to
figure out what is wrong when they refuse to launch. This is further compounded
by the fact that a minimum install requires no less than three of the daemons to
function correctly together. A great deal of trial and error is necessary.

Once the three daemons (one to control Snort, one to handle database logging,
and one to handle control functions) are working, the Snort sensor must be
configured via the web interface.

This process involves creating at least one “sensor” in the database and then
copying the default Snort rule set and config file to this sensor. Once that is
done, the rules can be customized to fit the local network usage. Unfortunately,
MIDAS falls down badly here. Where PureSecure did this process automatically
at install, MIDAS requires the user to follow multiple steps just to get to this point.
Worse, PureSecure automatically verifies Snort config syntax. MIDAS has no
such facility. The default Snort rules caused Snort to fail with no error warnings
at all in the interface.

With no way to verify the Snort rules, the author was forced to write a shell script
with which to verify them manually. The process consisted of making a change
in the web interface, letting MIDAS generate the Snort config file, running the shell
script, finding the error, editing the offending rule in the web interface, generate,
find error, etc. until a working configuration was finally generated. This process
took the better part of a day. Another problem was that in many cases the cause
of the error simply could not be identified. In these cases the syntax in the web
based interface appeared correct, but the generated rule would cause Snort to
crash. The only “fix” was to delete or comment out the offending rules leaving
potential holes in the security coverage. Not an optimum solution. Clearly, there
is a problem in the daemon process that translates the rule files from binary
large objects (BLOBS) in the database to ascii text files for Snort.

Results:

It was observed that almost immediately after launching MIDAS there was a
significant reduction in the number of events recorded as compared to
PureSecure. This was puzzling since both programs used the same version of
Snort with essentially the same rule set. To confirm this, port scans were
launched against the MIDAS server from two different work stations. The MIDAS
server failed to register either port scan. This was very disturbing. A check of the
Snort config generated by MIDAS verified that it was configured to load its port

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

scan detector.

After 24 hours of monitoring, MIDAS had only captured only two types of unique
events (see Figure 7) out of a total of 149 events total. Oddly, one of those events
was a scan on port 135 from a machine outside the local network. Why only this
one scan was detected out of a total of 5 scans registered that day on another
server remains a mystery.

Figure 11: Midas Unique Events Page.

Source: The Author

As a final confirmation that the problems encountered lie in the MIDAS
implementation alone. Snort was launched manually using the configuration
generated by PureSecure, but configured to log to the MIDAS database. A quick
check of the MIDAS front end showed that Snort was now logging the expected
number and type of events.

Given the extreme difficulties in installing and configuring MIDAS, the glaring
holes in its IDS capabilities, and the very poor results, the test was ended after
only one day of monitoring.

 MIDAS v2.2

Midas v2.2 was examined several months after the initial evaluations as part of a
reimplementation of the original project. The results of this new evaluation are
presented later in this paper.

 ACID

Introduction:

ACID (Analysis Console for Intrusion Detection) is the most mature of the three
Snort based solutions examined here and is available at
http://acidlab.sourceforge.net. To use ACID, Snort must be configured to log its
output to a MySQL database. It’s browser based interface allows the user to
view Snorts output in several different ways such as individual events, unique
events, or graphically. (Metcalf 2002).

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Capabilities:

ACID takes a very different approach from either PureSecure or MIDAS. First,
ACID does not attempt to add any other functions to Snort such as integrity
checking or service monitoring. Second, ACID does not attempt to automate the
administration of Snort in anyway. The user must manually configure Snorts
config file and rule sets and launch Snort either from the command line or from a
startup script. ACID acts simply as a front end to Snort allowing the user to view
Snorts output through a web browser.

User Interface:

ACID presents the user with a straight forward summary web page (see Figure
12). Details and graphs are available through links on this page. The web
interface does not provide any sort of configuration screens either for ACID itself
or for Snort. All configurations are done manually.

 Figure 12: Acid Summary Page.

 Source: The Author

ACID also provides excellent graphic reporting abilities (see Figure 13),
including the ability to graph types of events and trends over any specified period

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

of time. Unfortunately, these reports must be configured from a series of drop
down menus each and every time they are run. For a smaller network this is
merely tedious. For a larger network the amount of time required to generate
reports could become an issue.

Figure 13: ACID Graph Showing Number of Alerts in a 24 Hour Period.

