
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Table of Contents ...1
George_Anderson_GSEC.doc ...2

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Password Complexity
Enforcement and

Auditing Enhancement
in Red Hat Linux 7.3

GIAC Security Essentials
Certification (GSEC)
Practical Assignment

Version 1.4c

Option 2 - Case Study in
Information Security

Submitted by: George Anderson
Location: Washington, D.C.

Date: 17 December 2004

This paper describes my work to enhance
password policy enforcement and implement C2
style logging/auditing capabilities on a network of

Red Hat Linux 7.3 systems running a custom-
developed, multi-user simulation.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

George J. Anderson, Jr. 17 Dec 2004 GSEC 1.4c Practical

Table of Contents

Abstract 1
Before 1

Current Security Posture 1
Problem Description 2
Current Risks 2

During 3
Password Complexity Enforcement 3

Proposed Solution 3
Solution Implementation 3

Logging Attempted Accesses to File System Objects 4
Proposed Solution 4
Solution Implementation 5

After 7
Solution Testing and Validation 7

Password Policy 8
Logging Requirements 8

Risk Assessment 12
Conclusion 13
References 15

List of Figures

Table 1. Test Cases for Password Policy Enforcement 8
Table 2. Matrix of File System Access Privileges for Normal User 9
Table 3. File System Access Logging Test Cases for Normal User 9
Table 4. File System Access Logging Test Cases for root 12

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

George J. Anderson, Jr. 17 Dec 2004 GSEC 1.4c Practical

Abstract
This paper details the steps I took to overcome deficiencies of a customized
Red Hat Linux 7.3 installation in the areas of password policy enforcement and
audit trail generation. I was solely responsible for designing and implementing a
solution to satisfy the requirements for this system.
The specific deficiencies were that password complexity enforcement was not
verifiable and there was no facility for logging attempts to access arbitrarily
specified file system objects. I was able to completely solve the password
complexity issue, but I was able to only partially implement a solution for the
logging issue. Logging of failed file system access attempts was incomplete
and inconsistent, but given knowledge of its limitations, the additional logging
was better than nothing. Both solutions are presented, along with some
thoughts on what to be aware of regarding the partial logging solution.

Before
The system consists of a small local area network (LAN) of Intel Pentium 4 PCs
running Red Hat Linux 7.3. Even though this LAN was built recently (August
2004), the target application, a custom-developed multi-user simulation (not
developed by us), required the use of the older version of Linux.
The PCs are connected through a single 100 Megabit switch by Cat5e cabling.
One of the PCs has extra disk space and acts as a Network File System (NFS)
server and provides the home directories for normal users. The LAN is located
in a secured room requiring specially coded badges for entry. The LAN is never
connected to the Internet or any other network.

Current Security Posture
All systems require BIOS passwords and are configured to boot from the hard
drive only. All of the systems on the LAN are running Red Hat Linux 7.3. The
Grand Unified Boot Loader (GRUB) is used to control kernel booting
parameters. Editing of boot options is protected by an MD5 password hash.
User authentication consists of username/password pairs using MD5 password
hashes and Pluggable Authentication Module (PAM) stacks. The /etc/login.defs
and /etc/default/useradd files are configured such that passwords expire after 75
days with a 15-day grace period. New passwords must be kept at least a week
before they can be changed. User accounts are locked after five consecutive
failed login attempts. Account lockout is provided by the pam_tally module,
which is configured in the /etc/pam.d/system_auth stack. System administrator
intervention is required to re-enable locked accounts.
System and security events are logged to the files /var/log/messages and
/var/log/secure. All password changes and change attempts are logged.
Logons and logoffs – both successes and failures – are logged. All privilege
escalations and escalation attempts are logged (that is, use of the su command
is logged). System administrators are required to log in to unprivileged accounts
and then use su to perform maintenance and upgrade tasks.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.4

George J. Anderson, Jr. 17 Dec 2004 GSEC 1.4c Practical

The system is configured for graphical login using the Gnome Display Manager,
with a warning banner substituted for the default Red Hat login background.
The telnet service is turned off and ssh is used to provide remote login services.
The standard ftp service is enabled, but is configured to prevent both root and
anonymous access. All unnecessary services are turned off and uninstalled.
Sophos Anti-Virus for Linux is installed on all systems.

