
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.1

An Introduction to XACML

Bob Thigpen
July 12, 2003

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.2

Table of Contents

Page

Abstract 3

Background 3

The Power of XML 4

XACML Requirements 5

XACML Actors 7

XACML and SAML 8

Security Considerations 8

XACML Implementations 9

XACML Coming Attractions 9

The WEB of Standards 10

Next Steps 11

References 11

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.3

ABSTRACT

XACML eXtensible Access Control MarkupLanguage (pronounced “exact-mil”)
is an OASIS standard using XML as a common language to express security
policy1. It is one of a family of specifications that OASIS has created to support
“web services”. Some of the other related family members include XML, XSLT,
XML namespaces, XML schema, Xpath, Xpointer, SOAP and SAML.
Information on these (and more) standards are available at the OASIS website.
Familiarity with the XML family concepts facilitates review of the coding and
pseudo-code examples provided in the standards specification. This paper
provides an overview of the XACML standard, building blocks upon which it is
formed; and provides a review of the implementation status of XACML products
available at the time of this writing.
This is a developing standard and the information on this and related areas is
rapidly evolving. The writer’s intent is to provide an introduction only to this
potentially important web security standard.

BACKGROUND

Experience with metadirectory approaches to enterprise security policy in a
large multi-platform, multi-operating system environment, such as is found in
many state governments and in larger private business organizations was
motivation to explore XACML. Metadirectories have a central engine
(sometimes XML based) that provide software”connectors” to the operating
systems and applications running out at the far ends. They often use X500 or
LDAP repositories to store user credentials in a common place and format, but
require the connectors to deliver these credentials to the applications and
operating system security systems out at the end points for user authentication
to those systems. From a centralized or corporate administrators perspective,
managing security that is administered on a large number of different
applications and operating system platforms is difficult, at best. The
metadirectory approach does not typically prohibit local security administration
on all of the platforms.
The connectors have to be upgraded every time there is a change in the security
features of the operating systems or applications. This implies that there is
enough knowledge of all of these systems to upgrade complex system
interfaces with non-trivial coding requirements. If this isn’t the case, delays in
upgrading the connectors can cause frustration with the centrally administered
system and also can lead to high maintenance costs. With so many factors to
consider, it can be very difficult to implement a security policy that has clearly
defined rules for users to follow and management to understand.2

XACML promises to provide a common language and common primitives for
managing all of the diverse operating systems and applications found in large

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.4

decentralized organizations and this is an area where it can provide a unified,
but not simple approach to security administration. Another perhaps more
lucrative market exists in the world of web services where a transaction can
involve many entities such as banks, credit card companies, sellers, buyers and
more for complex web transactions.

XACML is written in XML and requires a familiarity with several XML standards
including SAML, XML namespaces, Xpath , Xpointer and XSLT and others.
There are several web-based tutorials that cover this information. O’Reilly’s
web site3

cover much of this material and provides a search function for the site. Peter
Flynn’s XML FAQ 4 site is another good introductory site with pointers to many
XML web based resources. The World Wide Web Consortium5 (W3C) and
OASIS6 are definitive sources for a detailed, standards based description (also
known as normative) of all of the XML family of tools and languages. Because
of the need for the W3C and OASIS to be exact in the definitions, readers may
prefer to begin with the aforementioned introductory sources.

THE POWER OF XML

XML namespaces can offer a security template that can be located on a local
machine or found out on the web. Referencing another namespace ensures
object name uniqueness because the reference becomes part of the object
name. Namespaces are composed of XML schemas that provide several object-
oriented functions like inheritance, where an object of type security-policy (or
any other object) can be created in the image of an existing policy (object). A
set or more technically, a tree of elements and their attributes are known as a
schema. The policy being created inherits all of the attributes of the existing
policy. This can be accomplished by declaring your image policy elements and
attributes of type (existing) security-policy. 7

XML elements are typed. In addition to standard types like integers and text,
one can make up types – like security-policy. Elements can have attributes like
time, from/to times, definitions of minimum and maximum occurrences, be one
or more than one of a member of a set or make up your own attribute.
Mathematical and set operators are available so that the number of variables
that can be examined is limited only by the practicality of having readable code.
It is possible to define types globally or locally and to define new elements,
types and/or attributes to meet requirements that are not defined in the imported
namespace schema. This is known as extending the schema.

