
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

An Introduction to

Implementing Object-Level Security in IBM OS/400

with

Comparisons to Windows and Unix Permissions

by
Jeffrey Alan Gardner

GIAC Security Essentials Certification (GSEC)
Practical Assignment Version 1.4c - Option 1

May 9, 2005

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

2

Abstract

Access control is a major component of defense in-depth. Object-level security, which
is controlling who has access to objects on a system and what type of access they
have, is an important part of providing for the appropriate level of confidentiality,
integrity, and availability. Securing access using menu security, a concept inherited
from the IBM System/38, is not adequate for today’s environment. Although the
implementation of security is a technical matter, the definition must be prescribed by an
organization’s security policy to be effective.

The purpose of this paper is to give an introduction to the implementation of object
security in OS/400 and show how to keep that implementation simplified, and to make
cross comparisons to Unix and Windows permissions where appropriate. It will serve
as an introduction to OS/400 object-level authority for those new to or unfamiliar with
OS/400, and will be a guide for those expanding their understanding of OS/400 object
authority into Unix or Windows file systems and permissions, and how they are
implemented in OS/400's Integrated File System (IFS).

The integrated object-level security of OS/400, IBM’s midrange object-based operating
system, provides the ability to grant fine-grained authority for individual objects to users
or groups of users. Security administrators need to understand how to implement
OS/400's object-level security simply in its various file systems to allow them to correctly
configure the proper access control for the AS/400. Since the OS/400 Integrated File
System (IFS) security is based on Unix permissions with object-based extensions, it is
important that security administrators understand the Unix concepts and how they apply
to OS/400's object-based model. Seeing the parallels in Windows and Unix systems
will give the security administrator a broader understanding of object-level security,
another layer in the defense in-depth model.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

3

Contents

Abstract . 2

Chapter 1 – Introduction . 4
Background . 4

The need for object-level security . 4
The inadequacy of menu security . 4
The need for object security policy . 5

Delimitation . 5
Definition of terms . 6
Overview . 6
Significance of the study . 7

Chapter 2 – Implementing OS/400 Object Authority . 8
Object-based operating system . 8
OS/400 system values . 9
User profiles . 10

Special authority . 10
User authentication . 11

Authority management objects . 11
Group profiles . 11

Consolidate object ownership . 12
Consolidate authorities . 12

Authorization lists . 14
Object authority and the IFS . 14

IFS description . 14
QSYS.LIB file system . 15

Object and data authority . 15
Authority examples . 17

QOPT file system . 20
root (/), QopenSYS, and UDFS file systems . 20

Object and data authority . 20
Overall security considerations . 22
Authority examples . 23

NetServer and shared resource security . 25

Chapter 3 – Summary . 27
Recommendation for further study . 27

Appendix . 28
The “Common user id” myth . 28

References . 30

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS Institute, Track 1–SANS Security Essentials, Volume 1.2, Defense In-Depth, (SANS1

Press, September 2004), p. 119.

Marguerite Reardon, “Securing data from the threat within,” CNET News, January 11, 2005, 2

April 20, 2005. <http://news.com.com/Securing+data+from+the+threat+within/2100-7347_3-5520016.

html?tag=st.prev>

4

Chapter 1 – Introduction
Access control is a major component of defense in-depth. Object-level security, which
is controlling who has access to objects on a system and what type of access they
have, is an important part of providing for the appropriate level of confidentiality,
integrity, and availability. Securing access using menu security, a concept inherited
from the IBM System/38, is not adequate for today’s environment. Although the
implementation of security is a technical matter, the definition must be prescribed by an
organization’s security policy to be effective.

The purpose of this paper is to give an introduction to the implementation of object
security in OS/400 and show how to keep that implementation simplified, and to make
cross comparisons to Unix and Windows permissions where appropriate. It will serve
as an introduction to OS/400 object-level authority for those new to or unfamiliar with
OS/400, and will be a guide for those expanding their understanding of OS/400 object
authority into Unix or Windows file systems and permissions, and how they are
implemented in OS/400's Integrated File System (IFS).

Background
The need for object-level security
A proper defense in-depth strategy has access control as a major component. Object-
level security provides a low-level, inner layer of protection by implementing access
control on individual objects. The essence of this is that each authenticated user on a
system is authorized to perform certain actions on each object to which he needs
access in order to perform his task. This provides for the implementation of the access
control principle termed least privilege–“a principle of giving the least amount of access
possible to accomplish a task”. 1

One recent survey and report showed that 70 percent of security breaches were caused
by insiders. Security at the object level provides another protection against malicious2

and accidental damage.

The inadequacy of menu security
A security model inherited from the System/38 roots of the AS/400 is that of menu
security. It developed in the days when the primary means of access to the System/38
and the AS/400 was via twinax connected non-programmable terminals (the venerable
“dumb terminal”).

Most of the access in this environment is controlled by the initial menu that is assigned
to the user. If a program is not on the user’s menu, he cannot call that program, and
cannot perform the function. By restricting users’ access to a command line, the range

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

John Earl, “Purchased Software Can Jeopardize your Security,” iSeries News, December 1,3

1999. (Also available at iSeries Network, December 1, 1999. April 15, 2005. <http://www.iseriesnetwork.

com/artarchive/index.cfm?fuseaction=viewarticle&CO_ContentID=3255&channel=&subart=>)

Midrange dot COM Mailing List Archive, “Re: RMTCMD Anomaly,” May 19, 2000, April 20, 2005. 4

<http://archive.midrange.com/midrange-l/200005/msg00996.html>

SANS Institute, Track 1–SANS Security Essentials, Volume 1.2, Defense In-Depth, p. 63.5

John Earl, “Exit Programs Tighten AS/400 Security,” PowerTech.Com, [no date], April 25, 2005.6

<http://www.400security.com/pt-about_news-art_FA0603.html>

W ayne Evans, “Application-only Access: An AS/400 Resource Security Strategy,” W ayne O.7

Evans Consulting, [No date] March 29, 2005 <http://www.woevans.com/AOA.pdf>

5

of commands and functions is controlled by the menu. This is referred to as “menu
security” because the menu controls the function or application that can be accessed.

The security structure was often a simplistic one in which users had much authority,
many times all authority, to objects on the system. However, their access to the objects
was controlled by the menu options they were given.

The problem with this method is that menu security is only effective for 5250 and Telnet
terminal methods of AS/400 access. This problem has been discussed for some time
in AS/400 publications. This has led some to erroneously conclude that OS/4003

security does not apply across all access interfaces to the AS/400. In today’s4

environment, there are so many ways to access objects on an AS/400 other than
through the “green screen” terminal access that security at the object level is essential.
Menu-based security is no longer adequate.

The need for object security policy
The technology of object-level security or any other kind of security is not the total
answer to security. A security policy, with the support of management, is crucial to
define what must be secured and at what level. Policy defines technology usage.
Once the doctrine is set in the security policy, technology can provide the methods for
achieving it. Policy is “what” – Technology is “How.”5

Delimitation
This paper will cover how to implement the integrated object authority supplied by V5R3
of the OS/400 operating system. There are other security models discussed in the
AS/400 press, but they will not be covered. Two that are discussed frequently are:

• using system-supplied “exit points,” a method of defining a user written “exit
program” to be called during a system function, 6

• using what is called “Application-only Access” that recommends only granting
authority to programs that inherit the required authority at run time. All other
objects would have no private authorities for any user and no *PUBLIC
authority.7

These other models would make good studies of their own.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

6

Definition of terms
To clarify the usage of terms used in this paper, the following definitions are given:

“Object” refers to anything in OS/400. OS/400 stores all information as objects, and
each object has an object type such as library (*LIB), program (*PGM), file (*FILE), data
area (*DTAARA), etc. IBM-supplied objects have names that begin with the letter “Q”
so that they are easily recognized (as long as the user does not name his own objects
starting with a “Q” also.)