Source: The Author

Installation:

Installation consists of downloading a single compressed tar file from the ACID
web site. This tar file is then installed on to the web server and the configuration
files editing to point to the database server and base URL. A MySQL database
must then be created using the included SQL script.

In addition, ACID requires several external components including the adodb
database abstraction library and the jgraph graphing libraries. Upon launching
the console for the first time a php script checks for the presence of these
libraries and directs the user to the appropriate download sites if they are not
found.

In this evaluation it took less than 30 minutes to install and configure ACID. This
included the time needed to download and install the other required
components.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

As noted above, ACID makes no attempt what so ever to provide any sort of
automated configuration for Snort. It is up to the user to install and correctly
configure Snort. Thus a greater degree of knowledge is require on the part of the
network administrator. For this test the Snort configuration generated by
PureSecure was used. The configuration file was merely edited to point to the
ACID database on the MySQL server rather than the Snort database.

Results:

ACID logged a total of 30955 alerts in a 48 hour period. Of those, 135 were
considered to be unique events. Again, as in PureSecure, the ability to view the
unique events on a separate report made eliminating false positives very easy to
do. The ease of installation, combined with the intuitive web based interface
make ACID an excellent choice for smaller networks, providing the network
administrator has the knowledge and expertise required to install and configure
Snort manually.

 NTOP2

Introduction:

NTOP (available at http://www.ntop.org) is a very mature program for monitoring
network using. NTOP was originally written by Luca Deri with the first version
appearing in 1993. It is written in “C” and available for multiple host operating
systems including most flavors of Unix/Linux and windows 98/ME/NT/2K. NTOP
is freely available under GNU General Public License, but commercial support
and customization are provided at http://support.ntop.com.

NTOP is entirely different from the Snort based NIDS examined earlier. NTOPs
primary function is to provide detailed statistical data on network utilization.
These statistics include the protocol and connections made be each monitored
node on the network. By examining these statistics, the network administrator
can easily spot unauthorized or suspicious network activity. (Deri 2000, 2002,
2003).

Capabilities:

NTOP uses the libpcap packet capture library to capture, or “sniff” network traffic
in promiscuous mode. The program gathers detailed statistics on protocol
usage, connection state, throughput, etc. on every host it identifies. The

2 The reader is advised that the author has contributed some programming code to the NTOP project and has
been an ardent proponent of its use for many years.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

statistical data are stored in an RRD database3.

Earlier versions of NTOP had a “rules engine” with which the administrator could
configure NTOP to examine network data in much the same manner as does
Snort, though the engine in NTOP was much less sophisticated. This ‘rules
engine’ was removed in 2002 because the developers felt that it required too
much processing power and it detracted from NTOPs overall stability. The
development team also felt that their efforts would be better spent improving
NTOP’s monitoring capabilities. The rule engine was replaced by a packet
logging function. NTOP can be configured to log all “suspicious” packets to a
file in tcpdump format. In NTOPs context, the word suspicious merely means
that the packet didn’t fit NTOPs definition of normal network traffic. This could be
anything from unknown protocols to odd port numbers. This log file can then be
examined by a more powerful protocol analyzer such as ethereal. Unfortunately,
my attempts to read this file failed. Ethereal would stop loading after only two
packets with an error message stating that the packets were malformed. Clearly
there was a problem with my implementation as most NTOP users have
reported no problems with this facility. Fortunately, the packet logging function is
not needed to the uses presented here.

Installation:

NTOP can be compiled from source or, in most cases, installed as a
precompiled binary package. For this test the most recent RPM packages for
NTOP (version 2.2.93) and the most recent version of rrdtool were downloaded
from the NTOP web site. Download and installation required less than 15
minutes. Once downloaded the NTOP configuration file must be edited to match
the user’s local needs. The configuration file format and options are clearly
documented in both the main page and the online documentation. Once the
configuration file is complete, NTOP must be run one time from a console
terminal in order to set the administrative password. The entire configuration
process required no more than 5 minutes. After this was completed, NTOP was
launched in daemon mode and allowed to begin monitoring the network.

User Interface:

NTOP delivers data to the user through its own built in web server, available by
default on port 3000 with an ssl version available on port 3001. These settings
are configurable. The NTOP user interface provides a vast array of tables and
graphs allowing the user to see everything from overall network utilization and
throughput to the hour by hour use of a given protocol by a given host including
all attempted and completed connections.