Xlink is much more powerful than an HTML hyperlink because it can be an
attribute within a XML schema document that forms a bi-directional link and
allows the traversal of an XML tree structure. Since it is an attribute, it can
change to reflect the addition or deletion of the contents of an XML document.8
Xpath allows a more refined path within a XML document so that one can select
a specific element or attribute within the document to display or retrieve.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.5

XML standards are evolving and they are extensive. The aforementioned
examples cover only a small portion of the current standards. They are
illustrated to give the reader an introductory appreciation for the power and
flexibility of XML as it relates to writing security policies with XACML. XACML
policy writers can import XML schema to provide a template for their own
policies. They can use the language to quickly navigate through large XML
documents and can define document content constraints that can save on the
need for software parsing and type checking. While the body of XML standards
is large and growing, readers with interest in writing XACML policies will find
their time well spent in becoming familiar with the XML standards toolset.

XACML REQUIREMENTS

The OASIS XACML standard was published in February 2003 and the following
security policy requirements that XACML addresses are derived from that 132-
page document.9 Keywords are defined along with the requirements.

1. “To provide a method for combining individual rules and policies into a single
policy set that applies to a decision request.”
A set of rules creates a policy and policies can be combined to make a policy
set. An example of a policy set might be the combination of security policies
from a police force and the criminal database owner such as a State or the FBI.
A decision request typically will translate into allowing or denying access to a
resource, such as a database or access to a network.

2. “To provide a method for flexible definition of the procedure by which rules
and policies are combined.”
There are a number of built in algorithms that support these goals. These

include rule combining and policy combining algorithms that deny overrides (if
any rule or policy evaluates to deny, access is denied), permit overrides (if any
rule or policy evaluates to permit, access is permitted), first applicable (evaluate
only first rule or policy that matches) and only one-applicable (applies to policies
only). Users can create their own combining algorithms if the built-ins are
insufficient.

3. “ To provide a method for dealing with multiple subjects acting in different
capacities”
The standard provides the example of a high level financial transaction where

multiple subjects must provide approval. A subject is an actor that has
attributes that can be evaluated for truth. An example would be user name
jane_bank_executive has attributes (privileges in this example) that allow her to
approve a loan only if the loan approval form already has the approval of user

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.6

john_bank_loanapprover.

4. “To provide a method for basing an authorization decision on attributes of
the subject and resource”
XACML provides special named elements that point to attribute values by using
an URN (Uniform Resource Name)10 or that contain an Xpath expression in the
request context that maps to a particular subject attribute value by its location.
Put another way, the request XML schema maps to the subject XML schema
and Xpath is used to find the corresponding value(s).
Resources (data, network access, etc.) also can have special named elements
using the same URN or Xpath approaches as are used for subjects. An
example of where this might be used is with access to arrest records where a
juvenile attribute would restrict the set of users who would be allowed access.

5. “To provide a method for dealing with multi-valued attributes”
Higher order functions are provided for attributes that might contain multiple
values such as may be found in LDAP and SAML. The functions are a set of list
operators formally described using the Haskell functional language in the
XACML specification.

6. “To provide a method for basing an authorization decision on the contents of
an information resource”
An example policy would be where a patient is allowed to read records in a
database if they belong to her. This is addressed if the database is an XML
document using the URN or Xpath approaches in #4 above. If the database
cannot be represented as an XML document there is a special attribute called
“subject-category” that can be defined and then compared to the database
value(s) – names and possibly date of birth in this instance.

7. “To provide a set of logical and mathematical operators on attributes of the
subject, resource and environment”
The authorization decision can be based upon a computation or mathematical
operation upon the attribute values of the requestor, the resource being
requested and environmental variables like time of day. An example would be
applying for a travel cash advance. Credentials might be checked to ensure one
is an active employee and the database might be checked to ensure that there
are no overdue balances from past advances prior to authorizing the check for
the requested amount. Some organizations might permit transactions over a
certain monetary limit to be conducted only during normal business hours (an
example of an environmental variable).

8. “To provide a method of for handling a distributed set of policy components,
while abstracting the method for locating, retrieving and authenticating policy
components”
Policies can be distributed across an organization or multiple organizations
allowing component updates to occur as needed. Policy elements can be

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.7

attached to a resource such as a database or can be maintained in a distant
location(s) accessible over a network.