“Authority” is the OS/400 term for the assigned ability to perform certain functions on an
object. Systems such as Unix and Windows use the term “permissions.” The OS/400
graphical interface iSeries Navigator also uses “permissions.” These terms refer to the
same concept.

IBM has gone through several name changes for the AS/400 mostly based on hardware
enhancements. The various versions do not affect the discussion here because object
authorities have always been a part of OS/400. This paper will use the following terms:

“AS/400" is used for the name of the computer. This is the original name of the
system, but it has been renamed twice, first to iSeries, and more recently i5.
Many users still use the original name AS/400 and will occasionally use the
names interchangeably.

“OS/400" is used for the name of IBM’s midrange object-based operating system
that is used on an AS/400 machine. The most current release of OS/400, V5R3,
has been renamed i5/OS, but many users still use the term OS/400.

“iSeries Navigator” is the Windows-based graphical interface for managing an
AS/400. Previous versions were called “Operations Navigator.” The commonly
used abbreviation “Ops Nav” will also be used in this paper.

As IBM moves more and more of the management functions into iSeries Navigator, the
terminology used changes in some cases. In this paper, the Ops Nav term will be
supplied after the OS/400 “green screen” term.

Overview
Chapter 2 will start with a brief introduction to the OS/400 object-based operating
system concepts. Then it will cover several system objects that affect security and
security management across all of OS/400 in each file system of the IFS. Then object
authority will be discussed in several of the IFS file systems, starting with the “native”
file system and progressing to other IFS systems. A brief discussion of OS/400's file
serving service, NetServer, follows. Chapter 3 has a summary and recommendations
including further projects.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

7

Significance of the study
There are some within the AS/400 user community who have a misconception that
object security does not work over all access methods to the AS/400, others who
believe it is overly difficult to implement, and some who still depend on menu security.
The information in this study will contribute to dispelling these ideas.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

IBM Corporation, “Overview of iSeries (OS/400) Architecture,” Virtual Innovation Center for8

Hardware, [No date], April 15, 2005. <http://www-1.ibm.com/servers/enable/site/porting/iseries/

overview/overview.html>

8

Chapter 2 – Implementing OS/400 Object Authority
The integrated object-level security of OS/400, IBM’s midrange object-based operating
system, provides the ability to grant fine-grained authority for individual objects to users
or groups of users. Security administrators need to understand how to implement
OS/400's object-level security simply in its various file systems to allow them to correctly
configure the proper access control for the AS/400. Since the OS/400 Integrated File
System (IFS) security is based on Unix permissions with object-based extensions, it is
important that security administrators understand the Unix concepts and how they apply
to OS/400's object-based model. Seeing the parallels in Windows and Unix systems
will give the security administrator a broader understanding of object-level security,
another layer in the defense in-depth model.

Object-based operating system
OS/400 is an object-based operating system, i.e., all information on an AS/400 is kept
by the operating system as objects. This is in contrast to systems such as Unix and
Windows which are byte-string file-based, i.e., all information is kept in simple byte-
string files.

Operations, or “methods” in object-oriented terminology, that are allowed on an object
are defined by the object type which is stored with the information in the object. The
example below shows four object types and their associated methods. 8

For instance, one cannot execute a CALL command on a database file (object type
*FILE, attribute PF) and run its contents as though it were a program. Likewise, there is
no “read” or “write” function to view or change the contents of a program object (*PGM),
This encapsulation of data and methods provides integrity for the operating
environment.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

9

Each object in OS/400 is owned by an object called a user profile, *USRPRF. Even
user profile objects are owned by a profile. A *USRPRF might be owned by itself, or
more likely it would be owned by another profile such as the security officer profile.
(User profiles are discussed in more detail below.)

OS/400 stores several security attributes in every object. Those that are specifically
related to our discussion of security are:

• the name of the user profile object (*USRPRF) that owns the object
• the owner’s authority to the object
• public authority to the object. *PUBLIC authority is used when a user doesn’t

have private, group, or inherited authority to an object.
• the name of an optional primary group profile and the group’s authority

Storing these attributes on the object gives a performance advantage in checking. The
fastest authority checking occurs for owner, *PUBLIC, and primary group authority
since the system only has to check the object for the authority.

Unix files are similarly configured except that all Unix files have a “group owner”
comparable to the OS/400 optional primary group. On the other hand, not all Windows
files have their own permissions. By default, new files and folders (directories) do not
have their own permissions. Rather, permission checking defers to the parent directory
(which might propagate all the way up to the root directory).

OS/400 system values
System values are objects that contain values or parameters that apply across the
entire system. (Ops Nav uses both terms system values and policies.) These objects
can be compared to the Windows policies and user rights.

The first system value that needs to be considered in a discussion of security is named
QSECURITY. This is the overall security level of the system. The valid values are:

10=Physical security only (no longer supported).
20=Password security only
30=Password and object security
40=Password, object, and operating system integrity
50=Password, object, and enhanced operating system integrity

Level 10 is supported only when a machine is already at that level and is upgrading to a
new version of OS/400. Level 10 makes the AS/400 act as though it were simply a very
powerful DOS machine with no object authority checking. If you can get to a connected
terminal, you have full access to the system. Level 20 grants all object authority to all
users, so it too bypasses object authority checking. Level 30 is the absolute minimum
to be considered since it uses user profiles and passwords and users have different
authorities. Level 40 is the recommended one because it adds protection against
accessing system objects in ways other than the supplied APIs. New systems ship with

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

10

the QSECURITY system value set to 40. A value of 50 is recommended only for very
high security environments.

Other system values apply only to certain file systems and will be discussed under
these. There are also other security-related system values that do not relate to object
security such as password criteria, invalid signon attempts, that will not be covered.

User profiles
Users are defined via user profiles, object type *USRPRF. (Ops Nav–users.) Among
the many attributes stored in the *USRPRF, four are of interest in this discussion:

• the list of objects owned by that profile
• the list of private authorities to objects not owned by the profile
• a list of Special Authorities (SPCAUT) (Ops Nav–privilege class)
• a main group profile (if any) and a list of supplemental group profiles (these will

be discussed below in the section “Authority management objects” below)

One of the benefits of storing the list of owned objects and the list of private authorities
in the user profile object itself is that when the profile is deleted, references to that
profile are deleted also. All of the private authorities that the profile has are deleted
when it is deleted. Also, since all objects must be owned by a *USRPRF object, those
objects owned by the profile must be assigned to another profile, or they must be
deleted. The Delete User Profile (DLTUSRPRF) command has a parameter that
specifies whether to automatically change the owner of objects, automatically delete the
objects, or abort the operation if the profile owns any objects. (Ops Nav–the
delete function for a user has the same options.)