3
 For more information on RRD or Round Robin Database please see http://ee-

staff.ethz.ch/~oetiker/webtools/rrdtool/

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

The authors of NTOP have taken considerable effort to provide an intuitive
interface to this vast wealth of data. The NTOP screens are well laid out and very
easy to navigate. In nearly all cases, data are provided in both tabular and
graphical form, allowing the user to find specific data points or spot trends very
quickly.

Several NTOP screen shots are included here to illustrate its capabilities.
However, space simply does not allow for the complete review of all of the
possibilities provided by NTOP:

 Figure 14: NTOP IP Protocol Distribution.

 Source: The Author

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 Figure 15: Portion of an NTOP Individual Host Report.

 Source: The Author

 Figure 16: Another Part of NTOP Individual Host Report.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 Source: The Author

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 Figure 17: NTOP Global TCP/UDP Protocol Distribution.

 Source: The Author

Results:

With the single exception of the glitch in the “suspicious packets” file, NTOP
performed flawlessly. It gathered detailed statistics on the network as a whole
as well as all hosts that it identified. The detail was such that after spotting port
scan attempts with Snort, The exact ports and hosts involved could be viewed in
NTOP. NTOP was also able to identify several other interesting pieces of
information such as when and from which computer the night custodian was
accessing the Internet and to which web sites the involved computer connected.
In another case, NTOP not only identified a host using peer to peer file sharing to
down load mp3 files, but even gave the titles of those files.

Though NTOP lacks some of the advanced capabilities of a full fledged NIDS, it
clearly enhances the network administrators abilities to monitor activity of all
kinds on the network. Its extensive statistics and intuitive interface allow the user
to quickly drill down to relevant details. As such, NTOP makes an excellent
adjunct to other network intrusion detection systems.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 Prelude

Introduction:

According to it’s web site, Prelude (available at http://www.prelude-ids.org) bills
itself as a “a new innovative Hybrid Intrusion Detection system designed to be very modular,
distributed, rock solid and fast.”

Capabilities:

Prelude is very similar to Snort in its claimed capabilities. In fact, prelude uses
the exact same rules file format as Snort, and comes with Snorts own default
rule set. Prelude claims to be able to handle a greater level of traffic due to a
more efficient design. This claim could not be verified. Prelude also adds
simple host based integrity checking.

Installation:

Prelude is available in RPM (RedHat Package Manager) format for those Linux
distributions which utilize it. Other distributions must compile from source. Both
the RPMs and source compilation were tested with identical results. In either
case, once the binary files are in place, a MySQL database must be created from
a sql script included in the download. Preludes configuration files must be
updated with host names and addresses of the sensor and database server.
The appropriate rules files must be installed. Finally, a sensor must be
configured to communicate with the manager by authenticating it to the manager
application using a one time password. All of these steps were completed
without difficulty.

Results:

The test results for Prelude were a complete disappointment. After successful
installation and configuration the program launched without errors. Messages
on the console output indicated that the sensor had launched successfully and
had bound itself to the network interface. It also indicated that it had successfully
connected to the database. However, after allowing the program to run overnight,
it had not logged even one packet! There were no error messages of any kind on
the console output or in the system logs. Double checking all configuration files
produced no errors either. The network interfaced was double checked to insure
that it was in promiscuous mode. Finally the program was relaunched. Again,
all console output indicated correct operation, but no packets were logged. The
test was considered a complete failure.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

SUMMARY OF RESULTS

 Table 1 on the nex page provides a summary of the test results for the NIDS
 solutions examined here.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Table 1: Summary of Test Results.

 1005

 21,0004

 1005

 15,0004

Online forum
and mailing list.
Moderate traffic.

Online forums
and mailing with
high traffic. Well
written man
page, but user
documentation
minimal and out
of date.
Paid phone,
email and
consulting
support
available.

Online forum
and mailing lists
with high traffic.
Well written
online
documentation.

Online forum
and mailing list
with little traffic.
In some cases
days past
between posts
and responses.

Excellent
Documentation
available in PDF
format. No
support offered
for Personal Edit
Phone and
Email support
available for
commercial
version.