9. “To provide a method for rapidly identifying the policy that applies to a given
action, based upon the values of attributes of the subjects, resource and
action”
One approach of supporting this functionality is to store subject, resource and
action attributes as part of a database and to read those database attributes as
part of a decision request. Another approach is to evaluate all available policies
or policy sets for matching attributes of subject, resource and action.
XACML requires that all attributes match for authorization to occur and
introduces a special target element that defines the data structure of the
attributes to be evaluated by the policy or policy set.

10. “To provide an abstraction-layer that insulates the policy-writer from the
details of the application environment”
All policies are built with syntax defined in XML schema. For authorization
entities that do not speak XML there is an intermediate step to convert requests
and responses to the format specified in the XACML schema. In this way, the
policy reader only needs to know the XML schema syntax, not all of the
variations of the authorization entities native syntax. For authorization entities
that support XML (those that support SAML11,12)
XSLT can be used to transform between native and the XACML schema or
context.

11. “To provide a method for specifying a set of actions that must be performed
in conjunction with policy enforcement”
XACML includes the concept of an obligation that is passed to the authorization
entity called a PEP. If a policy or policy set evaluates to permit and the policy or
policy set matches the value of the XACML FulfillOn attribute of the obligation,
the PEP is responsible for fulfilling all of the obligations that it understands.
XACML version 1.0 does not define obligations. It is a user responsibility to
match obligations that a PEP understands. PEP and other actors in the XACML
domain are covered in the following section.

XACML ACTORS

This information is excerpted from the XACML standard document. See page
19 of the PDF version of the OASIS XACML 1.0 standard for a flow diagram
showing the interaction between the actors.
The functional building blocks of the XACML language, called “actors” in the
standard specification, follow:

PAP – Policy Administration Point is the interface where policies are referenced.
While the standard doesn’t discuss a user interface for writing policies, the PAP
might be a logical place to include this interface. Policies can be widely

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.8

disbursed in a number of corporate servers or centrally located on the server that
houses the PAP.
When several policies pertain to the same resource (target) it is necessary to
join them all into a policy set. Rules are the building blocks of a policy. The
PAP matches resources, subjects and actions (an operation on a resource) that
apply to authorization decisions to be made upon a target.

PDP – Policy Decision Point is the part of the system that evaluates policies and
provides authorization decisions. It receives requests and provides replies in a
XML context specific format with a XML schema defined for requests and
another for replies (decisions) and communicates with the CONTEXT
HANDLER.

PEP – Policy Enforcement Point is the part of the system that receives the
access request in native format and sends it to the CONTEXT HANDLER to be
transformed into the XML schema request format sent to the PDP. A PEP is a
system entity that provides access control such as /etc/password on Unix
systems. There is an implication for the need of a software shim such as PAM
(pluggable authentication module used with Unix systems to redirect the
authorization requests to another source such as a lightweight directory
authentication program (LDAP) database or for the OS or NOS provider to
themselves provide a XACML software shim.
The CONTEXT HANDLER receives the decision from the PDP and translates it
from the XACML decisions schema format (context) into a native response
understood by the PEP.

The CONTEXT HANDLER sends the request to the PDP along with the target
identification. The CONTEXT HANDLER also obtains any attributes that the
PDP needs to make the authorization decision(s).

The PIP – policy information point receives requests for attribute values from the
context handler and returns subject, resource and environment attribute values
back to the CONTEXT HANDLER.

Requests that enter the XACML actor domain through the PEP may be in native
form or may already be in XML format such as with XACML’s sister
specification for Security Assertion Markup Language (SAML), which is an
OASIS working draft.13
Responses that exit the XACML actor domain (back to the PEP) get converted
back to the native format.
XACML schemas exist for request and response and all requests get converted
to the request schema upon entering the XACML actor domain. Responses get
converted from
XACML response schema to native format before being sent to the PEP.

XACML and SAML

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.9

The SAML specification defines XML schema for making security assertions of
authentication, attribute and authorization decision types. SAML defines a
request-response protocol structure schema and currently defines a binding to
SOAP over HTTP.
SOAP is an XML envelope that describes message type, message processing
instructions and remote procedures14 and is a W3C standard. SAML authorities
can sign assertions with a XML digital signature and can use a variety of
authentication and message encryption methods. An authentication statement
can be used between a SAML authenticating agent and a PDP or PEP.15

The transformation between the SAML and XML schemas can be accomplished
with XSLT (XML Stylesheet Language Transform) as many of the attributes map
or are very closely related. SAML capable applications may be able to converse
directly with a XACML PDP without having to transform attributes into the
XACML schema form known as XACML context. The OASIS standard indicates
that “The PDP may be impkemented such that it uses a processed form of the
XML files.”