This avoids the situation encountered in Windows with leftover authorities and objects
with no owner (except for a mysterious SID), and it eliminates the reuse problem
sometimes found on Unix systems when a UID is reused. Since a *USRPRF is an
object, not just a number as in Windows and Unix, deleting a user profile deletes the
object, and making a new profile makes a whole new object–all traces of the old profile
are gone.

Special authority
Two of those special authorities are of interest to this discussion. One is the All object
(*ALLOBJ) authority (Ops Nav–all object access). This enables the user to perform any
operation on any object without restriction–the same unrestricted access that the
system security officer profile, QSECOFR, has. Obviously, this special authority must
be handed out with extreme caution.

In comparison, in a Windows environment an Administrator or Domain Administrator
can be restricted, for example, from viewing the contents of a file. He then has to
change permissions or take ownership of an object to work around that. *ALLOBJ
authority trumps any individual authority an object has. One could revoke all authority
to an object from a profile with *ALLOBJ, and the *ALLOBJ special authority will still
allow that user to access the object. It is a very powerful authority indeed.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

IBM Corporation, “Enterprise Identity Mapping,” iSeries Information Center–V5R2, [No date],9

April 19, 2005. <http://publib.boulder.ibm.com/iseries/v5r2/ic2924/index.htm?info/rzalv/rzalvmst.htm>

11

Another special authority of interest is the save system (*SAVSYS) authority (Ops
Nav–save and restore). A user profile can save any object that it owns or any that it
has authority to use. *SAVSYS special authority allows the user profile to save any
object on the system, even if it has no authority to the object. It can also restore any
object provided it has been granted *USE authority to the restore commands. (All
OS/400 restore commands are shipped with no *PUBLIC authority in order to restrict
who can restore objects to the system.) For instance, a file could be saved or restored,
but the user profile would have no authority to read the contents of the file. This would
be given to a system operator whose job involves running system backups.

User authentication
In OS/400 at security level 20 and above, the primary method for user authentication is
by logging on with a user profile and password. As of OS/400 V5R2, Enterprise Identity
Mapping and Kerberos authentication is also available for many functions to provide for
a single signon environment . 9

In either case, the authentication maps to an OS/400 user profile object which is
authorized to perform functions on an object. (See Appendix, The “Common user id”
myth, for a discussion of an enduring myth in the AS/400 community that can
completely negate any effort spent in configuring correct object-level security.)

Authority management objects
OS/400 provides two objects that assist in managing and simplifying object authorities
in OS/400, Group Profiles and Authorization Lists. Using these two objects can
produce a highly customized but simplified and manageable authority structure.

Group profiles
A group profile (Ops Nav–Group) is a regular *USRPRF object. OS/400 identifies it as
a group profile when it is assigned a group id (GID) or when another *USRPRF is
added to it as a group. A group profile can be used as a logon profile or to run jobs.
However, setting up separate *USRPRF objects as group profiles to be simply authority
holders simplifies management. Users and groups are two different “objects” in
Windows and Unix, unlike in OS/400, so a group in Windows and Unix cannot log on or
run jobs.

Each user profile can be a member of up to 16 group profiles using the Create User
Profile (CRTUSRPRF) or Change User Profile (CHGUSRPRF) commands. (A group
profile cannot be a member of another group.) In the partial view of the prompted
CHGUSRPRF command below, the user profile USERNAME is a member of GROUP1
as its group profile, and GROUP2 as a supplemental group.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

12

===
 Change User Profile (CHGUSRPRF)
User profile USRPRF > USERNAME
.
.
.
Group profile GRPPRF GROUP1
Owner OWNER *USRPRF
Group authority GRPAUT *NONE
Group authority type GRPAUTTYP *PRIVATE
Supplemental groups SUPGRPPRF GROUP2
 + for more values
===

Consolidate object ownership
Group profiles can be used to control and consolidate object ownership. Normally a
*USRPRF owns and has all authority to objects it creates. In the above example, the
“Owner” parameter is listed as *USRPRF, which says the user profile will own all
created objects.

Specifying *GRPPRF instead says whatever group profile is named on the GRPPRF
parameter, GROUP1 in this example, will own any objects the user profile creates, and
that group profile will be granted all authority.

Optionally, instead of making the group profile the owner, specifying the “Group
authority (GRPAUT)” parameter grants that authority to the group profile. Then the
“Group authority type (GRPAUTTYP)” parameter determines if the authority is a private
authority (stored on the group profile) or a primary group authority, which makes the
group profile the primary group for the object and stores the authority on the object
(giving the performance enhancement as was discussed previously). A group profile
can become an object’s primary group also by using the Change Object Primary Group
(CHGOBJPGP) command or the Change Primary Group (CHGPGP) command (Ops
Nav–“Primary Group” button in Permissions dialog for the object).

An example of a common use of this group profile ownership and authority feature is in
an environment with multiple programmers working on a single project from a common
library.

This feature can be compared to the Unix “Group owner permission” on files. In Unix
there is only one group identified on an object, and every object has a group owner. An
OS/400 object can have no primary group, have a group profile specified as its primary
group, or be owned by a group profile. The same group profile cannot be both the
owner and the primary group.

Consolidate authorities
Group profiles also can be used to consolidate authorities. Although each user profile
can be granted authority to each object it needs for the tasks it performs on the system,
with a large number of users and the changes that invariably occur, managing them can
quickly become overwhelming. In addition, since user profiles and their lists of
authorities are saved during a system save (SAVSYS) or a Save Security Data

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

IBM Corporation, “Identifying User Groups,” iSeries Information Center–V5R3, [No date], April10

15, 2005. <http://publib.boulder.ibm.com/infocenter/iseries/v5r3/ic2924/index.htm?info/rbapk/

rbapkrbapk4i3exampleidug.htm>

SANS Institute, Track 1–SANS Security Essentials, Volume 1.6, Unix Security, (SANS Press,11

September 2004), p. 191.

13

(SAVSECDTA), as users and authorities are added, those saves can become longer
and longer in time and space requirements.

A user profile inherits object authorities and special authorities from the group profile. If
the user profile has no private authority to an object and has not been specifically
excluded by revoking all authority to the object for the user, each group to which the
profile belongs will be checked for authority. The authorities from all group profiles
listed on the user profile will be combined to determine if the user has enough authority
to an object.

Grouping users by function is an efficient way to manage authorities on a system. The
following diagram gives an example of how a company might define user groups10

based on function and access requirements for certain applications and objects. Each
user group listed would be made a *USRPRF object to which other users are added,
making them group profiles.

The grouping of authorities is very similar to the way Windows uses groups–multiple
groups can be authorized to a file, and users from the various groups inherit that
authority.

This is different from the Unix single group ownership of a file. The Unix concept can11

be compared to OS/400's granting the group profile authority to the file or specifying the
primary group on an object.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

14

Authorization lists
An authorization list (*AUTL) is another object that provides authority management. An
authorization list is an object that contains a list of other objects that all need the same
security settings. One way to think of it is that an *AUTL works in reverse of a group
profile. Whereas a group profile grants the same authority over an object to all users in
the group, an *AUTL grants a specified user profile the same authorities over a list of
objects.

