GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec



http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

Secure Application Methodology for Business Applications
Clint Tarpley

GIAC Security Essentials Certification Practical Assignment Version 1.0

© SANS Institute 2000 - 2005 Author retains full rights.



ABSTRACT

What is security? When | look up the word ‘security’ in a dictionary, it tells me security
is freedom from risk, danger, doubt, anxiety, or fear'. Can a computing network be
secure? Well, what does it mean to be ‘secure’? Again | go back to the dictionary and
to secure something is to make free from danger, attack, or risk of loss and being
intercepted or listened to by unauthorized persons, reliable, dependable?. Can a
computing network be free from danger, risk; be reliable, dependable; and provide
expected operability? Maybe... however it is the job of a security analyst to provide the
appropriate level of confidentiality, integrity, and availability on a computing network in
order to satisfy business need.

A secure computing network is one that reduces risk and allows the business to
maintain proper levels of interoperability. Aspects of a secure computing network
include: user education, policies, operations, procedures, intrusion detection,
response, and auditing, as well as the physical protection of hardware, data, and
users. These are just a start to the layout of a secure computing network.

Due to the vast interoperability of systems on a network it is safe to say that a network
is only as secure, as it's weakest link. The weak link that | will address in this paper is
applications and the development of business applications residing on a secured
computing network. A security-minded application development lifecycle will help
minimize risk and keep an environment secure.

INTRODUCTION

In order for security to be effectively and timely applied to an application, security
policies, procedures, and constraints must be considered throughout the application
development lifecycle. Too often security becomes a concern at the end of a
development lifecycle. This slows down deployment and creates a bad reputation for
security processes and policies. Also applications that have not focused on security
may forget to include security best practices making an entire computing network
vulnerable to attack.

An example of a security best practice is input validation. When input is entered by an
end-user an application should make sure it is the appropriate length, type, format, and
range. Doing input validation is a common security best practice forgotten by many
developers. Without input validation an application becomes vulnerable to many
attacks. It only takes one successful attack and an entire network could be
compromised. Prior to deployment, applications should comply with common policies
or document why they have not complied, so the application can be monitored when
alternative solutions become available.

Accidents happen; new vulnerabilities are discovered daily; business areas implement

applications with known vulnerabilities. This makes the job of a security analyst very
difficult and is why a secure computing environment cannot be without migrating

© SANS Institute 2000 - 2005 Author retains full rights.



controls and processes minimizing the risk and exposure of an attack. Vulnerabilities
and attacks can cause the loss or disclosure of business assets. Multiple layers of
defense help to protect business assets and decrease the threat of financial loss,
compromised trade secrets, damaged reputations, and decreased customer
confidence.

Government agencies are strong advocates for ‘defense in depth’ because it provides
an overlapping protection mechanism against threats®. The nature of a computing
network is very interactive and contains multiple systems that must all be secured. By
overlapping protection mechanisms, a system is protected from the failure of one
protection mechanism. Overlapping protection ensures that a system is protected
even if one layer of defense has been penetrated. In order to implement ‘defense in
depth,’ it is very important to address people, technology, and operations through user
training and awareness. It is also very important for administrators and users of a
defense in depth system to be able to identify when a breach has occurred. It is also
important to fix the vulnerability in an efficient manner to reduce the exposure of more
than one layer of defense.

A defense in depth system helps to limit risk of system interoperability and information
sharing. Applications that provide interoperability and information sharing are targets
for most attacks because they require elevated authority to perform work. Security
must be involved in all stages of an application lifecycle. They must be involved in
order to provide the appropriate level of confidentiality, integrity, and availability of a
network where the applications reside. In turn, security helps satisfy business needs
and provides the appropriate levels of protection for business assets by being involved
in the application development life cycle.

BUSINESS ORIENTED APPLICATION DEVELOPMENT

Every company and every developer will approach application development differently.
The goal of an organization should be to adopt a common development methodology
in order to form consistency and better define security related events in an application
development lifecycle. Consistency in application development allows for identical
policies to be applied to applications, security minded developers, and business
analysts focused on protecting business assets. Security and development cannot be
considered separately or be considered as separate responsibilities. Developers and
business analysts must understand each other and have the same goals. Security
analysts and business analysts must define business assets and access to those
assets. All three areas of knowledge must work together in order to effectively define a
way to provide and protect business assets (See figure 1).