Problem Description
After reviewing our current security measures, we were comfortable with all but
two conditions: we needed to be able to enforce a strong password composition
policy and to log all unsuccessful attempts to access particular file system
objects.
The pam_cracklib module distributed by Red Hat uses a scoring algorithm to
determine the strength of a particular password’s composition. The algorithm
supports a minimum length for passwords, but does not allow for specific
composition requirements. Each password characteristic, such as uppercase
alphabetic characters or numeric digits, is assigned a weighting that is used to
calculate the password’s “goodness,” but there is no way to require a specific
characteristic. In fact, the algorithm used actually allows a reduction in the
minimum required length of the password, depending on the parameters used!
A sufficiently long password could be scored highly enough to avoid the
requirement to contain a numeric character. A password with several numeric
characters could be scored highly enough to avoid the requirement for mixed-
case alphabetic characters. A password with mixed case and numeric digits
could be scored highly enough to be accepted even if it contained fewer than the
minimum required number of characters. Although the latest version of PAM
provides support for enforcing a requirement for an arbitrary minimum number of
uppercase and lowercase alphabetic characters, numeric digits, and special
characters, this support has not been migrated to Red Hat Linux as of version 9.
The default syslog facility did not provide a way to capture failed attempts to
access arbitrarily specified file system objects. Specifically, we needed to log
any failed attempts by a user to access data in another user’s home directory,
as well as any failed attempts to access or modify files and directories relevant
to security. This requirement, while very simple to state, turned out to be the
most difficult to implement.

Current Risks
One of the things that the SANS Security Essentials track emphasizes is that
risk equals vulnerability times threat. Since this network is never connected to
the Internet or any other network, the only threat is local users. With an
otherwise reasonably secure setup, the major vulnerabilities are weak
passwords and lack of adequate logging.
The inability to strictly enforce password complexity meant that a malicious user
might be able to successfully crack another user’s password if he were able to
gain access to the /etc/shadow file. Inadequate logging would allow this
malicious user to attempt to read or copy the /etc/shadow file with impunity.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.5

George J. Anderson, Jr. 17 Dec 2004 GSEC 1.4c Practical

The inability to log attempted accesses to file system objects also meant that a
malicious user could try to read data that he was not authorized to see, or to
modify system security parameters without fear of discovery. Surreptitious
modification of security settings could give the user unlimited system access.

During
The two requirements that were not satisfied by built-in Red Hat Linux facilities
were password complexity enforcement and logging of failed attempts to access
certain file system objects. Since these are only marginally related to each
other, I’ll discuss them separately in the following sections.

Password Complexity Enforcement
My SANS training has instilled in me an appreciation for how easily weak
passwords can be cracked, and, more importantly, it’s given me a good
understanding of what constitutes a strong password. My password policy for
this system requires a minimum password length of eight characters, with
mixed case (at least one uppercase and at least one lowercase character) and
at least one numeric digit (0-9).

Proposed Solution
As stated in the Problem Description section, Red Hat Linux 7.3 does not
support the pam_cracklib parameters that allow specific composition
requirements. These parameters – dcredit=N, ocredit=N, ucredit=N and
lcredit=N where N < 0 – are supported in the latest version of PAM, version 0.77,
released in September 2002.
Since I wasn’t sure how well the latest version of PAM would work in place of
the version (0.75-46, released in early April 2001) included with Red Hat 7.3, I
was wary of installing it. It would be much better if a patch for the version I had
running on the systems were available. I put a message on the Washington,
DC, Area Linux Users Group’s mailing list asking if there were a patch; it turns
out that there is. The patch, which was created by Werner Puschitz, is available
on his web page devoted to securing Red Hat Linux.