For an example of this, suppose there is a set of files whose object authorities are the
same for any user profile that needs to access them. Rather than authorizing each
user to each file, there are two options: (1) group the users and authorize the group
profile or (2) add all of these files to an authorization list and grant authority for the user
or group that needs to access the set of files to the authorization list object. Whatever
authority the user profile has to the *AUTL, it has to the objects on the list.

However, start with the situation above but add the stipulation that each user needs
authority different from other users to the set of files. This cannot be done using a
group profile. To group the authorities efficiently, the *AUTL must be used.

An advantage of the *AUTL , like the group profile, is that the number of authorities has
been reduced making for smaller user profiles. Another advantage to authorization lists
is in managing authorities on files (object type *FILE). Authorities cannot be changed
on a file when it is open. However, if authorities are managed via an *AUTL, they can
be changed because all authority actions are performed on the *AUTL, not on the file.
This can be a big help in always-on environments.

The example given above of using a group profile and the group ownership setting for
programmers working on the same projects can be recast using the authorization list.
Instead of the group profile owning all objects, set up a common library on an
authorization list. Then grant authority to all programmers that need to work in that
library. Any object created in that library will have the *AUTL as its authority setting,
and all programmers authorized to the list will have authority to the objects as well.

Object authority and the IFS
OS/400 supports multiple file systems under the umbrella name of the Integrated File
System (IFS). Object authority applies at all times across all file systems.

IFS description
To display the file systems on an AS/400, execute the Work with Object Link
(WRKLNK) command from a command line or open iSeries Navigator and, under the
system name, select File systems/Integrated File System. iSeries Navigator shows
them more clearly since the WRKLNK view shows all of the file systems under the “/” or
“root” file system (which is literally how they are structured).

The IFS file systems which will be discussed in this paper are:

• QSYS.LIB–the original file system. Objects in libraries, one level deep.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Jake Kugel, “Destination: IFS, Part 1,” iSeries News, June 1, 2002. (Also available at iSeries12

Network, June 1 2002. April 29, 2005. <http://www.iseriesnetwork.com/resources/artarchive/index.cfm?

fuseaction=viewarticle&CO_ContentID=14477&channel=art&PageView=Search>)

15

• QOPT–the AS/400's CD-ROM
• root (/)–directory and stream file access, case-insensitive names (like on a PC)
• QOpenSys–like root but uses case-sensitive names (like Unix systems)
• User defined file system (UDFS)–file systems located on auxiliary storage pools.

Same attributes as the root system, but can be configured to use case-sensitive
or case-insensitive file names.

The root, QopenSYS, and UDFS will be discussed together because the security is
handled the same in these file systems.

The following file systems will not be discussed because they access remote file
systems, and security is handled by the remote server:

• QNTC–for accessing a Windows server either remotely or on an integrated
Windows server (an AS/400-hosted PC hardware running Windows and using
AS/400 disk as PC disks)

• QNetWare–for accessing a remote NetWare server
• QFileSrv.400–for accessing a remote AS/400's IFS
• NFS–for accessing a NFS server

In addition, the QDLS file system (document and library services file system, also called
shared folders) will not be covered. QDLS is the Document Library Object file system
for OfficeVision/400 and for providing shared folder access for PCs. It existed before
the development of the IFS. It is a slow-performing file system, and its use is no longer
recommended since the root file system of the IFS has much better performance.12

QSYS.LIB file system
The QSYS.LIB file system is the “native” file system of the AS/400, inherited from the
System/38. This file system supports the hundreds of object types unique to OS/400.
The structure of this file system is a single-level library structure rather than a multi-level
directory structure. All objects exist in a library, and all libraries exist in the system
library QSYS which is sometimes called the “system context.”

Object and data authority
Authorities in QSYS.LIB are managed using the commands Grant Object Authority
(GRTOBJAUT), Revoke Object Authority (RVKOBJAUT), and Edit Object Authority
(EDTOBJAUT), and using iSeries Navigator under File systems.

Because of the object-based nature of OS/400, each authority has two parts:

• Object authority allows certain operations on the object as a whole
• Data authority allows operations on the contents or data of the object.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

 *OBJALTER and *OBJREF authorities can apply to database files because DB2-400 is13

integrated into OS/400, and database functions are controlled with OS/400 object authorities rather than

through an application-level security model.

16

Each separate object and data authority is described below. Also described are
grouped authority that can be used in all authority commands. The descriptions below
of the authorities are summarized from the OS/400 Online Help Information (help text)
for the “Authority (AUT)” parameter of the abovementioned commands.

Individual data authorities
• *READ–get the contents of an entry in an object.
• *ADD–add entries to an object.
• *UPD–(Update) change the entries in an object.
• *DLT–(Delete) remove entries from an object.
• *EXECUTE–run a program or locate an object in a library.

Individual object authorities
• *OBJOPR–(Object operational) look at the description of an object and use the

object. (*OBJOPR authority can be considered the most fundamental authority.
Without it, no other authority is effective.)

• *OBJMGT–(Object management) specify the security for the object, move or
rename the object, and add members to database files.

• *OBJEXIST–(Object existence) control the object's existence and ownership.
• *OBJALTER–(Object alter) alter the attributes of an object. If the user has this

authority on a database file, the user can add and remove triggers, add and
remove referential and unique constraints, and change the attributes of the
database file. If the user has this authority on an SQL package, the user can
change the attributes of the SQL package. This authority is currently only used
for database files and SQL packages.13

• *OBJREF–(Object reference) reference an object from another object such that
operations on that object may be restricted by the other object. If the user has
this authority on a physical file, the user can add referential constraints in which
the physical file is the parent. This authority is currently only used for database
files.

Grouped authorities
• *USE–The user can perform basic operations on the object, such as running a

program or reading a file. The user cannot change the object. *USE authority
provides *OBJOPR, *READ, and *EXECUTE.

• *CHANGE–Change authority allows the user to perform all operations on the
object except those limited to the owner or controlled by object existence
authority and object management authority. *CHANGE authority provides
*OBJOPR and all data authority.

• *ALL–The user can perform all operations except those limited to the owner or
controlled by authorization list management authority. The user can control the
object's existence, specify the security for the object, change the object, and

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Jeffrey R. Shapiro and Jim Boyce, W indows 2000 Server Bible. (New York: Hungry Minds,14

Inc., 2000), p. 807.

17

perform basic functions on the object. The user also can change ownership of
the object.

• *EXCLUDE–The user cannot access the object.
• *AUTL–the public authority of the authorization list securing the object is used for

*PUBLIC authority.

Authority examples
We will show how these authorities work using some of the most commonly used
objects in OS/400–file (*FILE), program (*PGM), and library (*LIB).

File object (*FILE)
A file in OS/400 is an object used for program I/O–a program reads from and writes to
*FILE objects. There are display device files (attribute DSPF), printer files (PRTF),
database physical files (PF), database logical files (LF), among others.

For our example, we will consider a database physical file. This is very similar to a data
file in Windows and Unix. The data portion of this object is often what is meant when
the word data is used–information stored as records in a file. To read existing records,
*READ authority is required; to add a new record, *ADD is required; to delete a record,
*DLT is required; to change an existing record, *UPD. Although *DLT will allow a user
to delete one record at a time, to use the Clear Physical File Member (CLRPFM)
command to delete all records at once, object management authority (*OBJMGT) is
required.