Figure 1: The best solution is achieved by sharing knowledge.

© SANS Institute 2000 - 2005 3 Author retains full rights.



Requirements Gathering

Requirement gathering is typically the first step in application development and is an
ideal location to inject security concepts into the heads of business partners and
affiliated developers. At the beginning of a project, requirements are typically based on
high-level business needs, which are recorded in sentence format and presented to a
sponsoring area. When a sponsoring area approves the scope of a project, business
needs are broken down into smaller units of work commonly referred to as business
activities. A business activity is the first step in defining business assets that will be
protected during application development.

After the first steps are taken and business activities are defined, actors should be
specified for each activity. An actor is an individual or a collection of people that can
take action on a business activity. The definition of actors is important because it will
be used later in testing and deployment. It is important to remember when defining
activities and actors, try to avoid defining every special case in an activity or abnormal
actors for the activity. There will be plenty of time to map out special requirements
later in design. Focus should remain on business functionality. By avoiding details
during this activity, business models will be easier to understand and depict early signs
of business assets and application roles.

The next step of requirements gathering is to further divide each business activity into
use cases. Use cases are used to take the conceptual process of an activity and map
the activity into smaller functional units of work. A use case will cover: expected
business flow for each unit of work, actors that can take action, and possible
exceptions during processing. At this phase of requirements, special cases around
individual user access and administration should be documented. This phase is the
first opportunity for a developer to see logical sequences of events making up a
business activity. Along with understanding business activities, developers need to
pay attention to exceptions and exits documented in the use cases. If an expected
exception is not handled properly, the application may open up a vulnerability that
could be exploited (e.g. exception exploit). Use cases documented in this phase of
development should remain static and be used to develop test plans for the application
later in development.

© SANS Institute 2000 - 2005 4 Author retains full rights.



At this phase of application development, business functionality should be thoroughly
designed. The next step prior to a developer beginning to write code is to understand
and document security requirements around business activities and assets. Security
requirement gathering should begin by considering the six foundational elements of
security: authentication, authorization, event logging, confidentiality, integrity, and
availability*.

- Authentication is the process of uniquely identifying a user in an application.
Authorization is the process of governing resources and actions that the
authenticated user has permission to access.

Event logging, or auditing, helps to guarantee non-repudiation of an activity.
Confidentiality is keeping private or sensitive data protected from unauthorized
users.
Integrity guarantees that protected data has not been accidentally or deliberately
modified.
Availability is the process of making sure an application is available for use by
all legitimate users.
These six elements make up the foundation of a secure application and each must be
considered during requirement gathering in order to design a secure application.

The tricky part of defining security requirements is taking the six elements of a secure
application and specifying constraints around business assets that must be fulfilled by
the application. The first step of this process is specifying the data the application will
be interacting with, based on activities and use cases previously defined. Once data is
identified, it will need to be categorized into logical groupings. The logical groupings
will be used to better understand what controls need to be applied during a transaction
accessing this data. Government agencies are a prime example of businesses that
base security controls of an application extensively on data classification®. The type of
data being stored, the usage of the data, confidentiality, and data storage techniques
should all be considered when classifying business data.

Risk Assessment

The next step of specifying what controls should be used to protect an application is to
determine risk or threat of an attack. Threats and risks of an application are based on
many different variables and cannot be complete without a proposed architecture to
which the application will be deployed. Different architectures pose a greater threat
than others based on known vulnerabilities of software, network services, and
operating systems. System networks, data storage, server hardening, running
services, and application configurations are just a few things to consider when defining
risk for an architecture. When evaluating risk, not only should elements of risk be
considered, but devices that eliminate risk on the proposed architecture should also be
evaluated. (e. g. firewalls, routers, cryptographic services, authentication services, and
authorization services.) For any measure of risk the proposed architecture, security
vulnerabilities of the architecture, and security utilities available on the architecture
must be considered. Once risk and protective controls have been identified, approving
sponsors of the application should sign off on the risk assessment. This extra step is

© SANS Institute 2000 - 2005 5 Author retains full rights.



important and will guarantee responsible parties of business assets are aware and
accept the risk induced by making assets available through this application.