Support

 2

 149

 n/a3

4
One
configuration
file must be
manually edited.
Some advanced
reports require
one time
configuration.

5
Download and
install simple
and well
documented.

3
ACID console
requires minimal
manual
installation, but
provides no
Snort
configuration of
any kind.

4
Download and
install well
documented
and
straightforward.

1
No automated
install of any
kind.
6 daemon
processes
require manual
configuration
with little to no
feedback.

4
Automated
install script
works well with
little user
intervention.
Single daemon
process
requires no
configuration.

2
Automated
Snort
Configuration
Failed. No
Rules
Verification.

4
Automated
Snort
configuration &
Verification of
Snort rules.

 n/a3

Extensive, built
in, some
advanced
reports require
initial
configuration.

Extensive, built
in, requires
manual report
configuration.

MinimalExtensive, built
in, automated
report
configuration.

n/a2

3
Configuration
well
documented
but require
multiple steps
with no
documentation.

3
Download and
install well
documented
but require
multiple steps
with not
automation.

 0

 0

Reporting
Capabilities

Ease of
Configuration1

Ease of
Installation1

Unique Events
per 24 hrs

Events Logged
per 24 hrs

PreludeNTOPACIDMIDAS v2.0PureSecure

NOTES: 1. Scale of 1 to 5, 5 being easiest, 1 being most difficult
2. Unable to test due to lack of data.
3. Not applicable to this test.
4. Average rounded to nearest thousand.
5. Estimate. Number of unique events is highest on first day of testing and steadily declining there after.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 Implementation:

 At the completion of the evaluation phase both NTOP and PureSecure were the
clear leaders. The decision was made to roll out the NIDS based on these two
products. A test system was installed at the main switch of the campus using the
“poor man’s ethertap” approach illustrated earlier. and allowed to run for three full
months. During that time, the Snort rules were tuned and additional “pass” rules
were added to the Snort configuration to tell Snort to ignore normal traffic that
would otherwise generate false positive alerts. After two weeks of operation, the
test system was generating less than a dozen alerts daily with only an average of
two to three false positive alerts. The test system was successful in finding
several workstations within the campus that were infected with various viruses
and malware. It was also successful in alerting the operator to port scans coming
in from other campuses.

NTOP also proved itself to be highly effective. After running for several weeks
NTOP had provided an excellent graphical view of normal network traffic. Once the
author became familiar with this normal “base line” it was very easy to pick out
exceptions, such as spikes in usage of a given port. These anomalies could then
be investigated by looking at detailed reports for individual hosts provided by
NTOP or by applying filters to look for specific traffic. New Snort rules based on
the traffic patterns supplied by NTOP could also be applied, though in practice,
this was rarely necessary as NTOP was nearly always capable of pointing out the
source of the abnormal traffic. In one example, NTOP not only pointed to a
workstation running a peer-to-peer file sharing program, but even listed the titles
of the mp3 files downloaded by the user.

At the end of the three month test the author met with district officials to review the
results. All agreed that despite the difficulties of not having access to the
switches, the test had been a resounding success. However, there was
considerable worry over the wording in the PureSecure license and just exactly
what constituted “non commercial use”.4 Since the district could not afford to pay
for a license from Demarc should they be found to be out of compliance, the
decision was mode to drop PureSecure and the author was asked to
reimplement the test using only open source software.

This led to a reevaluation of the entire project. At this point nearly a year had
passed since the initial inception of the project and the decision was made to test
the newest release of MIDAS in the hope that it’s shortcomings had been
addressed and would suffice to take the place of PureSecure in the test system.

In early 2004 the author was able to attend the SANS GSEC training class in
4
 Though the school district itself is a non-profit orginization, there was concern that since the network

managers within the district are full time, salaried employees, this could be interpreted as requiring a commercial
license for PureSecure.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Orlando Florida. Upon returning from this event, the author installed and tested
MIDAS v2.2. MIDAS, by this time, had undergone significant change and
enhancement. The web based user interface was completely overhauled and
enhanced. Significantly, many aspects of its operation could now be configured
through the web interface. The earlier failures of the system to log alerts did not
occur during this installation and MIDAS was able to launch snort and collect data
with no difficulties.