Solution Implementation
I downloaded the patch file and printed the instructions, but did not use the
patch facility because I wanted to see what source code changes were being
made. I opened the patch file and a copy of the original pam_cracklib.c file in
separate xterm windows running vi and patched the source code by hand.
I followed the rest of the instructions from the web site to compile and install the
new PAM module. I then edited the /etc/pam.d/system_auth file and modified
the pam_cracklib line as follows (of course, in the actual file each of the
following takes only one line, with no newline between the “retry” parameter and
the “minlen” parameter):

Before: password required /lib/security/pam_cracklib.so retry=3
minlen=8

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.6

George J. Anderson, Jr. 17 Dec 2004 GSEC 1.4c Practical

After: password required /lib/security/pam_cracklib.so retry=3
minlen=8 ucredit=-1 lcredit=-1 dcredit=-1 difignore=8

The “ucredit,” “lcredit,” and “dcredit” values force a minimum of at least one
uppercase alphabetic character, one lowercase alphabetic character, and
one numeric digit, respectively. The minlen value requires the new
password to be at least eight characters long. The retry value gives the
user three tries to create a password that meets the password policy before
forcing him to start over. The difignore value causes pam_cracklib to
ignore the default difok parameter if the length of the new password is at
least eight characters. This essentially eliminates the difok parameter from
affecting the acceptability of the new password. The default difok value is
either 10 or one-half of the length of the new password, whichever is
smaller. This forces the user to create a password that does not contain
half of the characters in the old password, up to a maximum of ten. With
longer passwords, it becomes increasingly difficult to create a new
password that meets this requirement, and difignore is used to overcome
this difficulty. Since we’re using MD5 password hashes, our passwords
can be very long. With the ability to require an 8-character, mixed case
password with at least one digit, I believe that our passwords will be strong
enough without the similarity checking enforced by the default difok value.

Logging Attempted Accesses to File System Objects
Logging attempted accesses to file system objects proved to be a somewhat
less tractable problem. Actually, we needed to log only failed access attempts,
but even that wasn’t possible with standard Red Hat Linux facilities.
Since I’d had good luck getting help from the local Linux Users Group on the
password complexity enforcement problem, I posted a message to the list
asking about logging and auditing software. This time, however, the list was
uncharacteristically quiet. So I did several Google searches with different
combinations of keywords and found several web sites that seemed to offer
possible solutions.

Proposed Solution
One possible solution was the Secure Auditing for Linux (SAL) project. This
project is an initiative to “develop a kernel level auditing package for Red Hat
Linux that is compliant with the Common Criteria specifications (C2 level
equivalency)” (Godinez, p.1). Unfortunately, a review of the project
documentation revealed that setup and configuration were quite involved,
requiring at least a kernel rebuild. The very tight integration between our
application and the operating system suggested that solutions involving kernel
rebuilds should be avoided.
Security-Enhanced Linux, or SELinux, was another possibility that I investigated.
However, since it is a standalone Linux distribution, not an add-on for Red Hat, it
would not work for us. Additionally, it is more of a reference implementation
than a production version. It also included much more capability than we

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.7

George J. Anderson, Jr. 17 Dec 2004 GSEC 1.4c Practical

needed – capability that would have to be managed, and that would add to the
workload with no perceived gain in functionality or security.
After looking at a few other possible solutions, I followed a link to the web site
for the Intersect Alliance, the creators of the System iNtrusion Analysis and
Reporting Environment (SNARE). A review of the web site and SNARE
documentation convinced me that this was a workable solution.

Solution Implementation
Obtaining the correct binaries for SNARE was the only significant hurdle to
implementing this solution. The latest open source version, 0.9.6, is currently
available for Red Hat releases 9 and later, with planned binaries for older Red
Hat releases. Thankfully, Intersect Alliance has kept their older web pages
online, and even provided a link to them. The binaries for SNARE v0.9.1, which
was the version concurrent with Red Hat 7.3, also were still available in their
archives.
Getting SNARE up and running was straightforward. After downloading the
appropriate files from the Intersect Alliance web site, I followed the simple
installation instructions and had the audit daemon, which collects the event
data, and the GUI front end, which is used to examine the logged events,
operational in less than 10 minutes.
The GUI front end also includes the configuration tool. This tool is used to
specify the data to collect, how they are to be collected, and where they are to
be stored. Configuring and testing the data collection parameters, and creating
the filtering scripts were the major focus of this part of the task. These
processes are detailed in the remainder of this section.
Data can be collected based on raw kernel events or based on higher level file
system types of events called “objectives.” Raw kernel event data collection is
specified by low-level system calls, and data on the selected calls are collected
for all users and all files and folders. This approach does not offer fine control
and can result in very large log files. Objective data collection is specified by
type of file system operation, filter expressions for both objects and users, and
access attempt results (success, failure, or both). This approach also allows the
assignment of an alert level to each event. Since we needed to monitor only
specific file system objects, I chose to use the objective approach.
The collected data can be stored in a local file, sent to another SNARE daemon
over the network for remote storage, or both. Because our application uses
quite a bit of network bandwidth when it is running, I opted to store the data
locally on each host. I configured all hosts to store the collected data in
/var/log/audit/audit.log.
An objective must be created for each event that must be logged. An event is
any attempt by a user to access a file system object (strictly speaking, SNARE
can also log attempts to change user or group identification, network connection
attempts, and attempts to reboot or create system modules, but we are
concerned only with file system objects). These attempts can either succeed or
fail. Logged events are assigned one of five alert levels, which are color coded
in the GUI display.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.8