Data classification and risk assessment will cover confidentiality, availability, and
integrity, but sometimes lacks detailed discussions around authentication and
authorization. In order to define thorough authentication and authorization
requirements; two approaches must be considered: system and user. When entering
into an application, the server where the application resides will attempt to establish a
trust relationship with the user. Once the user has been identified and trusted, the
system will attempt to authorization the user to perform the requested action on the
server. These two processes are considered system authentication and authorization.
System authentication and authorization are typically defined through application
configuration settings and Access Control Lists (ACL).

Figure 2 - User verse System controls

User perspective

=

—

]

User-based Authentication and Authorization

User-level authentication and authorization happen last in the TCP-IP stack within the
application layer. User-level authentication and authorization occur within the
application and require a developer to write code in order to uniquely identify a user or
govern access to business resources. These security requirements are typically left
out of requirement gathering because they are very granular and depend on physical
implementations of the application. User-level controls are most commonly discovered
during development when system controls alone are not adequate in providing
necessary levels of confidentiality and integrity. If low-level authorization requirements
are gathered early during design, developers will have an opportunity to evaluate
system-level security controls during development. Developers will also prepare the
application for additional security constraints if necessary. However, developers and
analysts typically do not have the foresight to see shortcomings of system-level
authorization. Granular authorization requirements are typically discovered late in

© SANS Institute 2000 - 2005 6 Author retains full rights.



development.

When developers identify granular authorization requirements late in development,
they will do one of two things: scramble to security analysts for help which will
probably cause modifications to code, or get creative with a unique solution to meet
desired requirements. Quick-fix authorization solutions may help short-term needs of
an application, but developers will continue to experience similar problems in
sequential applications. Developers should focus on normalizing user-level controls to
increase reusability across applications. In doing so, developers will decrease time to
market and decrease administration burdens that are influenced by multiple hereditary
application based user-level controls.

BUILDING USER-BASED SERVICES

When an analyst defines security architecture they will typically think of physical
aspects of an application: server, router, firewall, file, packaged code, and an ACL.
Defining user-level controls takes an abstract approach to security. Resources and
actions in a business application are no longer physical objects but represent a logical
unit of work. It is security-oriented in a way that the business can understand. The first
step of user-level controls is defining business activities and use cases that were
mentioned earlier in this document. The next step is to define application resources.
Application resources are abstract business assets classified as sensitive and require
an additional layer of defense. A user-level resource may be an auto policy, a report,
or a payment option. It represents a business artifact the business understands and
can relate to for ease of administration.

Too often application security becomes oriented around who can click a button on a
screen. Buttons are not business assets if compromised and cause financial damage.
The action and resource executed behind the button are true business assets.
Business security requirements should reflect the business assets that need
protection. This will allow the business to identify functionality of the application and
provide proper administration of the business asset without making an assumption on
the functionality of a button. The combination of an action and a resource may be
referred to as a privilege, operation, or a claim.

Defining Roles and Privileges

During the process of defining privileges for an application, business analysts should
start to categorize privileges into groups based on functionality. Each logical group of
functionality will relate to a low-level business activity. A logical group of privileges turn
into work duties. Work is preformed by a collection of people, or an application role.
Application roles are derived from business activities and should not be considered a
collection of users, but a collection of privileges that a group of individuals need in
order to perform work. The process of defining application roles can be difficult for
analysts. Historically, roles have been work groups, teams, or individuals requesting
access to resources. This model begins to break down when business analysts

© SANS Institute 2000 - 2005 7 Author retains full rights.



accept ownership of application security and the assets used by the application. If the
application security model is not a representation of the business it will be difficult to
be appropriately maintained. Business-oriented security models help to reduce the
risk of human error when administering security, because security becomes a better
representation of the mental model of an analyst®.

As mentioned earlier, an application role is a collection of privileges. A privilege is a
specific action on a resource. User-level controls are designed with the business in
mind so an abstract resource is a logical business artifact or a business event that
requires special authorization. Special authorizations will require dynamic security
control. As an example, the privilege ‘withdrawal cash’ will need to evaluate the
current actor, current account balance, and the requested amount in order to grant or
deny access to the privilege ‘withdrawal cash’. Special run-time constraints applied to
a privilege for granular security are called rules. Rules may contain environment
constraints, current time and day, user attributes, transactional attributes, or a
combination of all four. The definition of a rule should remain extensible and can be
applied to a privilege that is contained by one-to-many roles.