SECURITY CONSIDERATIONS

The specification provides a number of recommendations to implementers.
Some of the more obvious precautions involve protection of the PAP.
Distribution of responsibilities
is allowed so there can be multiple PAPs. Access to the security policies
within or accessible to the PAP(s) should be protected by access controls.
Depending upon the environment it may be a good idea to partially or totally
encrypt the policies. If the required access attributes are readable in the
security policy, an adversary then has valuable information with which to plan an
attack. Policies need to be checked to ensure that they have not been erased or
changed.

Through DNS attack methods and/or internet address spoofing portions of
policies or policies that are part of a policy set can be changed to give an
attacker access to protected resources. It may even be possible to insert
access for an attacker to masquerade as http://www.w3.org/2001/XMLschema-
instance, the address for the policy schema instance. An unwary policy
developer could be writing policy on top of a compromised template. To protect
against these types of attacks and to keep security tight between all XACML
actor points (PAP, PEP, PDP, PIP) the OASIS XACML DSig Profile. The proper
use of the DSig Profile can provide authentication and integrity protection for
XACML schemas16

A less obvious security consideration is a policy that returns indeterminate or not
applicable results inste17ad of deny or allow. This situation does not exist when
the PEP intercepts the request at the point of execution, but is frequently an
issue if the PEP is implemented as a proxy or filter by different developers than
the resource server. A common example of this is a web server that permit a

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.10

variety of syntaxes to be treated equivalently. The “%” can be used to represent hex
values and multiple character sets may be permitted.

XACML IMPLEMENTATIONS

Sun Microsystems XACML implementation is a set of JAVA ™ classes that
read, write, and process the XACML language. This implementation is “Open
Source” and Sun has an open invitation policy to developers who want to
contribute.18

Jiffy XACML is available for Linux and Windows users in binary only. It supports
a command line toolset which will check for syntax and type check a policy or
request , execute a request against a policy and output the response to a
console and execute a test of a policy by providing a request and expected
response19

XACML COMING ATTRACTIONS

One of the contributors to the XML specification who also was on the
development team that implemented SUN’s XACML , made the following
observation from a policy writer and system programmer’s perspective –
“Working with XACML is really hard. The tradeoff to building flexible, expressive
generic languages is that they can be hard to work with, and XACML is
definitely that.” 20 His comment was made in the context of discussions of
extending the language versus providing abstraction tools to make it easier for
users. In another thread of the discussion this contributor wrote “I’m already
hearing that they (the average coder, sysadmin, or IT person) need a lot of
handholding just understanding the ideas, regardless of whether they are
looking at the syntax.”21

There is some discussion on whether non-programmers will need to actually
look at the rules that are stored in a PAP. They most certainly will. Security
professionals will need to be able to understand the code to ensure it satisfies
management’s security objectives and auditors will need the same level of
understanding.
The many XML components that are the building blocks of XACML are not trivial
and require considerable time investment. XACML is a very powerful security
policy language and the investment is worthwhile. When compared to having to
learn the security syntax in a multi-platform environment with many operating
system and application security syntaxes, XACML may be less complex and is a
more exacting method with which to define enterprise-wide security policies.

To make XACML a commercial success, the development of a graphical logic
flow mechanism and a translator that could provide a written translation of the
policy or policy set would be very helpful. Work appears to be underway to map
an XACML attribute model to LDAP. Interfaces to other PEPs such as popular

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.11

directories, databases, network devices, and operating system security
mechanisms would facilitate use of XACML.

THE WEB OF STANDARDS

There are many pieces to the web security protocol stack, some of which have
been discussed in this paper and others that are briefly touched upon in this
section .

XML Digital Signature (previously referenced) is a W3C activity that defines
signatures for soap envelopes, signed attributes such as timestamps and
network (URI) data.

XML Encryption is a W3C activity that deals with encrypting all or portions of an
XML document.

XML Key Management is a W3C working group that specifies issues of key
cryptography

OASIS Security Services also known as SAML (previously referenced) that is a
language for security assertions and that may provide SSO (single sign-on)
applications.

OASIS Digital Signature Services technical committee that is working on
definitions for
obtaining signature services when local facilities don’t exist for providing these
services

OASIS Web Services Security technical committee is building on WS-Security
(IBM and Microsoft) which defines how to sign a SOAP message. 22

Canonical XML is a W3C standard and defines a set of algorithms for
translating XML documents into a single precise form for the purposes of testing
whether the information content of a document has changed. Earlier
implementations of XML allowed multiple syntaxes. Canonical XML can be
used to ensure that signed XML documents have not been changed by running
the documents through the canonical process at sender and receiver points to
ensure the same message digest value.