George J. Anderson, Jr. 17 Dec 2004 GSEC 1.4c Practical

The mechanics of configuring an objective are straightforward. Click on the
configuration tool icon, then on the “Objectives” tab, then on the “Add Objective”
button. A window appears with five sections, one for each of the necessary
parameters: high-level event, filter expression for file system object, event
success and/or failure, user filter, and alert level. Most of the parameters are
specified by radio button selection, with text boxes for input of the file system
and user filter expressions.
As previously stated, we required logging of all failed attempts to access
particular file system objects. Specifically, the file system objects we needed to
monitor are defined as any files or subdirectories anywhere in the following
directory trees: /bin, /sbin, /usr/bin, /usr/sbin, /etc, /var/log, /usr/local, and /home.
It might seem that logging accesses to files in the /home directory tree would
cause an overwhelming number of uninteresting events, but since we were
interested only in failed access attempts, this was not a problem – any failed
attempt is an interesting event. As long as a user stays in his own home
directory, or in directories for which he has group permissions, he should not
have any failed access attempts, with the exception of attempting to read files
that do not exist. Access attempts are defined as any attempt to open a file for
reading or writing, create or remove a file or directory, open a directory (change
the current working directory or list the contents of a directory), or change the
attributes (owner, permissions, or name) of a file or directory.
As an example, here is the process for creating the objectives for the /etc
directory tree. Note that there are four objectives necessary to cover all possible
access attempts – “open a file for reading only,” “write or create a file or
directory,” “remove a file or directory,” and “modify system, file or directory
attributes.” The first two could have been combined since there is a “read, write,
or create a file or directory” event type. However, this would mean that read only
failures would have to be set at the same alert level as write or create failures; I
wanted to make them different. So, to add the first objective for /etc, do the
following:

Click on the “Add Objective” button•
Select the radio button for “Open a file for reading only”•
Select the radio button for “Partial” in the filter expression section•
Enter the string “/etc/” in the expression text box (note that both the •
leading and trailing slashes must be included to distinguish it from
objects with names that include the string “etc”)
Select the radio button for “Failures”•
Select the radio button for “All Users”•
Select the radio button for “Priority,” which is alert level 4, color-coded •
orange in the GUI display
Click on the “Save Objective” button•
Click on the “Save and Apply” button to save the configuration file and •
restart the audit daemon

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.9

George J. Anderson, Jr. 17 Dec 2004 GSEC 1.4c Practical

The other three objectives for /etc are added similarly, with appropriate changes
for the event type, filter expression, and alert level. I chose to set the alert level
for “read only” failures to “Priority,” which is level 4, and all of the other events to
alert level 5, “Critical.” The reason is that, with the exception of the /etc/shadow
file, I believe attempts to write or delete security or configuration files are more
serious than attempts to read them. Note that “read only” failures are still
assigned a reasonably high alert level.
Objectives for the remaining directory trees are duplicates of those for the /etc
tree. They are created by iteratively applying the process detailed above.
After adding all of the objectives for the relevant directory trees, the log entries
can be viewed using the GUI. Upon inspection, it is apparent that there are
many entries that are misleading. Two causes of “read only” access failures
bear mentioning here. The first, and most common, is files that do not exist.
The other is that the xscreensaver tries to open the /etc/shadow file using the uid
of the user (the xscreensaver is configured to require a password in order to
return to the desktop). Because these entries are benign, I wrote the following
shell script to filter them out. This script is run by the auditor (as root) just prior
to auditing the logs.