Figure 3 - User-level security concepts

Designing a user-based authorization service can be difficult due to the unlimited
number of variables required to make granular authorization decisions. A user-based
authorization service should be extensible, scalable, and flexible. By making the
service extensible, the service is better prepared for multiple underlying
implementations. Extensibility will also help to eliminate the need of a developer to
make multiple coding changes in applications when new security products become
available and used. Scalability is important in order to handle multiple authorization
requests in an efficient manner. Developers have become use to system-based
authorization requests and will expect transaction durations not to be greatly impacted
by using user-based authorization services. Reusable services, e. g. a user-based
authorization service, should not change when an infrastructure change occurs. This is
a developer pet peeve because it requires coding changes on behalf of every
application using the service. Flexibility of the authorization service will help to

© SANS Institute 2000 - 2005 8 Author retains full rights.



establish consistent interfaces independent of an implementation. A consistent
interface definition is the key to a strong reusable service implementation. By
decoupling the interface from an implementation specialized platform, dependent
security controls can be used. This will decrease cost of supporting multiple controls
without changing interface definitions on disparate platforms.

Administration of User-Based Services

Another element to consider when designing a user-based authorization service is
administration. Administration interfaces must be easy to use, available for alternative
user interaction designs, and scriptable for batch processing. By allowing multiple
administrative options the business is given flexibility in the manner they wish to control
business assets. It is very important to be consistent and secure when providing
multiple administration options. A consistent implementation of the interfaces will
guarantee events interacting with authorization data have been audited and protected
as anticipated. Direct access to authorization data should not be allowed. If direct
access is allowed, events acting on security data will not be captured consistently, and
integrity of the system will be lost.

Customized administrative interfaces allow for independent representation of security
administration based on business context. Business-oriented administration will help
to reduce human error because security becomes a better representation of the mental
model of the analyst. By reducing risk of human error, the security of the user-based
authorization system is stronger.

System Integrated User-Based Services

The two forms of authentication and authorization mentioned in this document are
system and user-based. Security administration is always considered a burden.
Multiple security administration is a headache. Are both system and user-based
services required, or is one or the other sufficient?

Both system and user-based services should be used to protect an application from
attack. System services protect the front door of an application. Without protecting the
front door, all users of the application are allowed in, and unauthorized individuals need
to be filtered at runtime. Performance of the application will be impacted when user-
based controls are not as fast as integrated system controls. Also, by protecting the
front door of an application, unauthorized users are rejected prior to determining what
functionality can be provided by the application. After access to an application is
successful the application will execute under an application context instead of a user
context. The context switch occurs within the application to increase data protection,
performance, and the protection of sequential services used by the application. By
securing data and services to application identities, thousands of user identities will not
need to be maintained at the data layer. Authorizing user identities at the data layer of
an application would increase exposure. The more identities authorized to a service,
the more opportunity to compromise an identity. In particular only one or two support

© SANS Institute 2000 - 2005 9 Author retains full rights.



personal would know the identity and password for an application, verses 100,000
users knowing their own identity and password. The risk of exposure greatly increases
with user authorization to data services so application context switching should occur
in an application.

However, application context switching is not always a good thing because
applications will have to authenticate and authorize users within the application during
a transaction. User-based services help applications maintain user credentials so they
can be authorized to business functionality at run-time. System controls can handle
static authorization decisions; but run-time decisions have to be made
programmatically to user-based services. User-based services are best for granular
authorization requests and help to prevent developers from hard coding security rules
within code.

Hard coded security rules make administration difficult. When an exposure has been
found in an application that is based from hard coded security rules, changes to the
rule must be made in a fast and efficient manner with minimal impact to the
application. The more time it takes to fix a known vulnerability, the more risk an
application encounters. Modifications to fix vulnerabilities discovered in application
code are not easy because of regression testing, bug tracking, and change
management procedures. [f authorization decisions are externalized from the business
application, the external source can be modified without affecting the code using the
security privilege. This will minimize the cost associated with fixing security-defects
within the application.

Every application is different. Some applications require granular security others may
not. If an application has a need for user-based authorization decisions, system
authorizations cannot be ignored or forgotten. Administration of two authorization
systems is very costly for an organization. Provisioning solutions should be created for
user-based services to map fine-grain user policies into coarse system authorizations.
By provisioning user-based services administration remains business oriented and
unified in one central repository.