NEXT STEPS

The next steps for this writer will be to install an XACML implementation and
begin to use it to write XACML policies. It is a rich language that offers users
an opportunity to sharpen security skills and become more familiar with the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.12

large and growing body of XML based services, protocols and tools.
It will be interesting to see how this proposed standard matures and to see the
degree to which it is adopted by the larger players in the web marketplace.
There are other standards that may overlap or eventually compete with XACML
and it will be important for security administrators to stay current with W3C and
OASIS security developments and those of other groups such as WS-
Interoperability23

While the XML world is expanding, many (if not most) web applications today
also employ or are augmented by other language such as CGI scripts. And then
there are all of the web browsers that interact with the application. I’ve got to get
back to work.

1 http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml (XACML 1.0 Specification Set
(18 Feb. 2003): OASIS Standard as of 6 Feb. 2003)
2 http://www.webservices.org/index.php/article/articleview/909/1/3 (Web Services.Org “XACML Ratified
as an OASIS standard”)
3 http://webservices.xml.com/pub/a/ws/2003/01/15/ends.html (O’Reilly Web Services, “Securing Web
Services”, Rich Salz, January 15, 2003)
4 http://www.ucc.ie/xml/faq.html#schemas (The XML FAQ Version 3.0, Peter Flynn, January 1, 2002
5 http://www.w3.org/ (World Wide Web Consortium)
6http://www.oasis-open.org/ (OASIS)
7 http://msdn.microsoft.com/msdnmag/issues/01/07/xml/default.aspx (Microsoft Developer Network,
“Understanding XML Namespaces”, Aaron Skonnard, July 2001)
8 http://xml.coverpages.org/xlinkMaler980402.html (XML CoverPages.Org, “Xlink and Xpointer
Overview”, Eve Maler, April 2. 1998)
9 http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml (OASIS XACML 1.0
Specification Set, February 4, 2003)
10 http://www.ietf.org/rfc/rfc3406.txt (IETF Uniform Resource Names (URN) Namespace Definition
Mechanisms, October 2002)
11 http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security (OASIS SAML Version 1.1
specification, July 1, 2003)
12 http://www.capeclear.com/support/manuals/help/security/overview_of_saml.htm (Cape Clear Support
Manuals, Overview of SAML)
13 http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security (OASIS Security Services
Technical Committee)
14 http://www.w3.org/TR/SOAP/ (W3C Simple Object Access Protocol (SOAP) version 1.1, May 8, 2000)
15 http://www-unix.gridforum.org/mail_archive/authz-wg/msg00021.html (OASIS XACML list server,
“Summary of XML Security Languages”, Mary Thompson, February 12, 2003)
16 http://xml.coverpages.org/ni2003-03-28-b.html (OASIS Cover Pages, “XACML XML DSig Profile
Supports Authentication of XACML Instances”)
17 http://lists.oasis-open.org/archives/xacml/200208/msg00109.html (OASIS XACML List Server, “XACML
Threat Model”. Don Flinn, August, 22, 2002)
18 http://java.sun.com/features/2003/06/xacml.html (Java.Sun.Com, “XACML: A New Standard Protects
Content in Enterprise Data Exchange”, June 24, 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.13

19 http://www.jiffysoftware.com/xacml/readme.html#overview (Jiffy Software, “jiffy XACML Alpha1
ReadMe”)
20 http://lists.oasis-open.org/archives/xacml/200304/msg00046.html (OASIS XACML list server,
“Complexity Going Forward”, Seth Proctor, April 22, 2003)
21 http://lists.oasis-open.org/archives/xacml/200304/msg00049.html (OASIS XACML list server, reply to
“Complexity Going Forward”, Seth Proctor, April 22, 2003)
22 http://webservices.xml.com/pub/a/ws/2003/01/15/ends.html http://lists.oasis-
open.org/archives/xacml/200304/msg00049.html (O’Reilly WebServices, “Securing Web Services”, Rich
Salz, January 15, 2003)
23 http://www.eweek.com/article2/0,3959,7267,00.asp (eWeek, “Web Services Security: A Political
Battlefield”, Anne Chen, May 27, 2002)