#!/bin/sh
#
stop the audit daemon...
service audit stop
#
rename the log file with today's date
(this file becomes the backup/archive file)
mv audit.log audit.log.`date -I`-all
#
filter out the records for files that don't exist...
egrep -i -v "return,-2" audit.log.`date -I`-all > audit.log
#
restart the audit daemon with the new,
filtered log file
service audit start

After
Once the solutions were implemented, we were confident that the password
policy would be enforced and that failed attempts to access critical system and
security files would be logged. Before turning the system over to the users,
however, we tested it to ensure that it was performing correctly and consistently.

Solution Testing and Validation
When implementing or modifying a security measure, testing and validation are
paramount. In fact, about 80% of the total time expended on this project was
devoted to testing and validating the solutions. Testing is the process of
ensuring that the system works like it’s designed to work. Validation is the
process of ensuring that the design correctly expresses the intent. A properly
designed test matrix can address both issues simultaneously.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.10

George J. Anderson, Jr. 17 Dec 2004 GSEC 1.4c Practical

Password Policy
A matrix of test cases was developed to ensure that the modified pam_cracklib
module was working correctly. The following table shows the test cases, the
expected results, the actual results, and whether or not the required password
characteristic was validated. All cases were run from the account “audie,” which
is the account that the auditor uses.

Table 1. Test Cases for Password Policy Enforcement
Test Case Expected

Result
Actual
Result

Validated?

set password i4iatFByh accepted accepted Yes
set password w3kooatt rejected – no

uppercase
rejected –
needs
uppercase

Yes

set password WwyamCaa rejected – no
digit

rejected –
needs
numeric

Yes

set password W2YAMCAA rejected – no
lowercase

rejected –
needs
lowercase

Yes

Did previous passwd command
exit with error status?

yes – token
manipulation
error

yes – token
manipulation
error

Yes

set password I4IATfbYH rejected –
change of
case only

rejected –
change of
case only

Yes

set password zc3ZX rejected – too
short

rejected –
too short

Yes

set password yhi4iatFB rejected –
rotated

rejected –
rotated

Yes

set password
w2yamc&ahNYYNha&cmay2w

rejected –
palindrome

rejected –
palindrome

Yes

With all tests producing the expected results, the pam_cracklib patch and
configuration is properly enforcing the password policy. Users’ passwords will
now be safer because password cracking attacks will be impractical using
current mainstream processors.

Logging Requirements
As with the testing of password policy enforcement, a matrix of test cases was
developed to determine whether the appropriate events were being logged. Of
somewhat less importance, but still an issue, the test matrix also included
cases to determine whether uninteresting events were being logged, and, if so,
to ensure that the number of uninteresting events was manageable.
The first set of test cases was performed while logged in as user audie, a

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.11

George J. Anderson, Jr. 17 Dec 2004 GSEC 1.4c Practical

normal, unprivileged account used for auditing the system. It is useful to create
a matrix that defines the file system access privileges for a normal user so that
no case is overlooked. The following table shows this matrix for the normal
users on this system.

Table 2. Matrix of File System Access Privileges for Normal User
Read/execute Write/create

file/dir
Remove
file/dir

Chown Chmod

/bin,
/usr/bin,
/sbin,
/usr/sbin

permit – no log deny – log deny – log deny –
log

deny –
log

/etc permit most – no
log; deny

shadow file

deny – log deny – log deny –
log

deny –
log

/var/log permit most – no
log; deny files
messages and

secure

deny – log deny – log deny –
log

deny –
log

/usr/local permit – no log deny – log deny – log deny –
log

deny –
log

/home
(own)

permit – no log permit – no
log

permit – no
log

permit –
no log

permit –
no log

/home
(others’)

deny – log deny – log deny – log deny –
log

deny –
log

The following table details the normal user test cases. The touch command is
used to test create/write access. The rm command is used to test remove
access. The chown and chmod commands are used to test file attribute and
permission modification access. The cat command is used to test read only
access. All test case attempts should fail and be logged. Note that for file and
directory removal attempts, a file named audit_del_test was created by root in
the affected directories with permissions appropriately set. This file was also
used for the chown and chmod test cases.