This type of fine-grained control on allowed data operations on a file is not available in
Unix or in Windows. In Unix, R permission allows reading a file, W allows writing to the
file (adding new, updating or deleting existing records) including completely clearing the
file and rewriting all its content. The original NTFS file permissions have been
expanded and subdivided in Windows 2000 and above into finer controlled permissions
via the Advanced Permissions entry, however the data access is still not as fine-14

grained as these data authorities.

Physical files can have multiple members, each containing different data records. This
characteristic of a database physical file can be compared to a directory in Windows
and Unix. In fact, iSeries Navigator shows physical files as directories and the
members as files. However, each member of a file has the same authority as the *FILE
object.

This function is duplicated in Windows by leaving the default “Inherit permissions”
attribute set on a file or directory. In Unix, however, changing the directory permissions
does not apply to the files within it.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS Institute, Track 1–SANS Security Essentials, Volume 1.6, Unix Security, p. 269.15

18

Program object (*PGM)
A program is an object that executes instructions, and it is similar in function to program
files in Windows and Unix, except that it is an encapsulated object. The data portion of
a program contains the program’s executable code. The authorities needed to execute
a CALL command on a program are *OBJOPR and any data authority. Typically *USE
authority is granted which results in *OBJOPR, *READ, and *EXECUTE.

A program has an attribute, USRPRF, that controls which profile’s authority is used to
execute the program’s instructions. It can be set to *USER or *OWNER at compile time
or using the Change Program (CHGPGM) command. *USER is the default setting and
causes the program to use the authorities of the user running the program. *OWNER
causes the program to use the authorities of the program’s owner. This is called “using
adopted authority” or simply “adopting authority.” All functions performed by the
program, including CALLs to other programs, adopt the authority of the *OWNER
program’s owner.

This attribute to adopt authority performs like the Unix set-UID flag on an executable
file. The Windows “Run as...” setting is different in that the setting is not an attribute of
the executable file itself, rather it is set on a shortcut. The Windows Runas command
functions the same way by starting a process running under a different user id. Also,
both methods of “Runas” can specify any user id. This is similar to using the USRPRF
parameter on the OS/400 Submit Job (SBMJOB) command which allows an entire job
to be run under a user profile and its authorities different from the one submitting the
job. (The *USRPRF submitting the job must have *USE authority to the other user
profile.)

Principles such as least privilege and access control should be practiced when using
*OWNER programs:

• carefully parcel out *USE authority to a *OWNER program in order to control
which users can run it

• restrict *READ authority to it because *READ authority allows a user to run
debug on a program and possibly bypass the established security by changing
the program’s variables and parameters. This is an identical warning as given in
the SANS Unix Security book concerning set-UID files in Unix. Accomplish15

this by granting only *OBJOPR and *EXECUTE authorities, enough to CALL the
program but not “read” it in the debugger.

• the owner of a *OWNER program should be one that has just the amount of
authority it needs to do the task, rather than the “quick and dirty” method of
making the owner QSECOFR, the system security officer profile, or some other
*ALLOBJ authority user profile.

• a *OWNER program should perform a minimal number of functions. Design the
application to keep that program at the bottom of the call stack so it does not
propagate its adopted authority to programs it calls.

• if the *OWNER program must call other programs, use the library qualifier on the
CALL command, which forces the call to the specific program in the specific

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

19

library, rather than allow a library list call, which can lead to a “Trojan horse”
effect by someone manipulating his library list.

Library object (*LIB)
A library is a container object in OS/400 in which other objects exist. A directory in
Windows or Unix is also a container object. However, whereas directories in Windows
and Unix can contain other directories, libraries cannot contain other libraries.

The object authorities to a library control access to the library object itself. The data
authorities control access to the library’s data, which are the objects contained in the
library.

For instance, in order to add a new file or program to a library, a user needs to have
*ADD data authority to the library. The other data authorities, *READ, *UPD, *DLT,
*EXECUTE, control operations on the objects in the library, but are limited by the
authorities on the objects themselves. For example, a user profile might have *DLT
data authority for a library, allowing it to remove entries from the library (delete an
object), but if it does not have *OBJEXIST on an object, it cannot delete that object.
This is different from Windows and Unix in which directory permissions control “object”
functions for the files in the directory.

Each library has a setting called Create Authority (CRTAUT), which is specified on the
Create Library (CRTLIB) or Change Library (CHGLIB) command. The setting controls
the *PUBLIC authority on new objects. The setting can have the values *USE,
*CHANGE, *ALL, *EXCLUDE, or the special value *SYSVAL, which says to use the
value in the system value QCRTAUT which can have the values *USE, *CHANGE,
*ALL, or *EXCLUDE. In iSeries Navigator under the QSYS.LIB file system, open
permissions for a library and click the “New objects” button.

A new object does not inherit any authority from the library’s authority. There are two
scenarios for making new objects:

• using the various CRTxxx commands to make the new object, e.g. Create
Physical File (CRTPF), the new object only has owner and *PUBLIC authorities
granted. The owner is granted *ALL authority. The new object’s *PUBLIC
authority can be specified using the “Authority (AUT)” parameter on the
command, or it can default to the library’s CRTAUT setting. This is in contrast
to Windows and Unix in which new files inherit permissions from the directory in
which they are made.

• using a Create Duplicate Object (CRTDUPOBJ) or a Copy File (CPYF) to make
a new object based on an existing one, all authorities for the old object are
duplicated onto the new object except that the owner of the new object is the
user profile which made the new object and it is granted *ALL authorities.

With these basics understood, we can look at the rest of the IFS and how it handles
object authority.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

IBM Corporation, “Qshell,” iSeries Information Center–V5R3, [No date], May 5, 2005. <http://16

publib.boulder.ibm.com/iseries/v5r2/ic2924/index.htm?info/rzahz/intro.htm>

IBM Corporation, “OS/400 PASE,” iSeries Information Center–V5R3, [No date], May 5, 2005. 17

<http://publib.boulder.ibm.com/infocenter/iseries/v5r3/ic2924/index.htm?info/rzalf/rzalfintro.htm>

20

QOPT file system
The QOPT file system is used to access the AS/400's optical CD-ROM drive. Since it is
a removable medium, securing directories and objects is not available. However, it is
possible to restrict users’ access to the CD-ROM itself. A device description object
(*DEVD) is used to access the CD-ROM, and therefore the QOPT file system. Control
access to the device description, and access to the file system is controlled.

First, revoke all authority (RVKOBJAUT) from *PUBLIC to the device description
(named OPT01 by default). Then grant *USE authority to users or groups that are to
access the CD-ROM using the GRTOBJAUT command.

This can also be accomplished using an authorization list. Make a *AUTL (perhaps
calling it OPT01). Change the device description’s authority to use the authorization list
GRTOBJAUT OPT01 AUTL(OPT01), change *PUBLIC authority to *AUTL, then use the
Add Authorization List Entry (ADDAUTLE) command to add users and their authorities.

root (/), QopenSYS, and UDFS file systems
These file systems are designed to emulate both a Windows PC file system and a Unix
file system. The root file system is a case-insensitive system, QOpenSys is case-
sensitive to mimic Unix, and the UDFS can be defined either way. The most common
objects in the systems are the directory (*DIR) and the stream file (*STMF).