This newer version of MIDAS still requires the administrator to manually edit the
configuration files for the various components which would make it somewhat
more difficult to roll out at the district level. Also, there is still no provision for
verifying the Snort configuration as in PureSecure, thus the administrator is still
required to to verify the Snort configuration manually. These tasks can be partially
automated through the use of shell scripts and do not present a significant
impediment to roll out.

The test system was put back into operation with MIDAS v2.2 in place of
PureSecure. System performance was on par with the earlier PureSecure based
system. In fact, some of the district network managers who viewed the system
preferred the new MIDAS web interface to the PureSecure interface. Several made
comments that it was both more intuitive and had better response time (though
this was not unanimous, see figure 18.).

As a result of the SANS training, the author became aware of a fundamental flaw
in the implementation. This flaw is best illustrated by an incident in which a
student had gained access to a VNC password and had used it to access a
desktop in the campus’ Media Center. Fortunately, the individual involved was
quickly identified and the passwords were immediately changed. Equally
fortunate was the fact that the student was only able to access other student
workstations as the teacher workstations used different passwords. However,
because the NIDS was designed to look only at traffic flowing out of and into the
network at the router, there was no trace of this incident within either NTOP or the
Snort logs.

Since the campus uses a switched network, a mirror port on the switch would be
necessary to allow monitoring of the campus’ internal traffic. Unfortunately, the
district department responsible for maintaining and configuring all switches and
routers had declined to participate in the test. For this reason it was not possible
to monitor internal campus traffic. This incident clearly illustrates how
organizational politics and lack of “buy in” by important stake holders can
compromise a project.

In order to demonstrate the ability of the system to scale at the district level,
MIDAS/Snort sensors were placed at each school within the campus. These
sensors were configured to log back to the main console. With their

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

configurations properly tuned these sensors generated negligible network traffic
and proved to be an additional burden to the network infrastructure. The MIDAS
web interface made it easy to update the Snort configurations for each sensor
from one central console. However, since no funding was available for this test,
the computers used for the sensors had to be pulled from service after
approximately two weeks and put into classroom service.

 Figure 18: Midas v2.2 Host view.

 Source: http://midas-nms.sourceforge.net/screenshots.html

 Conclusion:

The choice of the “best” NIDS is not as simple as looking at tables of data and
reviews. Each IDS has its own strengths and weaknesses. To be effective, these
strengths and weaknesses must be matched up against the type and amount of
network traffic expected and the skill level of the network administrator. One thing
is clear, while host based and network based IDS’s represent two divergent views
on intrusion detection, these views are complimentary. The most effective
protection will be achieved by utilizing both host based and network based
intrusion detection.

In this project, PureSecure clearly stood out among the others. However, ACID
also proved itself to be a viable alternative for smaller networks or for those who

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

do not qualify for the noncommercial version of PureSecure and cannot afford the
commercial license (starting at approximately $2,300.00).

MIDAS v2.2 proved itself to be an able substitute for PureSecure even if it lacked
some of the more advanced features. MIDAS also has the benefit of being under
active and continued development and supports a very active user community.

Prelude failed to collect any meaningful data in this test and proved both difficult to
administer and configure. It should be pointed out that this program has been
used successfully on other networks. More than likely, the problems in this
product lie in undiscovered platform and/or library incompatibilities. This
suggests that considerable development effort is needed.

NTOP, while not purely a NIDS program showed itself to be an excellent adjunct to
any network security and monitoring solution and was also praised for it’s ability to
help enforce acceptable use policies as well as it’s ability to show anomalies in
network traffic.

At the conclusion of the project, the test system was demonstrated for district
officials and the results reviewed. The system received high praise and was
submitted as a model for roll out across the district. Several network managers at
other campuses voiced their enthusiasm for this project. However, by the
conclusion of the 2003/2004 school year, no action had been taken concerning the
proposal.

As of June 2004 the system remained in service at the author’s campus and
remained effective even though the author was only able to devote a few hours of
his time to it each week. The number of alerts generated has continued to decline
as incoming scans and alerts from computers at other campuses were reported
to district officials. Thus, even this one IDS running at only one campus has had a
district wide effect.

As a final point, it must be stated emphatically that no intrusion detection system is
complete without some form of host based integrity checking. This point was
driven home by the recent attacks against the Debian Linux project (Schulze).
Three of their servers were successfully attacked and compromised by an
unknown attacker who exploited a buffer overflow in the Linux kernel. In this case
the debian.org NIDS failed to catch the intrusion, but the host based IDS5 on each
server, in combination with the system logs did!