Table 3. File System Access Logging Test Cases for Normal User
Test Case Succeed? Logged? Pass/Fail
touch /bin/audit_test no yes pass
cd /bin; touch audit_test no no fail
touch /usr/bin/audit_test no yes pass
cd /usr/bin; touch audit_test no no fail
touch /sbin/audit_test no yes pass
cd /sbin; touch audit_test no no fail
touch /usr/sbin/audit_test no yes pass
cd /usr/sbin; touch audit_test no no fail
touch /etc/audit_test no yes pass

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.12

George J. Anderson, Jr. 17 Dec 2004 GSEC 1.4c Practical

cd /etc; touch audit_test no no fail
touch /var/log/audit_test no yes pass
cd /var/log; touch audit_test no no fail
touch /usr/local/audit_test no yes pass
cd /usr/local; touch audit_test no no fail
touch /home/andy/audit_test no yes pass
cd /home/andy no no fail
rm /bin/audit_del_test no yes pass
cd /bin; rm audit_del_test no yes pass
rm /usr/bin/audit_del_test no yes pass
cd /usr/bin; rm audit_del_test no yes pass
rm /sbin/audit_del_test no yes pass
cd /sbin; rm audit_del_test no yes pass
rm /usr/sbin/audit_del_test no yes pass
cd /usr/sbin; rm audit_del_test no yes pass
rm /etc/audit_del_test no yes pass
cd /etc; rm audit_del_test no yes pass
rm /var/log/audit_del_test no yes pass
cd /var/log; rm audit_del_test no no fail
rm /usr/local/audit_del_test no yes pass
cd /usr/local; rm audit_del_test no yes pass
rm /home/andy/audit_del_test no no fail
chown audie:audie /bin/audit_del_test no no fail
cd /bin; chown audie:audie audit_del_test no no fail
chown audie:audie /usr/bin/audit_del_test no no fail
cd /usr/bin; chown audie:audie
audit_del_test

no no fail

chown audie:audie /sbin/audit_del_test no no fail
cd /sbin; chown audie:audie audit_del_test no no fail
chown audie:audie /usr/sbin/audit_del_test no no fail
cd /usr/sbin; chown audie:audie
audit_del_test

no no fail

chown audie:audie /etc/audit_del_test no no fail
cd /etc; chown audie:audie audit_del_test no no fail
chown audie:audie /var/log/audit_del_test no no fail
cd /var/log; chown audie:audie
audie_del_test

no no fail

chown audie:audie /usr/local/audit_del_test no no fail
cd /usr/local; chown audie:audie
audit_del_test

no no fail

chown audie:audie
/home/andy/audit_del_test

no no fail

chmod o+rwx /bin/audit_del_test no yes pass
cd /bin; chmod o+rwx audit_del_test no yes pass
chmod o+rwx /usr/bin/audit_del_test no yes pass

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.13

George J. Anderson, Jr. 17 Dec 2004 GSEC 1.4c Practical

cd /usr/bin; chmod o+rwx audit_del_test no yes pass
chmod o+rwx /sbin/audit_del_test no yes pass
cd /sbin; chmod o+rwx audit_del_test no yes pass
chmod o+rwx /usr/sbin/audit_del_test no yes pass
cd /usr/sbin; chmod o+rwx audit_del_test no yes pass
chmod o+rwx /etc/audit_del_test no yes pass
cd /etc; chmod o+rwx audit_del_test no yes pass
chmod o+rwx /var/log/audit_del_test no yes pass
cd /var/log; chmod o+rwx audit_del_test no no fail
chmod o+rwx /usr/local/audit_del_test no yes pass
cd /usr/local; chmod o+rwx audit_del_test no yes pass
chmod o+rwx /home/andy/audit_del_test no no fail
cat /etc/shadow no yes pass
cd /etc/; cat shadow no yes pass
cat /var/log/messages no yes pass
cd /var/log; cat messages no no fail
cat /var/log/secure no yes pass
cd /var/log; cat secure no no fail