The primary reason for the QOpenSys file system is to provide file access to OS/400's
Qshell POSIX-compliant Unix command interpreter and utilities , and to OS/400 PASE16

(Portable Application Solutions Environment), the integrated Unix run-time environment
designed to allow Unix applications to run under OS/400.17

Object and data authority
Authority in the IFS is managed using the Change Authority (CHGAUT) and Work with
Authority (WRKAUT) commands, and via iSeries Navigator File systems. A unique
aspect of these file systems is that authority checking must satisfy all three conditions,
OS/400, PC, and Unix. This requires Unix-like permissions with an object twist to them.
Because of this mix of Unix- and OS/400-type authorities/permissions, managing
authority in these file systems can be bewildering to OS/400-oriented users and to Unix-
oriented users alike.

Authority is composed of object and data authority, as in QSYS.LIB. The OS/400
Online Help Information is summarized below for these authorities, and if appropriate,
compared to the grouped authorities in QSYS.LIB:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Jeff Parker, “Integrated File System Security–Fundamentals,” COMMON Conference Handout,18

March 2003, Session 440138.

Carol W oodbury, “Security Patrol: Security Considerations for the Integrated File System (IFS)”19

MCPress Online, April 2003, April 11, 2005. <http://www.mcpressonline.com/mc?50@

118.ksLEccBImF2.9@.6ae64331>

21

Individual data authorities
The data authorities are the familiar Unix RWX permissions and combinations.

• *R–open an object for reading. Provides *OBJOPR and *READ.
• *W–open an object for writing, for a directory add, delete, and rename files in the

directory). Provides *OBJOPR, *ADD, *UPD, *DLT.
• *X–run a program file or search a library or directory. Provides *OBJOPR,

*EXECUTE.

• *RX–perform basic operations on the object, such as run a program or display
the contents of a file. The user is prevented from changing the object.
Provides*OBJOPR, *READ, *EXECUTE (like *USE).

• *RW–view and change the contents of an object. Provides *OBJOPR, *READ,
*ADD, *UPD, *DLT (which on a data file is like *CHANGE).

• *WX–change the contents of an object and run a program or search a library or
directory. Provides *OBJOPR, *ADD, *UPD, *DLT, *EXECUTE.

• *RWX–perform all operations on the object except those limited to the owner or
controlled by object existence, object management, object alter, and object
reference authority. The user can change the object and perform basic functions
on the object. Provides *OBJOPR and all the data authorities (like *CHANGE).

• *EXCLUDE–Exclude authority prevents the user from accessing the object.
• *AUTL–The public authority of the authorization list specified in the AUTL

parameter is used for the public authority for the object.

Individual object authorities
• *OBJEXIST–delete, save, or restore a file
• *OBJMGT–rename, move, or look at authorities (but not set–this is different from

QSYS.LIB)
• *OBJREF, *OBJALTER–these currently only apply to database files in QSYS.LIB

and have no meaning in the IFS.18

These descriptions are summarized in the following table of comparisons (*W and *WX
are incorrect in the source and have been corrected). The first thing to note is that19

only data authorities are granted to the object using the RWX format–no object
authorities are granted. Also, *OBJOPR, called an object authority in QSYS.LIB, is
called a data authority in the IFS model.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

22

Authorities *R *W *X *RW *RX *WX *RWX

Object

*OBJMGT

*OBJEXIST

*OBJALTER

*OBJREF

Data

*OBJOPR X X X X X X X

*READ X X X X

*ADD X X X X

*UPD X X X X

*DLT X X X X

*EXECUTE X X X X

We can also compare how the grouped authorities in QSYS.LIB map into the IFS
version of the authorities. Authority for QSYS.LIB objects can be displayed using the
object-oriented command DSPOBJAUT and using the IFS-oriented command
DSPAUT. Execute from an OS/400 command line a GRTOBJAUT
OBJ(lib_name/obj_name) command to grant *EXCLUDE, *USE, *CHANGE, and *ALL
to an object. Display those authorities using the DSPOBJAUT command, then display
them using the DSPAUT OBJ(‘/qsys.lib/lib_name.lib/obj_nam.obj_type’). The following
figure shows the two models merged into a single display. As expected, *EXCLUDE
grants no authorities, and object authorities (other than *OBJOPR) are only granted
when granting *ALL authority to an object.

Grouped
Authority

RWX Data
Authority

OBJ
Mgt

OBJ
Exist

OBJ
Alter

OBJ
Ref

Opr Read Add Update Delete Execute

*EXCLUDE

*USE *RX X X X

*CHANGE *RWX X X X X X X

*ALL *RWX X X X X X X X X X X

Overall security considerations

System-supplied IFS authorities
The default authorities that ship with OS/400 on the root and QOpenSys are set to
*PUBLIC *ALL (*RWX and all object authorities). It is highly recommended that these
be changed to more restrictive authorities.

At the minimum, remove *W and all object authorities from *PUBLIC leaving only *RX.
This will still allow any user profile to read the contents of the root directory in each file
system and to traverse the directory to lower level directories, but will prohibit adding or

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

23

deleting objects under those root directories. Remove this authority for the /home
directory also, since it is a supplied directory and has the same settings as the root ‘/’
directory.

An even more restrictive setting, *X, could be used to allow only directory traversal, but
this impairs the ability to display the current directory path since each directory must be
read to string the path together.

Controlling QSYS.LIB access via the IFS
The QSYS.LIB file system can be accessed using the IFS. There is an authorization
list, QPWFSERVER, that can control access to QSYS.LIB through iSeries Navigator,
NetServer file sharing (discussed below), and the QFileSrv.400 file system (which
allows remote access to another AS/400's IFS). *PUBLIC has *USE authority to this
*AUTL, so by default, anyone can access QSYS.LIB via those interfaces. However, it
does not restrict access via FTP, ODBC, or DDM (distributed data management) files.

The complete solution to this is to use the integrated object authority discussed in this
paper to restrict access to the objects at the object level. Object authority works
regardless of access interface.

Authority examples
In general in the IFS, only the owner or a user with *ALLOBJ special authority can set
permissions on an object. Just as in Unix, there is no “manage security” attribute as
there is in the QSYS.LIB file system (*OBJMGT authority) and in Windows (Change
Permissions permission).

Adopted authority does not work in the IFS, i.e., an AS/400 program compiled as
*OWNER will not adopt authority when it works in the IFS to process files. Other
means must be employed such as user profile switching for the job. This is beyond the
scope of this paper.
In order for many file-level functions to work in the IFS, the user profile must have
*OBJMGT or *OBJEXIST authorities on the objects.

• *OBJEXIST–delete, save, restore
• *OBJMGT–rename, read (but not set) permissions

*W authority on the directory is not sufficient (as in Unix) because OS/400 also checks
the object for proper authority. A user profile might have *W on a directory, but if it
does not have *OBJEXIST on the file, OS/400 will not allow the user to delete the file.
This is analogous to a user profile having *DLT data authority on a *LIB object but not
having *OBJEXIST on a program or file in the library. Most authority problems occur
because these have been removed from a directory or user profile.

Default object authorities
The default authorities on a new object depend on the interface used to make the new
object. The following is true regardless of the interface used:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS, Unix Security, p. 258.20

24

• The user profile making the new object owns it. Ownership cannot be
automatically assigned to the user profile’s group profile using the user profile’s
OWNER(*GRPPRF) setting as can be in QSYS.LIB.