5
 Debian.org utilizes AIDE, Advanced Intrusion Detection Environment, an open source alternative to Tripwire

with equivalent functionality. Available at http://aide.sourceforge.net.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Bibliography

Mick Bauer, “Intrusion Detection for the Masses”
Linux Journal, July 01, 2001
http://www.linuxjournal.com/article.php?sid=4718

Mick Baur, “Stealthful Sniffing, Intrusion Detection and Logging”
Linux Journal, October 01, 2002

Kumar Das, “Protocol Anomaly Detection for Network-based Intrusion Detection”
January 5, 2002
http://www.sans.org/rr/papers/index.php?id=349

Luca Deri, “Ntop: a Lightweight Open-Source Network IDS”
Finsiel S.p.A. Centro Serra, University of Pisa. September 2000.

Luca Deri, “Passively Monitoring Networks at Gigabit Speeds Using Commodity
Hardware and Open Source Software”
NETikos S.p.A. 2002

Luca Deri, Stefano Suin, and Gaia Maselli,
“Design and Implementation of an Anomaly Detection System: an Empirical
Approach”
Proceedings of Terena TNC 2003, Zagreb, Croatia, May 2003.

Ido Dubrawsky, “Freeware Intrusion Detection Tools”
Sys Admin Magazine, August 2001
http://www.samag.com/documents/s=1147/sam0108o/0108o.htm

Victor R. Garza and Joseph L. Roth, “Inspecting the Inspectors”
Infoworld Magazine, August 23, 2004: 39-47

Nalneesh Gaur, “Snort: Planning IDS for Your Enterprise”
Linux Journal, July 11, 2001
http://www.linuxjournal.com/article.php?sid=4668

Roger Grimes, “The New Security: Many Threats Many Solutions”
Infoworld Magazine, August 30, 2004: 43-47

Allison Hrivnak,
“Host Based Intrusion Detection: An Overview of Tripwire and Intruder Alert
January 29, 2002
http://www.sans.org/rr/papers/index.php?id=353

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Chris Kuethe, “Homebrew Intrusion Detection Systems”
Sys Admin Magazine, August 2001
http://www.samag.com/documents/s=1147/sam0108m/0108m.htm

Stuart McClure, Joel Scambray and George Kurtz, Hacking Exposed, 4th Edition
Osborner/McGraw Hill, New York 2003

William Metcalf,
“A Practical Guide to Running SNORT on Red Hat Linux 7.2 and Management
Management Using IDS Policy Manger MySQL”, April 2, 2002
http://www.sans.org/rr/papers/index.php?id=360

Rich Paredes, “Detecting and Removing Trojan Horses on Linux”
Sys Admin Magazine, August 2002
http://www.samag.com/documents/s=7467/sam0208e/0208e.htm

Michael Rash, “Detecting Suspect Traffic”
Linux Journal, November 01, 2001
http://www.linuxjournal.com/article.php?sid=4876

Danny Rozenblum, “Understanding Intrusion Detection Systems”
August 9, 2001
http://www.sans.org/rr/papers/index.php?id=337

Martin Schulze, “Debian Investigation Report After Server Compromises”
Linux Today, Dec 2, 2003
http://www.linuxtoday.com

J.S. Sherif; R. Ayers; T.G. Dearmond,
“Intrusion detection: the art and the practice. Part I.”
Information Management & Computer Security, August 27, 2003

J.S. Sherif; R. Ayers, “Intrusion detection: methods and systems. Part II. “
Information Management & Computer Security, OCE 22, 2003

Jeffrey Slonaker, “An Overview of PureSecureTM”

May 12, 2003
http://www.sans.org/rr/papers/index.php?id=1036

Peering Over the Firewall
Jeffrey L. Taylor
Linux Journal, July 23, 2003
http://www.linuxjournal.com/article.php?sid=6985

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Kristy Westphal, “Snort — A Look Inside an Intrusion Detection System”
Sys Admin Magazine, Septermber 2000
http://www.samag.com/documents/s=1161/sam0009f/0009f.htm

Kristy Westphal, “SNAREing Intruders in Linux”
Sys Admin Magazine, August 2002
http://www.samag.com/documents/s=7467/sam0208a/0208a.htm