These results are a bit discouraging. The first thing to notice is that the chown
command isn’t trapped at all. It is supposed to be trapped by the “modify
system, file, or directory attributes” objective type, like the chmod command, but
it evidently isn’t.
Analysis of the remaining test cases leads to a likely possible reason for such
inconsistent results. The filename buffer passed to SNARE might be a simple
copy of the buffer that was passed to the system function that performs the
requested action rather than the fully qualified path/filename. Because we’re
using objectives that filter on partial path names, SNARE won’t trap failed
access attempts if this is the case. This is a reasonable hypothesis since some
of the commands work most of the time, while others work only when the full
path/filename is specified on the command line. Those that are logged correctly
are probably expanding the filename before calling the underlying system
function, while those that aren’t are probably just passing whatever they get from
the shell. The only evidence contradictory to this are the cases involving the
/var/log and /home directories, and the single case involving the /etc/shadow file.
Absolutely no failed access attempts were logged when the command was
executed while /var/log was the current working directory. This suggests that
there is something special about this directory, but I don’t know what it might be.
On the other hand, all failed attempts to read the /etc/shadow file were correctly
logged, whether or not /etc was the current working directory. Again, this
suggests that there is something special about the /etc/shadow file – which, of
course, there is.
The other contradictory test cases involved the /home directory. The only failed
access attempt logged in these cases was the “write or create a file or directory”
attempt. Although all of the cases specified the complete path/filename, and all

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.14

George J. Anderson, Jr. 17 Dec 2004 GSEC 1.4c Practical

of the other attempts failed, none were logged. I suspect that the permission
setting on the /home/andy directory, which denies access to “other” users, is
part of the answer, but I can’t prove it.
Finally, note that, in every case, the attempted access failed, which is the
correct, expected result. This provides some confidence that the Linux
permissions system is working correctly.
There is one interesting side note. I noticed during testing that the sgi_fam
service, which scans every 6 seconds, was configured to check the
/home/~/.gnome/nautilus-scripts file. Because this file did not exist for audie,
and SNARE has an objective with /home as the target, an event record for this
file was created every 6 seconds. For any practical user session, this would
generate an overwhelming number of uninteresting records. They’d be removed
by the filter.sh script, but the backup files would still be huge. I solved this
problem by disabling sgi_fam, which we don’t need anyway. And here I thought
that all unnecessary services were turned off. It’s a never ending process.
The second set of test cases was performed while su’ed to root. This set was
designed to determine which, if any, uninteresting events were being logged.
Root should have full access to any object in the file system. Failures are
expected only when root tries to read a nonexistent file. These failures should
be logged initially, but then eliminated by the filter.sh shell script.

Table 4. File System Access Logging Test Cases for root
Test Case Logged? Removed by

filter.sh?
cat /bin/non_existent_file yes yes
cat /usr/bin/non_existent_file yes yes
cat /sbin/non_existent_file yes yes
cat /usr/sbin/non_existent_file yes yes
cat /etc/non_existent_file yes yes
cat /var/log/non_existent_file yes yes
cat /usr/local/non_existent_file yes yes
cat /home/andy/non_existent_file yes yes
cat /home/non_existent_file yes yes
cat /root/non_existent_file no n/a

The results were viewed while logged in as user audie using su to become root
to run the filter.sh script and to run the SNARE GUI.

Risk Assessment
With an enforceable, strong password policy and the addition of a facility to log
failed attempts to access file system objects, the major vulnerabilities of the
system have been greatly reduced. Strong passwords reduce the vulnerability
of the authentication system by rendering password attacks impractical.
Logging of failed file access attempts both alerts system administrators to
possibly nefarious activity and acts as a deterrent to casual file system
browsing. These reductions in vulnerability directly result in a reduction of risk