New object–from PC
When a PC makes a new object via a shared directory, the new object inherits some of
its attributes from its parent folder, some are assigned to the owner by default, and
some can be controlled with the parent folder attributes.

• The owner gets *ALL authority to the new object (This is true as of V5R2.
Previously, the owner got the permissions that the owner of the parent directory
had. This change in default owner authority can eliminate many of the authority
problems stemming from restricted authorities for the owner of a directory.)

• *PUBLIC authority is inherited from the directory’s *PUBLIC authority
• The object’s primary group assignment can be set using iSeries Navigator

(starting in V5R2). Open the properties of the directory, select the Security tab,
and under “Default primary group” there are two choices, “Use folder primary
group” or “Use user value.” The latter assigns the user’s GRPPRF as the
primary group. This mimics the Unix set-GID on a directory.20

• Private authorities and the authorization list are inherited from the parent
directory.

• The owner of the parent directory is granted the same authorities to the object as
it has to the directory (unless it is a system-supplied security officer level user
profile, i.e. QSYS and QSECOFR)

New object–from Unix-type APIs
Both OS/400 and Unix-environment programs can use the Unix-type APIs. The data
authorities for the new object (owner, primary group, *PUBLIC) are specified on the
Unix-type API calls. Since Unix does not know about object authorities, object
authorities for all three–owner, primary group, and *PUBLIC–are inherited from the
parent directory’s authorities for these. Also, since private authorities and authorization
lists are unknown in Unix, the APIs provide an “Inherit mode” parameter that, if set, will
inherit all private authorities and the authorization list. If not set, neither is inherited

New object–from OS/400 commands
There are three commands that produce new objects: Create Directory (CRTDIR),
Copy to Stream File (CPYTOSTMF), and COPY.

The CRTDIR command has parameters that specify how the authorities are granted to
the new directory.

• The value of *INDIR will cause the new directory to inherit all authority from the
parent directory. All private authorities propagate down, including the owner of
the parent directory (unless that owner is QSYS or QSECOFR).

• Specifying authorities in the parameters results in *PUBLIC being granted the
authorities specified on the command. Only the new owner and *PUBLIC

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Jeff Parker, “Integrated File System Security–Advanced Topics,” COMMON Conference21

Handout, March 2003, Session 402088.

25

authorities are granted.
• In any case, the new owner gets *RWX data authorities and inherits the object

authorities of the parent directory’s owner.

The CPYTOSTMF command will copy a database file from the QSYS.LIB file system
into a stream file in the IFS. The authorities on the new object are as follows:

• *PUBLIC is granted *NONE data authority and inherits object authority from the
parent directory’s *PUBLIC authority

• The owner of the new file is granted *RWX data authority and inherits object
authority from the parent directory’s owner

The COPY command and the alias CPY produce a new file by copying the data and
other object attributes, most notably the authorities. This command is perhaps the most
difficult for OS/400-oriented users to grasp because it is more than a simple data copy
like the Copy File (CPYF) command. It functions more like a Create Duplicate Object
(CRTDUPOBJ) command in that it accesses the object for information and therefore
requires *OBJMGT authority to the source object. The authorities on the new object are
as follows:

• *PUBLIC inherits both data and object authority from the source object’s
*PUBLIC authority

• the owner of the new object inherits both data and object authority from the
source object’s owner authority

• the primary group is inherited from the source object. This requires the new
owner (the user profile executing the COPY) to be a member of the group profile
specified as the primary group of the source object.

In all of these examples, a very important concept to remember is how *PUBLIC and
owner authorities are granted to a new object. In the IFS there are multiple ways for
these authorities to be granted. In most cases they differ from how authority is granted
in QSYS.LIB. The inherited authority (or lack thereof) for the owner can become
troublesome because the parent directory’s owner authority determines the authority of
the new object’s owner. A recommended method to combat this is to use the CHGAUT
command immediately after creating a new object to grant the authorities needed for
further processing.21

NetServer and shared resource security
The NetServer service that can run on an AS/400 provides a Windows Network
Neighborhood-compatible SMB file and print service. Windows or Unix machines which
can run an SMB client can access file and print shares, and Windows machines can
browse for the resources using Windows Explorer.

Shares are configured much like they are in Windows. They must be configured using
iSeries Navigator. The share-level permissions are simpler than for a Windows share.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

26

The only options are whether the share is “Read-only” or is “Read/Write” access for
everyone. Below this, object authority restricts access.

The entire IFS is available to be shared, starting at the root directory (however, that is
not recommended). File and printer access is controlled purely by the object authority
settings in OS/400.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

27

Chapter 3 – Summary
OS/400 provides integrated object-level security that security administrators need to
understand to take full advantage of the AS/400's security. Although the authority
implementation can become complex, keeping it simple by employing the system-
supplied management objects–group profiles and authorization lists–can avoid many
run-time surprises and security breaches. Because the AS/400 provides multiple
environments, the “native” QSYS library system, a Unix command environment, a Unix
run-time application environment, and Windows file sharing, the security administrator
needs to understand how these security models work using OS/400 object-level
security to take full advantage of the AS/400's capabilities.

Recommendation for further study
The following are suggested for possible future projects and study:

• A case study on converting from an insecure terminal-based menu security
system to using object authorities to define user access. There are still many
AS/400's that have menu security as their model, even though they have opened
up access methods beyond simple 5250 or Telnet terminal access. A case
study of this process would be a helpful addition to AS/400 knowledge of system
reconfiguration.

• Research project comparing the two security models mentioned in the
Delimitation section, “exit point” security and “Application-only Access”

• A case study covering the implementation of one or the other or both of these
models

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

IBM Corporation, “Client Access for W indows 95: 802.2 Token-Ring and Ethernet Connectivity22

Steps,” Software Knowledge Base, 1996. April 10, 2005. <http://www-912.ibm.com/s_dir/slkbase.NSF/

0/eb270413e2ea2ded862565c2007ca0b8?OpenDocument>

W ayne Madden, “26 C/S Tips & Techniques: Signing On to the Router,” iSeries News,23

December 1995, p.83. (Also available at iSeries Network, December 1, 1995. April 10, 2005.

<http://www.iseriesnetwork.com/resources/artarchive/index.cfm?fuseaction=viewarticle&CO_ContentID=1

291&channel=art&PageView=Search>)

IBM Corporation, “CW BSY: New Client Access R312 Sign On API: cwbSY_LogonUser API,”24

Software Knowledge Base, 1996. April 10, 2005. <http://www-912.ibm.com/s_dir/slkbase.NSF/0/

71fb41549d30b364862565c2007caf5e?OpenDocument>

Timothy Grove, “Client Access Express password cache,” Search400.Com, January 3, 2005. 25

April 1, 2005. <http://search400.techtarget.com/tip/1,289483,sid3_gci1041437,00.html>

28

Appendix
The “Common user id” myth
One practice that bypasses the benefits of implementing object-level security is that of
allowing users to share user profiles and passwords. An example of this is the practice
at some AS/400 sites of connecting users to an AS/400 via IBM Client Access using a
single shared user profile and password. The user then signs on to an AS/400 5250
terminal session using his own user profile and password.