CONCLUSION

The job of a developer is to provide services that enable the availability of business
assets to consumers. Levels of risk increase based on business needs to make
assets more available to consumers. As business assets become more available
levels of risk increase. It is the job of a security professional to provide the ability for a
developer to minimize risk associated with making business assets available and to
achieve a level of risk that has been deemed acceptable by business asset owners.
Preparing detail business activities and designing application logic around security
constraints help to achieve this goal.

Applications can be secured by using an ACL, an application server run-time, or by
making programmatic calls to a security service. However, without a proper design

© SANS Institute 2000 - 2005 10 Author retains full rights.



and detailed security requirements, an application will not fulfill the needs of a
business owner. The concept of security should be centralized. If not, it can lead to
big administration headaches maintaining and debugging multiple security models.
Common security services can be used to alleviate some of the pain caused by
multiple security administration products. However, common services must be
protected the same as a sensitive application. It should contain event logging for
auditing and an administration module that can be used to protect the integrity of the
data in a policy store. A common component should also provide integrity of a user
session so that a user can be evaluated throughout the lifetime of a transaction without
increasing risk on a system. User-based controls are not system-based controls, and
the combination of both, provide defense in depth.

Processor speed, bus size, hard drives, and RAM continue to increase. It is expected
that applications developed on these platforms be enhanced to use these expanding
capabilities. With the explosion of application development, security for applications is
difficult to manage. Security has to be expressed in an abstract sense to protect
applications from changes induced by multiple security implementations. An abstract
security model will also allow for the proper protection of business assets by business
owners.

© SANS Institute 2000 - 2005 11 Author retains full rights.



References:

Deputy Security of Defense. “Department of Defense Chief Information Officer
Guidance and Policy Memorandum No. 6-8510.” Guidance and Policy for Department
of Defense Global Information Grid Information Assurance. June 16, 2000. p.3.
http://www.defenselink.mil/nii/org/cio/doc/qigia061600.pdf.

Greenemeier, Larry. “Intel Unveils More Details About Next-Generation Processor.”
When the new processor, code-named Montecito, debuts in 2005, it will include 24
Mbytes of Level 3 cache memory, as well as two cores, each with multithreading
capabilities. Nov. 14, 2003.
http://www.informationweek.com/story/showArticle.jhtml?articlelD=16100623.

Howard, Michael and David LeBlanc. Writing Secure Code 2% Edition. Microsoft Press,
2003, p.4, 5, 51-68.

King, Christopher. “Intranet Application Security Checklist.” 1997.
http://www.infoseceng.com/intra.htm.

Meier, J.D. Improving Web Application Security, Threats and Countermeasures. V1.0.
J.D. Meier, Alex Mackman, Srinath Vasireddy, Michael Dunner, Ray Escamilla, and
Anandha Murukan. Microsoft Corp., 2003, p.9, 10, 689-694.

Pavlina, Steve. “Zero-Defect Software Development.” 1999.
http://www.dexterity.com/articles/zero-defect-software-development.htm.

Schneider, Bruce. Secrets and Lies, Digital Security in a Networked World. John Wiley
& Sons, Inc., 2000, p.59-79, 367-388.

Smith, S.W. “Humans in the Loop, Human-Computer Interaction and Security”.
Security & Privacy. May/June 2003. Vol.1, No.3. p.75-79.

Yee, Ka-Ping. “User Interaction Design for Secure System.”
http://www.sims.berkeley.edu/~ping/sid/uidss.pdf

The American Heritage, Dictionary of the English Language, Fourth Edition. Houghton
Mifflin Co., 2000, http://dictionary.reference.com/search?g=security.

The American Heritage, Dictionary of the English Language, Fourth Edition. Houghton
Mifflin Co., 2000, http://dictionary.reference.com/search?g=secure

Uhttp://dictionary.reference.com/search?q=security
2 http://dictionary.reference.com/search?q=secure

3 Deputy Security of Defense, p.3.

4Howard, p. 4-5.

5> Schneider, p. 62-63.

6 Smith, p. 75-79.

© SANS Institute 2000 - 2005 12 Author retains full rights.