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.15

George J. Anderson, Jr. 17 Dec 2004 GSEC 1.4c Practical

(risk = threat * vulnerability).
The pam_cracklib patch has not caused any complications so far. There are a
few issues related to the use of SNARE.
The first SNARE-related issue is that the binary distribution of SNARE for Red
Hat 7.3 works only with the original, stock kernel (2.4.18-3), which means that
we have no real recourse to any vulnerabilities found in that kernel. Although
I’ve tried compiling SNARE from the sources so that it works with a more recent
kernel, I have not been successful. I suspect that, when it was installed, the
application made modifications to the system files that are preventing building of
a working executable. The risk associated with this is mitigated somewhat by
the fact that the LAN is never connected to another network, and is isolated in a
secure room.
Another issue related to SNARE is that the auditor needs to su to root in order to
run the filter.sh script. This script has to stop the audit daemon in order to back
up the audit.log file and then create a filtered version. After the filtered version of
the audit.log is created, the script then has to restart the daemon. Root
privileges are required to stop and start the audit daemon. This doesn’t pose a
significant threat for us, however, since the auditor is also the system
administrator in this case. It would be better if SNARE could be installed such
that it was owned by the auditor’s account.
The major issue with SNARE is the fact that it doesn’t always work as desired.
This can lead to a false sense of security, which can lead to a relaxed security
posture, which is a major vulnerability. Knowing that SNARE potentially misses
many of the events we’d like to capture keeps me vigilant, and thus helps to
mitigate the risk associated with this vulnerability.
Even with these shortcomings, I believe that there is a benefit gained from
running SNARE. As Eric Cole says in the audio recordings for the Security
Essentials track, “prevention is ideal but detection is a must” (Cole, timecode
22:03 – 22:05). Logging as many interesting events as possible increases the
chance that unauthorized activity will be detected.
The only remaining significant vulnerability is social engineering. It is still
possible for a user to be deceived, finessed, or coerced into disclosing his
password. In the same way, he might also be persuaded to provide
unauthorized access to data. More extensive or more frequent background
checks combined with better user education could mitigate the risk associated
with this vulnerability.

Conclusion
Default Red Hat installations lean more to the “ease of use” end of the spectrum
than to the “so secure you can’t use it” end. The facilities provided with their
distributions, however, do provide most of what is necessary to configure a
secure system.
A strong password policy is meaningless if it cannot be strictly enforced. Why
hasn’t Red Hat implemented the latest version of pam_cracklib in its
distributions?
Secure systems require proper auditing. Auditing requires proper logging. Red

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.16

George J. Anderson, Jr. 17 Dec 2004 GSEC 1.4c Practical

Hat provides the capability to log just about everything except for the C2 style
logging of accesses to file system objects. This deficiency is not unique to Red
Hat, but is endemic to the design of both the 2.4 and 2.6 Linux kernels. That’s
unfortunate, because built-in C2-style auditing support would make Linux more
accessible in highly sensitive environments.
SNARE is an effort to provide C2-style logging. However, beware! It is possible
to install SNARE, configure a few objectives, and settle back with a cup of
coffee and a false sense of security. Of course, this is true with any improperly
configured security product. Tools that hook into a running kernel to extract data
require thorough post-installation testing and validation. SNARE is better than
the default logging facilities included with Linux, but it isn’t the last word in event
data collection. Better kernel support for event logging would go a long way
toward making SNARE’s job easier. This would give the developers more time
to concentrate on event filtering instead of being bothered with kernel data
extraction.
The network described in this paper has been operational for more than four
months now, so all users have had to change their passwords at least once.
Although they grumble about the composition requirements (they’d complain no
matter how lax the requirements were), their protestations serve as constant
validation that the password policy is being enforced. And so far, no nefarious
activity has shown up in the SNARE logs – but we keep looking.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
17

George J. Anderson, Jr. 17 Dec 2004 GSEC 1.4c Practical

References

Cole, Eric. Track 1 – SANS Security Essentials. Volume 1.6 Audio:
SECBK_66_1203.mp3. SANS Press, January 2004.

Godinez, Javier. Secure Auditing for Linux Home Page. February 2003.
<http://secureaudit.sourceforge.net/index.html>.

Google Home Page. December 2004. Google. <http://www.google.com.>

Intersect Alliance Open Source Projects Home Page. Intersect Alliance.
November 2004.
<http://www.intersectalliance.com/projects/Snare/index.html>.

Morgan, Andrew G. The Linux-PAM System Administrator’s Guide. 26 June
2002. <http://www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/pam-
6.html#ss6.3>.

novalug – Washington DC Area Linux Users Group Home Page. August 2004.
<http://www.tux.org/mailman/listinfo/novalug>.

Puschitz, Werner. “Procedure for Patching pam_cracklib.c.” 17 December
2002. <http://www.puschitz.com/pam_cracklib_patch.shtml.>.

Security-Enhanced Linux Home Page. National Security Agency. 8 December
2004. <http://www.nsa.gov/selinux>.