Although AS400 subsystems have always allowed default user profile names for a
remote job startup via the Add Communications Entry command (ADDCMNE), using a
default user profile as a method for connecting user desktops seems to have caught on
starting in 1995 because of the unfortunate use of the term “Common user id” in the
setup documentation for Client Access for Windows ‘95. “Common user id” meant a22

user profile name that a user shared between AS/400 systems. Hence, it was common
for that user among the systems he needed to access. The myth became that it meant
a user profile that was common to all the users who needed to access an AS/400.

There are other articles from 1995 and 1996 that discuss connecting users via a default
user id, but many at least warn of the possible security risk of using the same profile for
multiple users, and another IBM document also states that this recommendation is23

really only appropriate for a server machine that needs to perform a function in an
unattended environment. 24

It is still occasionally touted as a way to avoid multiple logon screens. For example, a
January 2005 Search400.Com article makes the recommendation and goes further by
recommending a Windows registry key so that the connection is made at startup. 25

It is distressing to see this type of recommendation still being made. The problem with
this method is that every other program or function that accesses the AS/400 uses the
initial connection user profile and authorities, not the profile and authorities of the
person signing on to the 5250 session. This practice violates security principles

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

IBM Support Line, technical support, problem number 32006,422, Rochester, MN, April 18,26

2005.

29

including least privilege and separation of duties, and it frustrates any auditing because
everything occurs under a single user profile.

During a call to IBM Support Line about this issue, an IBM Client Access technician was
asked whether IBM had ever recommended this method to connect users to the
AS/400. He did not know of an instance where this was recommended as a general
connection method. However, he said that this method might be a good choice for a
PC server that needs to perform a function in an unattended and secure environment.26

Multiple logons can be controlled by the following procedure. Start iSeries Navigator,
right click on the system name listed under “My Connections” and select “Properties”.
Select the “Connections” tab. Under “Signon information” are the various options. For
instance, if the Windows and AS/400 user names are synchronized, select the “Use
Windows user name and password, no prompting” option.

These methods preserve the access control advantage in establishing object authorities
because a user makes his connection to the AS/400 using his user profile and
consequently works under that profile’s restrictions.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

30

References

Earl, John. “Exit Programs Tighten AS/400 Security.” PowerTech.Com. [No date] April
25, 2005. <http://www.400security.com/pt-about_news-art_FA0603.html>

________. “Purchased Software Can Jeopardize your Security.” iSeries News,
December 1, 1999. (Also available at iSeries Network, December 1, 1999. April 15,
2005. <http://www.iseriesnetwork.com/artarchive/index.cfm?fuseaction=
viewarticle&CO_ContentID=3255&channel=&subart=>)

Evans, Wayne. “Application-only Access: An AS/400 Resource Security Strategy.”
Wayne O. Evans Consulting. [No date] March 29, 2005. <http://www.
woevans.com/AOA.pdf>

Grove, Timothy. “Client Access Express password cache.” Search400.Com. January
3, 2005. April 1, 2005. <http://search400.techtarget.com/tip/1,289483,sid3_
gci1041437,00.html>

IBM Corporation. “Client Access for Windows 95: 802.2 Token-Ring and Ethernet
Connectivity Steps.” Software Knowledge Base, 1996. April 10, 2005. <http://
www-912.ibm.com/s_dir/slkbase.NSF/0/eb270413e2ea2ded862565c2007ca0b8?Op
enDocument>

________. “CWBSY: New Client Access R312 Sign On API: cwbSY_LogonUser API.”
Software Knowledge Base, 1996. April 10, 2005. <http://www-912.ibm.com/s_dir/
slkbase.NSF/0/ 71fb41549d30b364862565c2007caf5e?OpenDocument>

________. “Enterprise Identity Mapping.” iSeries Information Center–V5R2. [No date]
April 19, 2005. <http://publib.boulder.ibm.com/iseries/v5r2/ic2924/index.htm?
info/rzalv/rzalvmst.htm>

 ________. “Identifying User Groups.” iSeries Information Center–V5R3. [No date],
April 15, 2005. <http://publib.boulder.ibm.com/infocenter/iseries/v5r3/
ic2924/index.htm?info/rbapk/rbapkrbapk4i3exampleidug.htm>

________. iSeries Security Reference–Version 5. 8 ed. May, 2004. <http://publib.th

boulder.ibm.com/infocenter/iseries/v5r3/ic2924/info/rbapk/sc415302.pdf>

________. OS/400 Online Help Information, V5R2.

________. “OS/400 PASE.” iSeries Information Center–V5R3. [No date], May 5,
2005. <http://publib.boulder.ibm.com/infocenter/iseries/v5r3/ic2924/
index.htm?info/rzalf/rzalfintro.htm>

________. “Overview of iSeries (OS/400) Architecture.” Virtual Innovation Center for
Hardware. [No date] April 15, 2005. <http://www-1.ibm.com/servers/enable/site/
porting/iseries/overview/overview.html>

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

31

________. “Qshell.” iSeries Information Center–V5R3. [No date], May 5, 2005. <http://
publib.boulder.ibm.com/iseries/v5r2/ic2924/index.htm?info/rzahz/intro.htm>

IBM Support Line. Technical support, problem number 32006,422. Rochester, MN,
April 18, 2005.

Kugel, Jake. “Destination: IFS, Part 1.” iSeries News, June 1, 2002. (Also available at
iSeries Network, June 1 2002. April 29, 2005. <http://www.iseriesnetwork.com
/resources/artarchive/index.cfm?fuseaction=viewarticle&CO_ContentID=14477&cha
nnel=art&PageView=Search>)

Madden, Wayne. “26 C/S Tips & Techniques: Signing On to the Router.” iSeries News,
December 1995. p.83. (Also available at iSeries Network, December 1, 1995. April
10, 2005. <http://www.iseriesnetwork.com/resources/artarchive/index.cfm?
fuseaction=viewarticle&CO_ContentID=1291&channel=art&PageView=Search>)

Midrange dot COM Mailing List Archive. “Re: RMTCMD Anomaly.” May 19, 2000. April
20, 2005. <http://archive.midrange.com/midrange-l/200005/msg00996.html>

Minasi, Mark. Mastering Windows NT Server 4. Alameda, CA: Sybex Inc., 1999.

Parker, Jeff. “Integrated File System Security–Fundamentals.” COMMON Conference
Handout, March 2003, Session 440138.

Parker, Jeff. “Integrated File System Security–Advanced Topics.” COMMON
Conference Handout, March 2003, Session 402088.

Reardon, Marguerite. “Securing data from the threat within.” CNET News. January 11,
2005. April 20, 2005. <http://news.com.com/Securing+data+from+the+threat+
within/2100-7347_3-5520016.html?tag=st.prev>

SANS Institute. Track 1–SANS Security Essentials. Volume 1.2, Defense In-Depth.
SANS Press, September 2004.

________. Track 1–SANS Security Essentials. Volume 1.5, Windows Security.
SANS Press, September 2004.

________. Track 1–SANS Security Essentials. Volume 1.6, Unix Security. SANS
Press, September 2004.

Shapiro, Jeffrey R. and Jim Boyce. Windows 2000 Server Bible. New York: Hungry
Minds, Inc., 2000.

Woodbury, Carol. “Security Patrol: Security Considerations for the Integrated File
System (IFS).” MCPress Online. April 2003. April 11, 2005.
<http://www.mcpressonline.com/mc?50@118.ksLEccBImF2.9@.6ae64331>

